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AN IDENTIFICATION PROBLEM IN AN URN AND BALL

MODEL WITH HEAVY TAILED DISTRIBUTIONS

CHRISTINE FRICKER, FABRICE GUILLEMIN, AND PHILIPPE ROBERT

Abstract. We consider in this paper an urn and ball problem with replace-
ment, where balls are with different colors and are drawn uniformly from a
unique urn. The numbers of balls with a given color are i.i.d. random vari-
ables with a heavy tailed probability distribution, for instance a Pareto or a
Weibull distribution. We draw a small fraction p ≪ 1 of the total number of
balls. The basic problem addressed in this paper is to know to which extent we
can infer the total number of colors and the distribution of the number of balls
with a given color. By means of Le Cam’s inequality and Chen-Stein method,
bounds for the total variation norm between the distribution of the number
of balls drawn with a given color and the Poisson distribution with the same
mean are obtained. We then show that the distribution of the number of balls
drawn with a given color has the same tail as that of the original number of
balls. We finally establish explicit bounds between the two distributions when
each ball is drawn with fixed probability p.

1. Introduction

We consider in this paper the following urn and ball scheme with replacement :
An urn contains a random number of balls with different colors. We draw a small
fraction p ≪ 1 of the total number of balls. A ball which has been drawn is
replaced into the urn. The problem considered in this paper consists of estimating
the number of colors together with the distribution of the number of balls with a
given color by using information from sampled balls. This problem is motivated by
the analysis of packet sampling in the Internet (see Chabchoub et al. [5] for details).

To address the above problem, we analyze the non-normalized distribution of
the number of balls drawn with a given color. More specifically, let Wj (respec-

tively, W+
j ) denote the number of colors with a number of sampled balls equal to

(respectively, equal to or greater than) j. Denoting by K̃ the number of colors

seen when drawing balls, the quantities Wj/K̃ and W+
j /K̃ are equal to the pro-

portions of colors, which at the end of the trial comprise exactly or at least j balls,
respectively.

The numbers of balls with various colors are assumed to be i.i.d. random vari-
ables and the number K of colors is large. In addition, the distribution of the
number of balls with a given color has a heavy tailed probability distribution of
Pareto or Weibull type. Finally, balls are drawn uniformly. This means that for
each i = 1, . . . , K, if there are vi balls with color i, the probability of drawing a
ball with this color is vi/V , where V = v1 + · · · + VK is the total number of balls
in the urn.

Key words and phrases. Chen-Stein method, Pareto distribution, Weibull distribution.
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The above model is defined as the “uniform model”. It will compared against
the case when balls are drawn independently one of each other with probability p.
This model will be referred to as probabilistic model. We show that the results
obtained in both models are close one to each other when p is very small. But
there are some subtle differences between the two models, notably with regard to
the achievable accuracy in the inference of original statistics. It turns out that the
probabilistic model is simpler to analyze than the uniform model but yields less
accurate results. This is due to the fact that we cannot exploit the fact that the
number of colors is very large.

One of the main results of the paper concerns the analysis of the validity of the
following simple scaling rule: The distribution of the original number vi of balls
with color i could be estimated by that of the random variable ṽi/p, where ṽi is
the number of sampled balls with color i. When each ball is drawn with a fixed
probability, it is known that this rule is valid for tails of the distributions as soon
as they are heavy tailed. See Asmussen et al [3] and Foss and Korshunov [7] where
this asymptotic equivalence is proved in a quite general framework. Our main goal
here is to get, for j ≥ 2, an explicit bound on the quantity

∣

∣

∣

∣

P(ṽ ≥ j)

P(v ≥ j/p)
− 1

∣

∣

∣

∣

.

In the context of packet sampling in the Internet, explicit expressions are especially
important for the estimation of the sizes of flows in Internet traffic. In this setting
the variable j is taken to be large but cannot be too large so that the event {ṽ = j}
occurs sufficiently often to obtain reliable statistics. Henceforth, the dependence
on j should be made explicit. See Chabchoub et al. [5] for a discussion.

The organization of this paper is as follows: The notation and the basic results
used in this paper (Le Cam’s inequality and Chen-Stein method) are presented in
Section 2. The mean values of the random variables Wj and W+

j are computed in

Section 3. The approximation of the distribution of W+
j by a Poisson distribution

and the validity of the scaling rule are investigated in Section 4. We compare in
Section 5 the original distribution of the number of balls with a given color against
the rescaled distribution of the number of drawn balls with the same color. Some
concluding remarks with regard to sampling are presented in Section 6.

2. Notation and basic results

2.1. Definitions and assumptions. We consider an urn containing vi balls with
color i for i = 1, . . . , K. The quantities vi are independent random variables with
a common heavy tailed distribution. In the following we shall consider two families
of heavy tailed distributions for the number v of balls with a given color:

Pareto distributions: The distribution of v is given by

(1) P(v > x) = (b/x)a, x ≥ b,

with the shape parameter a > 1 and the location parameter b > 0. The
mean of v is ab/(a− 1).

Weibull distributions: The distribution of vi is given by

(2) P(v > x) = exp(−(x/η)β), x ≥ 0,

with the skew parameter β ∈ (0, 1) and the scale parameter η > 0. The
mean of v is η

β Γ(1/β), where Γ is the classical Euler’s Gamma function.
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The total number of balls in the urn is V =
∑K

i=1 vi. We draw only a fraction
p of this total number of balls. Each ball is drawn at random: A ball with color
i is drawn with probability vi/V . After drawing the pV balls, we have ṽi balls
with color i. Of course, only those colors with ṽi > 0 can be seen. The quantity

K̃ =
∑K

i=1 1{ṽi>0} is the number of colors seen at the end of a trial.
In the following, we shall be interested in the asymptotic regime when the number

of colors K → ∞ while the fraction p → 0. Note that by the law of large numbers,
V → ∞ a.s. (the total number of balls in the urn is very large).

The random variables we consider in this paper to infer the original statistics
of the number of balls and colors are the variables Wj and W+

j , j ≥ 0, defined as
follows.

Definition 1 (Definition of Wj). The random variable Wj is the number of colors
with j balls at the end of a trial and is given by

j ≥ 0, Wj = 1{ṽ1=j} + 1{ṽ2=j} + · · · + 1{ṽK=j},

where ṽi ≥ 0 is the number of balls drawn with color i (which can be equal to 0).

Definition 2 (Definition of W+
j ). The random variable W+

j is the number of colors

with at least j balls at the end of a trial. The random variables W+
j are formally

defined by

j ≥ 0, W+
j = 1{ṽ1≥j} + 1{ṽ2≥j} + · · · + 1{ṽK≥j}.

Note that we have

∀j ≥ 0, W+
j =

∑

ℓ≥j

Wℓ.

The averages of the random variables Wj are in fact the key quantities we shall
use in the following to infer the original numbers of balls per color.

2.2. Le Cam’s inequality and Chen-Stein method. Le Cam’s inequality gives
the distance in total variation between the distribution of a sum of independent and
identically distributed (i.i.d.) Bernoulli random variables and the Poisson distri-
bution with the same mean (see Barbour et al. [4]). Note that if V and W are
two random variables taking integer values, the distance in total variation between
their distributions is defined by

‖P(W ∈ ·) − P(V ∈ ·)‖tv
def.
= sup

A⊂N

|P(W ∈ A) − P(V ∈ A)|

=
1

2

∑

n≥0

|P(W = n) − P(V = n)| .

Theorem 1 (Le Cam’s Inequality). If the random variable W =
∑

i Ii, where the
random variables Ii are i.i.d. Bernoulli random variables, then

(3) ‖P(W ∈ ·) − P(QE(W ) ∈ ·)‖tv ≤
∑

i

P(Ii = 1)2,

where for λ > 0, Qλ is a Poisson random variable with mean λ, that is, for all
n ≥ 0,

P(Qλ = n) =
λn

n!
e−λ.
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When the random variables Ii appearing in the above theorem are not indepen-
dent but satisfy a specific condition, referred to as monotonic coupling, it is still
possible to obtain a bound on the distance between the distribution of the sum
W =

∑

i Ii and the Poisson distribution with mean E(W ).

Definition 3 (Monotonic Coupling). The variables Ii are said to be negatively
related, when there exist some random variables Ui and Vi such that

(1) Ui
dist.
= W and 1 + Vi

dist.
= (W | Ii = 1);

(2) Vi ≤ Ui.

The main result of the Chen-Stein method is given by the following theorem (see
Barbour et al. [4]).

Theorem 2. If the monotonic coupling condition is satisfied, then the following
inequality holds

(4) ‖P(W ∈ ·) − P(QE(W ) ∈ ·)‖tv ≤ 1 − Var(W )

E(W )
.

When the monotonic coupling condition is satisfied, in order to prove the Poisson
approximation, it is sufficient to show that the ratio of the variance to the mean
value of W is close to 1; this is a very weak condition to prove in practice.

It should be noted (see [8]) that Relation (4) can be used not only when E(W )
takes bounded values so that W is approximately a Poisson random variable, but
also when E(W ) is large. In this case Chen-Stein Method yields a central limit
theorem: If N is a standard normal distribution,

∥

∥

∥

∥

∥

P

(

W − E(W )
√

Var(W )
∈ ·
)

− P(N ∈ ·)
∥

∥

∥

∥

∥

tv

≤
∥

∥

∥

∥

∥

P

(

W−E(W )
√

Var(W )
∈ ·
)

−P

(

QE(W )−E(W )
√

Var(W )
∈ ·
)∥

∥

∥

∥

∥

tv

+

∥

∥

∥

∥

∥

P

(

QE(W )−E(W )
√

Var(W )
∈ ·
)

−P(N ∈ ·)
∥

∥

∥

∥

∥

tv

where Var(W ) is the variance of the random variable W .
By using Relation (4), we have

∥

∥

∥

∥

∥

P

(

W − E(W )
√

Var(W )
∈ ·
)

− P(N ∈ ·)
∥

∥

∥

∥

∥

tv

≤ 1 − Var(W )

E(W )

+

∥

∥

∥

∥

∥

P

(

QE(W )−E(W )
√

Var(W )
∈ ·
)

−P(N ∈ ·)
∥

∥

∥

∥

∥

tv

.

If the ratio E(W )/Var(W ) is close to 1, then the first term in the right hand side of
the above relation is negligible. In addition, the classical central limit theorem for
Poisson distributions implies that when E(W ) is large, the second term is negligible

too. Therefore, we have W ∼ E(W ) +
√

Var(W )N with a bound on the error.
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3. Computation of mean values

3.1. Bounds for mean values. By using Le Cam’s inequality, we can establish
the following result for the mean value of the random variables Wj .

Proposition 1 (Mean Value of Wj). If there are V balls and K colors in the urn,
for j ≥ 0, the mean number E(Wj) of colors with j balls at the end of a trial satisfies
the relation

∣

∣

∣

∣

E(Wj)

K
− Qj

∣

∣

∣

∣

≤ E

(

min(pv, 1)
v

V

)

,(5)

where Q is the probability distribution defined for j ≥ 0 by

Qj = E

(

(pv)j

j!
e−pv

)

,

p is the sampling rate, and v is distributed as the number of balls with a given color.

Proof. We have
ṽi = Bi

1 + Bi
2 + · · · + Bi

pV ,

where Bi
ℓ is equal to one if the ℓth ball drawn from the urn has color i, which event

occurs with probability vi/V , the quantity V being the total number of balls in the
urn.

Conditionally on the values of the set F = {v1, . . . , vK}, the variables (Bi
ℓ, ℓ ≥ 1)

are independent Bernoulli variables. For 1 ≤ i ≤ K, Le Cam’s Inequality (3)
therefore gives the relation

‖P(ṽi ∈ · | F) − P(Qpvi
∈ ·)‖tv ≤ p

v2
i

V
,

and Relation (4) which can also be used in this case yields

‖P(ṽi ∈ · | F) − P(Qpvi
∈ ·)‖tv ≤ vi

V
,

By integrating with respect to the variables v1, . . . , vK , these two inequalities give
the relation

(6) ‖P(ṽi ∈ ·) − Q‖tv ≤ E

(

min (pv, 1)
v

V

)

.

Since E(Wj) =
∑K

i=1 P(ṽi = j), by summing on i = 1, . . . , K, we obtain

|E(Wj) − KQj| ≤ KE

(

min (pv, 1)
v

V

)

.

and the result follows. �

By using the fact that E(W+
j ) =

∑K
i=1 P(ṽi ≥ j), we can deduce from Equa-

tion (6) the following result.

Proposition 2 (Mean Value of W+
j ). If there are V balls and K colors in the

urn, the mean number E(W+
j ) of colors with at least j ≥ 0 balls at the end of an

arbitrary trial satisfies the relation
∣

∣

∣

∣

∣

∣

E(W+
j )

K
−
∑

ℓ≥j

Qℓ

∣

∣

∣

∣

∣

∣

≤ E

(

min (pv, 1)
v

V

)

,(7)

where the probability distribution Q is defined in Proposition 1.
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We immediately deduce from Propositions 1 and 2 the following corollary by
using the fact that V ≥ K.

Corollary 1 (Asymptotic Mean Values). The relations

lim
K→∞

1

K
E(Wj) = Qj and lim

K→∞

1

K
E(W+

j ) =
∑

ℓ≥j

Qℓ.

hold.

Note that if balls are drawn with probability p independently one of each other
(probabilistic model), we have ṽi =

∑vi

ℓ=1 B̃i
ℓ, where the random variables B̃i

ℓ are
Bernoulli with mean p. By adapting the above proofs, we find

(8)

∣

∣

∣

∣

E(Wj)

K
− Qj

∣

∣

∣

∣

≤ p.

3.2. Asymptotic results for specific probability distributions.

3.2.1. Pareto distributions. Let us first assume that the number of balls of a given
color follows a Pareto distribution given by Equation (1). Then, we have the fol-
lowing result when the number of colors goes to infinity.

Proposition 3. If v has a Pareto distribution as in Equation (1), then for all
j > a, the relations

lim
K→+∞

E(Wj+1)

E(Wj)
= 1 − a + 1

j + 1
+ O((pb)j−a),(9)

lim
K→+∞

E(Wj)

K
= a(pb)a Γ(j − a)

j!
+ O((pb)j),(10)

lim
K→+∞

E(W+
j )

K
= (pb)a Γ(j − a)

(j − 1)!
+ O

(

(pb)j

1 − pb

)

(11)

hold.

Proof. For j > a,

(12) Qj = E

(

(pv)
j

j!
e−pv

)

= aba pa

j!

∫ +∞

pb

uj−a−1e−u du

= a(pb)a Γ(j − a)

j!
− a

(pb)j

j!

∫ 1

0

uj−a−1e−pbu du.

Therefore, by using the relation Γ(x + 1) = xΓ(x), we get the equivalence

Qj+1

Qj
=

j − a

j + 1
+ O((pb)j−a),
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which gives Equations (9) and (10) by using Corollary 1. For the mean value of
W+

j , Equation (12) gives the relation

lim
K→+∞

E(W+
j )

K
= a(pb)a

∑

n≥j

Γ(n − a)

n!
+ O

(

(pb)j

1 − pb

)

= a(pb)a
∑

n≥0

Γ(n + j − a)Γ(n + 1)

Γ(j + n + 1)

1n

n!
+ O

(

(pb)j

1 − pb

)

= a(pb)a Γ(j − a)

j!
F (j − a, 1; j + 1; 1) + O

(

(pb)j

1 − pb

)

,

where F (a, b; c; z) is the hypergeometric function satisfying

F (a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)

(see Abramowitz and Stegun [1]), and Equation (11) follows. �

The shape parameter a can be estimated via Relation (11) by

(13) a = lim
K→∞

j

(

1 −
E(W+

j+1)

E(W+
j )

)

+ O

(

(pb)j

1 − pb

)

for all j > a. This gives a means of estimating the shape parameter a. When ob-
serving drawn balls, we have in fact only access to the quantity E(K̃) of the number
of sampled colors. While this has no impact for the estimation of a, this correcting
term is important when estimating b from Equation (11). It is straightforward that

K̃ =

K
∑

i=1

1{ṽi>0} = K − W0

and then when K → ∞
E(K̃) ∼ K(1 − Q0) = K

(

1 − E(e−pv)
)

.

Since

(14) 1 − E(e−pv) = p

∫ ∞

0

e−pxP(v > x)dx = bp + (bp)aΓ(1 − a, bp),

where Γ(a, x) is the incomplete Gamma function defined by Γ(a, x) =
∫∞

x
ta−1e−tdt,

we can use the above equations together with Equation (11) in order to estimate b
and then K. It is also worth noting that 1−E(e−pv) ∼ bp when a > 1 and bp → 0.

3.2.2. Weibull distributions. We assume in this section that the number of balls
with a given color follows a Weibull distribution. In this case, we have the following
result, which follows from a simple variable change and the expansion of exp(−xβ)
in power series of xβ or exp(−px) in power series of x; the proof is omitted.

Proposition 4. If v has a Weibull distribution with skew parameter β and scale
parameter η, then for 0 < β < 1

(15) lim
K→+∞

E(Wj+1) =
β

j!

∞
∑

n=0

(−1)n

(pη)(n+1)β

Γ((n + 1)β + j)

n!
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and for β > 1,

(16) lim
K→+∞

E(Wj+1) =
(pη)j

j!

∞
∑

n=0

(−pη)n

n!
Γ

(

(n + j)

β
+ 1

)

.

Note that E(Wj) can be written in the form

E(Wj) =
1

j!

β

(pη)β

∫ ∞

0

uj+β−1e−u+tuβ

du

with t = −1/(pη)β. The above integral is known in the literature as to be of the
Faxen’s type and can be expressed by means of Meijer G-function, when β is a
rational number, see Abramowitz and Stegun [1].

Contrary to the case of Pareto distribution for the initial distribution of balls of
a given color, there is no simple relations giving the parameters β and η from the
mean values E(Wj), j ≥ 1. In fact, we shall prove in the following that P(ṽ ≥ j)
has also a Weibull tail. This eventually gives a means of identifying the parameters.

4. Poisson approximations

In the previous section, we have established bounds for the mean values of the
random variables Wj and W+

j . To obtain more information on their distributions,

we intend to use Chen-Stein method. For a fixed environment (namely fixed values
of the quantities vi for i = 1, . . . , K), these random variables appear as sums
of non independent Bernoulli random variables. A preliminary analysis of the
Bernoulli random variables appearing in the expression of Wj reveals that it seems
not possible to invoke a monotonic coupling argument. It is well known (see [4]
for details) that the situation is more favorable with the random variables W+

j and

we can specifically prove that if F is the set F = {vi, 1 ≤ i ≤ K}, then the total
number W+

j of colors with at least j balls at the end of the trial satisfies the relation

(17)
∥

∥

∥P(W+
j ∈ · | F)−P(Q

E(W+
j | F)∈· )

∥

∥

∥

tv
≤E

(

1−
Var(W+

j | F)

E(W+
j | F)

)

.

Indeed, given the random variables vi, the model is equivalent to a standard urn
and ball problem consisting of putting pVi balls into K urns, a ball falling into
urn i with probability pi = vi/Vi. The number of balls in urn i is the number of
balls with color i in the original urn and ball problem. Even in the case when the

quantities pi are different, the variables I+
i,j

def
= 1{ṽi≥j} are negatively related so

that Theorem 2 can be used. See Page 24 and Corolary 2.C.2 Page 26 of [4] for a
definition and the main inequality in this domain. Chapter 6 of this reference is
entirely devoted to related occupancy problems.

The rest of this section is devoted to the estimation of the bound in Equa-
tion (17). We first establish the following lemma.

Lemma 1. For a fixed environment F = {vi, 1 ≤ i ≤ K}, the distance in total
variation between the distribution of W+

j and the Poisson distribution Q
E(W+

k
| F)

satisfies the inequality

lim
K→+∞

‖P(W+
j ∈ · | F) − P(Q

E(W+
k

| F) ∈ ·)‖tv ≤ m2,j(p)

mj(p)
+

p

E(v)

m′
j(p)2

mj(p)
,(18)
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where mj(p) and m2,j(p) are the first two moments of the random variable defined
by

(19) Xj(p) =
∑

ℓ≥j

(pv)ℓ

ℓ!
e−pv,

and the prime sign denotes the derivative with respect to p.

Proof. For F fixed, the number Wj of colors with j ≤ pV balls at the end of the
trial is such that

E(Wj | F) =

K
∑

i=1

(

pV

j

)

(vi

V

)j (

1 − vi

V

)pV −j

.

By using the fact that

1

V
=

1

KE(v)
+ o

(

1

K

)

a.s.

for large K, straightforward calculations show that

(20) E(Wj | F) =

K
∑

i=1

(pvi)
j

j!
e−pvi

(

1 − j(j − 1)

2pKE(v)
+

2jvi − pv2
i

2E(v)K

)

+ o

(

1

K

)

=

K
∑

i=1

(

(pvi)
j

j!
e−pvi − p

2E(v)K

d2

dp2

(

e−pvi
(pvi)

j

j!

))

+ o

(

1

K

)

.

By summing up the terms above and by checking that the o
(

1
K

)

term remains valid,

since the sum can be written as
∑K

i=1 f(vi)e
−pvi/K2, where f is a polynomial, we

have for j ≥ 1 and 0 < p < 1

E(W+
j | F) =

∑

ℓ≥j

E(Wℓ | F) =

K
∑

i=1

Xi,j(p) − p

2E(v)K

K
∑

i=1

X ′′
i,j(p) + o

(

1

K

)

,

where

Xi,j(x) =
∑

ℓ≥j

(xvi)
ℓ

ℓ!
e−xvi .

For the variance, if Ii,j is 1 if color i has exactly j balls at the end of the trial

and 0 otherwise, then Wj =
∑K

i=1 Ii,j and, for j 6= ℓ,

E(WjWℓ | F) =
∑

1≤i6=m≤K

E(Ii,jIm,ℓ | F)

and

E(W 2
j | F) = E(Wj | F) +

∑

1≤i6=m≤K

E(Ii,jIm,j | F).

For j, ℓ such that j + ℓ ≤ pV ,

E(Ii,jIm,ℓ | F) =
(pV )!

j!ℓ!(pV − j − ℓ)!

(vi

V

)j (vm

V

)ℓ
(

1 − vi + vm

V

)pV −j−ℓ

.

The quantity in the right hand side of the above equation can be expanded as

e−p(vi+vm)pj+ℓvj
i v

ℓ
m

j!ℓ!
− p

2V

e−p(vi+vm)vj
i v

ℓ
m

j!ℓ!
ci,m(j, ℓ) + o

(

1

K

)

,
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where

ci,m(j, ℓ) = pj+ℓ−2(j + ℓ)(j + ℓ − 1) − 2(j + ℓ)(vi + vm)pj+ℓ−1 + (vi + vm)2pj+ℓ

is such that
e−p(vi+vm)vj

i v
ℓ
m

j!ℓ!
ci,m(j, ℓ) =

d2

dp2

e−p(vi+vm)vj
i v

ℓ
m

j!ℓ!
.

Since

(W+
j )2 =





∑

ℓ≥j

Wℓ





2

=
∑

ℓ 6=k≥j

WkWℓ +
∑

ℓ≥j

W 2
ℓ ,

E((W+
j )2 | F) − E(W+

j | F) =
∑

1≤i6=m≤K

∑

ℓ,k≥j

E(Ii,kIm,ℓ | F)

=
∑

1≤i6=m≤K

(

Xi,j(p)Xm,j(p) − p

2E(v)K
(Xi,jXm,j)

′′
(p)

)

+ o

(

1

K

)

,

and

1 −
Var(W+

j | F)

E(W+
j | F)

=
E(W+

j | F) − E((W+
j )2 | F) + E(W+

j | F)2

E(W+
j | F)

.

The right-hand side of this equation can be expanded as

1
∑K

i=1 Xi,j + O(1)



−
∑

1≤i6=m≤K

Xi,j(p)Xm,j(p)

+
p

2E(v)K

∑

1≤i6=m≤K

(Xi,jXm,j)
′′(p) +

(

K
∑

i=1

Xi,j(p) − p

2E(v)K

K
∑

i=1

X ′′
i,j(p)

)2




+ o

(

1

K

)

which can be rewritten as

1
∑K

i=1 Xi,j + O(1)





∑

1≤i≤K

X2
i,j(p)

+
p

2E(v)K





∑

1≤i6=m≤K

(Xi,jXm,j)
′′(p) − 2

K
∑

i=1

Xi,j(p)

K
∑

i=1

X ′′
i,j(p)







+ O(1)

using that

∑

i6=m

Xi,jXm,j =

(

∑

i

Xi,j

)2

−
∑

i

X2
i,j .

By the law of large numbers, we have that, almost surely,

lim
K→+∞

1

K

K
∑

i=1

X2
i,j(p) = E(X2

j (p)) = m2,j(p),

lim
K→+∞

1

K2

K
∑

i6=m

(Xi,jXm,j)
′′(p) = (m2

j)
′′(p),
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together with

lim
K→+∞

1

K

∑

i=1

Xi,j(p) = mj(p) and lim
K→+∞

1

K

K
∑

i=1

X ′′
i,j(p) = m′′

j (p).

Hence,

lim
K→∞

1 −
Var(W+

j | F)

E(W+
j | F)

=
m2,j(p) + p[(m2

j)
′′(p)/2 − mj(p)m′′

j (p)]/E(v)

mj(p)
a.s.

=
m2,j(p) + pm′

j(p)2/E(v)

mj(p)
a.s.

and the result follows. �

To illustrate the fact that the bound in Equation (18) is tight when p → 0 and
v has finite moments of any order, let us note that, provided the corresponding
moments are finite,

(21) lim
p→0

mj(p)

pj
=

vj

j!

Moreover,

lim
p→0

m2,j(p)

p2j
=

E(v2j)

j!2
and lim

p→0

m′
j(p)

pj−1
=

E(vj)

(j − 1)!
.

Thus, the limit when K tends to +∞ of the bound given by Equation (18) is
equivalent to

jpj−1

(j − 1)!

E(vj)

E(v)

when p tends to 0. If j ≥ 2, this term tends to 0 when p → 0.
By using the above lemma, we are now able to state a limit result for the distri-

bution of the random variables W+
j .

Proposition 5. The inequality

(22) lim
K→+∞

sup
y∈R

∣

∣

∣

∣

∣

∣

P





W+
j − E(W+

j )
√

E(W+
j )

≤ y



−
∫ y

−∞

e−u2/2

√
2π

du

∣

∣

∣

∣

∣

∣

≤ m2,j(p)

mj(p)
+

p

E(v)

(m′
j(p))2

mj(p)

holds.

Thus, for j ≥ 2 and for small p, this gives the following approximation

W+
j ∼ E(W+

j ) +
√

E(W+
j ),

where G is a standard normal random variable. It should be noted nevertheless
that Equation (22) is almost a central limit result but because of the scaling in

1/
√

E(W+
j ) instead of 1/

√

Var(W+
j ), the bound in the right hand side is not 0 as

K gets large but, according to the proof of Lemma 18, only an upper bound on the
distance between E(W+

j ) and Var(W+
j ).
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Proof. From Lemma 1, we have
∥

∥

∥

∥

∥

∥

P





W+
j − E(W+

j )
√

E(W+
j )

∈ · | F



− P





Q
E(W+

j |F) − E(W+
j |F)

√

E(W+
j |F)

∈ ·





∥

∥

∥

∥

∥

∥

tv

≤ m2,j(p)

mj(p)
+

p

E(v)

m′
j(p)2

mj(p)
.

From Equation (20), we have that

lim
K→∞

1

K
E(W+

j | F) = E(Xj(p)) = K
∑

ℓ≥j

Qℓ = Kmj(p),

where the quantities Qℓ are defined in Proposition 1. In addition, from Corollary 1,
E(W+

j ) ∼ Kmj(p) when K → +∞. The result then follows by applying the central
limit theorem for Poisson distributions and by deconditioning with respect to F . �

To conclude this section, let us notice that when balls are drawn with probability
p independently of each other, we do not have to condition on the environment and
we have

∥

∥

∥P(W+
j ∈·)−P(Q

E(W+
j ) ∈ ·)

∥

∥

∥

tv
≤

E

(

∑v
k=j

(

v
k

)

pk(1 − p)v−k1{v≥j}

)2

E

(

(

v
j

)

pj(1 − p)v−j1{v≥j}

) ,

It is worth noting that the results are independent of the number of colors and
that we do not need take K → ∞ to obtain a bound for the distance in total
variation. In addition, when E(Wj) become large, then it is possible to obtain a
central limit-type approximation similar to Proposition 5.

5. Comparison with original distributions

5.1. Uniform model. In this section, we compare the distribution of the number
ṽ of balls drawn with a given color with that of the original number v of balls with
a given color. We are in particular interested in giving a sense to the heuristic
stating that v and ṽ/p have distributions close to each other.

Proposition 6. Under the condition that the random variable v has a Weibull or
Pareto distribution, we have

lim
j→∞

lim
K→∞

E(W+
j )

KP(v ≥ j/p)
= 1.

Proof. From Corollary 1, we know that E(Wj)/K → Qj when K → ∞. Since

Qj = E

(

(pv)j

j!
e−pv

)

=
∞
∑

ℓ=1

(pℓ)j

j!
e−pℓP(v = l),

we can show that if v has a Weibull or Pareto distribution, then Qj ∼ P(v = j/p)/p
when j → ∞. Indeed, the above sum can be rewritten as

1

j!

∞
∑

ℓ=1

efj(ℓ)P(v = ℓ),
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where fj(ℓ) = −pℓ + j log(pℓ), which attains its maximum at point j/p with
f ′′

j (j/p) = −p2/j. If the random variable v is Weibull or Pareto and j/p is suf-
ficiently large, then P(v = ℓ)/P(v = j/p) − 1 ∼ 0 uniformly on j for ℓ in the
neighborhood of j/p. It follows that

Qj ∼ 1

j!
P(v = j/p)efj(j/p)

∞
∑

ℓ=−∞

e−ℓ2 p2

2j .

For a > 0 converging to 0,

∞
∑

ℓ=−∞

e−aℓ2 =

∞
∑

ℓ=−∞

∫ +∞

0

1{u>aℓ2}e
−u du ∼ 2

∫ +∞

0

√

u

a
e−u du

= 2

∫ +∞

0

u2

√
a
e−u2/2 du =

√

π

a

and by Stirling formula j! ∼
√

2πjj+ 1
2 e−j for large j, so that Qj ∼ P(v = j/p)/p.

It is then easy to deduce that
∑

ℓ≥j Qj ∼ P(v ≥ j/p) for large j. �

The above Proposition implies that P(ṽ ≥ j) is such that P(ṽ ≥ j) ∼ P(v ≥ j/p)
when the number of colors is large. This means that the tail of the distribution
of the random variable v can be obtained by rescaling that of the number ṽ of
sampled balls with a given color. When v has a Pareto distribution, Equation (13)
can still be used for large j to estimate the shape parameter a. The estimation of
the probability 1 − E(e−pv) of sampling a color and the scale parameter b can also
be estimated from the tail by using the expression of that probability as a function
of b and a as in Equation (14). The same method applies for Weibull distributions.

5.2. Probabilistic model. From now on, we consider the probabilistic model and
we establish stronger results on the distance between P(ṽ ≥ j) and P(v ≥ j/p),
where ṽ is the number of balls with a given color at the end of a trial. For this
sampling mode, it was not possible to prove a result similar to Corollary 1, but
Berry-Essen’s theorem [6] can be used to establish a stronger result for the compar-
ison between ṽ and v. In [5], it is specifically proved that if we define the function

hj(x) = x2/4p2
(

√

1 + 4jp/x2 − 1
)2

for x ∈ R and j > 0, then

∣

∣

∣P (ṽ ≥ j) − P

(

v ≥ hj

(

√

p(1 − p)G
)

∨ k
)∣

∣

∣ ≤ cE

(

1√
v
1{v≥j}

)

,

where G is a standard Gaussian random variable, for real numbers a∨b = max(a, b),

and c = 3(p2+(1−p)2)/
√

p(1 − p). For small p, the constant c ∼ 3/
√

p. The above
bound is very loose for small p and becomes accurate only for very large values of
j. This is why we go further in this paper by establishing a tighter bound for the
ratio P(ṽ ≥ j)/P(v ≥ j/p).

Let (Bn) be some sequence of i.i.d. Bernoulli random variables with parameter
p and v some independent r.v. on N. Take some α ∈]1/2, 1[. Let ṽ =

∑v
l=1 Bl.

Theorem 3. For α ∈ (1/2, 1), we have for all j ≥ 1

P(ṽ ≥ j)

P(v ≥ j/p)
= A(j) + B(j),

where
A1(j) ≤ A(j) ≤ A2(j)
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with

A1(j) =








1 − exp









− p

2

(

1 +
(

j
p

)α−1
)

(

j

p

)2α−1

















P (v ≥ j/p + ⌊(j/p)α⌋ + 1)

P(v ≥ j/p)
,

A2(j) =
P (v ≥ j/p− ⌊(j/p)α⌋)

P(v ≥ j/p)
,

and where B(j) is a positive quantity such that

B(j) ≤ e−
p

2(1−p) (
j
p )

2α−1 P(v ≥ j)

P(v ≥ j/p)
.

Proof. We have

P(ṽ ≥ j) = P

(

v
∑

ℓ=1

Bℓ ≥ j

)

= T1 + T2,

where

T1 = P

(

v
∑

ℓ=1

Bℓ ≥ j, j ≤ v ≤ j/p − ⌊(j/p)α⌋ − 1

)

,

T2 = P

(

v
∑

ℓ=1

Bℓ ≥ j, j/p − ⌊(j/p)α⌋ ≤ v

)

.

Let us first recall the following inequality for the sum of independent Bernoulli
random variables Bℓ, ℓ ≥ 1 [9]: for x ∈ [0, 1 − p]

(23) P

(

n
∑

ℓ=1

Bℓ − np ≥ nx

)

≤ e−
nx2

A(x) ,

where

(24) A(x) = 2p(1 − p) +
2

3
x(1 − 2p) − 2

9
x2.

It follows that for j ≤ v ≤ j/p

P

(

v
∑

ℓ=1

Bℓ ≥ j

)

≤ e
− (j−pv)2

vA( j
v
−p) .

It is easily checked that the function v → vA
(

j
v − p

)

is increasing in the interval
[j, j/p] and that for all v ∈ [j, j/p]

vA

(

j

v
− p

)

≤ 2j(1 − p).

Hence, for v ∈ [j, j/p]

P

(

v
∑

ℓ=1

Bℓ ≥ j

)

≤ e−
(j−pv)2

2j(1−p)

and for v ∈ [j, j/p − ⌊(j/p)α⌋ − 1]

P

(

v
∑

ℓ=1

Bℓ ≥ j

)

≤ e−
p

2(1−p) (
j
p)2α−1

.
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This implies that

T1 ≤ P

(

v
∑

ℓ=1

Bℓ ≥ j, j ≤ v ≤ j/p − ⌊(j/p)α⌋ − 1

)

≤ P





j/p−⌊(j/p)α⌋−1
∑

ℓ=1

Bℓ ≥ j



P(v ≥ j)

= e−
p

2(1−p) (
j
p)2α−1

P(v ≥ j).

For the term T2, we first note that

T2 ≤ P (v ≥ j/p − ⌊(j/p)α⌋) .

Then, we clearly have

T2 ≥ P

(

v
∑

ℓ=1

Bℓ ≥ j, j/p + ⌊(j/p)α⌋ + 1 ≤ v

)

and then

T2

P(v ≥ j/p)
≥ P





j/p+⌊(j/p)α⌋+1
∑

ℓ=1

Bℓ > j





P(v ≥ j/p + ⌊(j/p)α⌋ + 1)

P(v ≥ j/p)
.

Chernoff bound implies for v = j/p + ⌊(j/p)α⌋ + 1

P

(

v
∑

ℓ=1

Bℓ ≤ j

)

≤ exp

(

− (pv − j)2

2pv

)

≤ exp









− p

2

(

1 +
(

j
p

)α−1
)

(

j

p

)2α−1









.

It follows that

T2

P(v ≥ j/p)
≥









1 − exp









− p

2

(

1 +
(

j
p

)α−1
)

(

j

p

)2α−1

















P(v ≥ j/p + ⌊(j/p)α⌋ + 1)

P(v ≥ j/p)
.

and the proof follows. �

The above result can be applied to specific distributions for v, namely Pareto and
Weibull distributions, in order to show that the tails of the probability distribution
functions of ṽ and pv are the same. This is the analog of Proposition 6 for the
probabilistic model.

Corollary 2. If v has either
(1) a Pareto tail distribution with parameter a > 1 such that for x ≥ 0, P(v ≥ x) =
L(x)x−a where L is a slowly varying function, i.e., for each t > 0,

lim
x→+∞

L(tx)

L(x)
= 1;
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or
(2) a Weibull tail distribution with β ∈]0, 1/2[ such that for x ≥ 0, P(v ≥ x) =

L(x)e−δxβ

for some δ > 0 and L a slowly varying function
then

lim
j→+∞

∣

∣

∣

∣

P(ṽ ≥ j)

P(v ≥ j/p)
− 1

∣

∣

∣

∣

= 0.

Proof. For (1),

P(v ≥ j)

P(v ≥ j/p)
=

L(j)

L(j/p)

j−a

(j/p)−a
=

L(j)

L(j/p)
pa −−−−→

j→+∞
p−a

and

P(v ≥ j/p + ǫ(j/p)α)

P(v ≥ j/p)
=

L((j/p)(1 + ǫ(j/p)α−1))

L(j/p)
(1 + ǫ(j/p)α−1)−a

which tends to 1 when j tends to +∞. This implies that the quantities A1(j) and
A2(j) appearing in Theorem 3 tends to 1 and B(j) tends to 0 when j → ∞.

For (2),
P(v ≥ j)

P(v ≥ j/p)
=

L(j)

L(j/p)
e−δjβ(1−p−β) −−−−→

j→+∞
0

and it is straightforward that

P(v ≥ j/p + ǫ(j/p)α)

P(v ≥ j/p)
=

L(j/p(1 + ǫ(j/p)α−1))

L(j/p)
e−δ(j/p+ǫ(j/p)α)β+δ(j/p)β

=
L(j/p(1 + ǫ(j/p)α−1))

L(j/p)
e−δβǫ(j/p)α+β−1(1+o(1))

which tends to 1 if α + β < 1. Let β ∈]0, 1[. It is sufficient to find α ∈]1/2, 1[ such
that α + β < 1. Necessarily 1 − β > α > 1/2 thus β < 1/2 and for such a β, such
an α exists. �

6. Concluding remarks on sampling and parameter inference

We have established in this paper convergence results for the distribution of
the number of balls with a given color under the assumption that there is a large
number of colors in the urn, that the number of balls with a given color has a heavy
tailed distribution independent of the color, and that only a small fraction p of the
total number of ball is sampled. We have considered two ball sampling rules. The
first one states that the probability of drawing a ball with a given color depends
upon the relative contribution of the color to the total number of balls and that a
drawn ball is immediately replaced into the urn. With the second rule, each ball is
selected with probability p independently of the others. The two rules do not give
the same results, even if they coincide when p → 0 (see [5] for details).

From a practical point of view, we have shown that it is possible to identify the
original distribution of the number of balls with a given color by using the tail of
the distribution of the number of balls with a a given color drawn from the urn.
A stronger result holds for Pareto when the number of colors is very large (see
Proposition 3). This result is robust in practice because it does not rely on the
asymptotics of the tail distribution (in Proposition 3 assertions hold for all j > a).

The determination of the original number of balls per color is valid when the
number of balls follows a unique distribution of Pareto or Weibull type. This could
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be used in the context of packet sampling in the Internet. In practice, however,
the number of packets in flows is in general not described by a unique “nice”
distribution, but can only be locally approximated by a series of Pareto distributions
(see [2] for a discussion). More sophisticated techniques are then necessary to get
the original statistics of flows.
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