A Sparse Flat Extension Theorem for Moment Matrices

Monique Laurent 1 Bernard Mourrain 2
2 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : In this note we prove a generalization of the flat extension theorem of Curto and Fialkow for truncated moment matrices. It applies to moment matrices indexed by an arbitrary set of monomials and its border, assuming that this set is connected to 1. When formulated in a basis-free setting, this gives an equivalent result for truncated Hankel operators.
Complete list of metadatas

Cited literature [21 references]  Display  Hide  Download

https://hal.inria.fr/inria-00347022
Contributor : Bernard Mourrain <>
Submitted on : Sunday, December 14, 2008 - 10:53:40 PM
Last modification on : Thursday, January 11, 2018 - 4:38:01 PM
Long-term archiving on : Saturday, November 26, 2016 - 3:21:24 AM

Files

paper_flat_ext2.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Monique Laurent, Bernard Mourrain. A Sparse Flat Extension Theorem for Moment Matrices. Archiv der Mathematik, Springer Verlag, 2009, 93, pp.87-98. ⟨10.1007/s00013-009-0007-6⟩. ⟨inria-00347022v2⟩

Share

Metrics

Record views

337

Files downloads

251