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Marte pour les exigences temporelles de East-ADL2
Résumé : In the automotive domain, several loosely-coupled Architecture Description
Languages (ADLs) compete to provide a set of abstract modeling and analysis services
on top of the implementation code. In an effort to make all these languages, and more
importantly their underlying models, interoperable, we use the UML Profile for MARTE as
a pivot to define the semantics of these models.

In this paper, we particularly focus on East-ADL2. We discuss the benefits of having
an integrated, MARTE-centered, approach. We give a formal semantics of East-ADL2
timing requirements. Relying on this semantics, several kinds of analysis become possible.
Requirements become executable and simulations are run. A constraint solver is used to
detect logical inconsistencies. Our proposal is illustrated on an Anti-lock Braking System
(ABS).

Mots-clés : MARTE, East-ADL2, Spécifications exécutables, exigences temporelles
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1 Introduction
Architecture Description Languages (ADLs) are more and more accepted as means to man-
age the engineering information related to automotive electronics and deal with the increas-
ing complexity of the automotive software [8]. Several loosely-related ADLs are competing
in that area (AADL [11], East-ADL [4], SysML [16, 9], AML [3]). Some propose con-
nections with the emerging standard AutoSar (http://www.autosar.org), rely on it for the
implementation and build on top some requirement and tracability facilities. Others pro-
vide analysis models and tools. However, the ever increasing cost of software in domains
like automotive calls for a single framework that would bring together all tools and models
and interprete them consistently. Building on the numerous existing, close to maturity, uml
(Unified Modeling Language) tools seems like a good way to avoid building and maintaining
separate domain-specific graphical editors when graphical aspects should be managed once
and for all.

uml is becoming more and more popular for the design and modeling of software systems.
Being a general-purpose language, it lacks key features to model software of the real-time
and embedded (RTE) domain. The recently adopted uml Profile for Modeling and Analysis
of Real-Time and Embedded systems (Marte) [15] aims at bringing in the missing features.
The goal has never been for Marte to become the unified (universal) language for modeling
RTE systems but rather to be a pivot that brings interoperability between the existing
languages and formalisms of the RTE domain. The belief is that one single language or
model of computation would never be able to cover all aspects for RTE systems whatever
good it is for a given specific aspect (schedulability, dependability, requirement . . . analyses).

In a continuous effort, we have been trying to show how to use Marte and its time
model [1] to define formally the semantics of existing models of the RTE domain. Following
some similar work on AADL [2], this paper focuses on East-ADL and explains how to ex-
press the semantics of East-ADL timing requirements in Marte. Based on this semantics,
our constraint solver can detect inconsistencies and execute the timing requirements when
there is no constraint violations. Giving a formal semantics to automotive-related models
to make the specifications open for direct analysis resemble other work on AutoSar [10]
and AADL [12]. However, instead of defining another specific time model, we reuse Marte
time model in a consistent way so that different models and tools can be compared and can
ultimately interoperate. Another direct benefit of using Marte, a uml Profile, is that any
uml-compliant tool can be used to edit, store, version and maintain all required models of
systems under study, from requirements and system specification to implementation models.

We start with a brief overview of East-ADL capabilities in Section 2. Then Section 3
introduces Marte time model. Follows our contribution in Section 4 where Marte is used
to define the semantics of East-ADL timing requirements. Finally, Section 5 discusses the
benefits of our proposal and possible modeling improvements. Anti-lock Braking System
(ABS) is used as a running example.
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4 Mallet, Peraldi-Frati, André

2 Overview of East-ADL2
East-ADL (Electronic Architecture and Software Tools, Architecture Description Lan-
guage) has been initially developed in the context of the East-EEA European project [14].
To integrate proposals from the emerging standard AutoSar and from other requirement
formalisms like SysML, a new release called East-ADL2 [4, 13] has been proposed by the
ATESST project. We only consider this new release even though we abusively use the name
East-ADL. This domain specific modeling language provides a uml-based notation for the
development of complex automotive electronic embedded systems.

2.1 Structural modeling
The function modeling in East-ADL is performed at different abstraction levels. The Func-
tionalArchitecture provides the functional decomposition of an automotive system. Analysis
and design levels contain model elements such as ADLFunctionType and ADLFunctionProto-
type for modeling function parts of the system. Sensors and actuators are modeled with
FunctionalDevices (analysis level) or with LocalDeviceManagers (design level).

These model elements are structural constructs. The ADLFunctionType and ADLFunc-
tionPrototype give the hierarchical decomposition of the system. A trigger attached to the
elementary ADLFunctionType components specifies the execution conditions (triggerCondition)
and the period (Triggerperiod) of an elementary ADLFunctionType. ADLFlowPorts and ADL-
ConnectorType interconnect the structural entities. An attribute period is attached to input
ports.

2.2 Timing Requirements
East-ADL requirements extend the requirement concept of SysML. Requirements express
conditions that must be met by the system. They are usually defined to enrich the functional
architecture of an automotive system with extra-functional characteristics such as variability,
temporal behavior etc. In this paper, we focus on timing requirements. Figure 1 shows a
partial view of East-ADL timing requirements meta-model, which exhibits three main
concepts.

• A DelayRequirement constrains the delay “from” a set of entities “until” another set of
entities. It specifies the temporal distance between the execution of the earliest “from”
entity and the latest “until” entity.

• The RepetitionRate defines the inter-arrival time of data on a port or the triggering
period of an elementary ADLfunction.

• The Input/outputSynchronization expresses a timing requirement on the input/output
synchronization among the set of ports of an ADLFunction. It should be used to express
the maximun temporal skew allowed between input or ouput events or data of an
ADLfunction.

INRIA
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TimingRestriction

+ lower: Bound

+ upper: Bound

+ jitter: Bound

+ nominal: Bound 

TimingRequirement DelayRequirement

InputSynchronization

OutputSynchronization

RepetitionRate

ADLContext

ADLCoreConstructs:: 

ADLEntity

+ name : String 

                 +from

0..*                0..*

                +from

0..*                2..*

                +until

0..*                0..*

        +reference

0..*                  1

        +reference

0..*                  1

        +until

0..*                2..*

        +reference

0..*                  1

Bound

+ value : ADLDouble 

Timing Requirements 

Figure 1: East-ADL timing requirements

Timing requirements specialize the meta-class TimingRestriction, which defines bounds on
system timing attributes. The timing restriction can be specified as a nominal value, with
or without a jitter, and can have lower and upper bounds. The jitter is the maximal positive
or negative variation from the nominal value. A bound is a real value associated with an
implicit time unit (ms, s, . . . ).

2.3 Example
As an illustration, we use the example of an Anti-lock Braking System (ABS). This example
and the associated timing requirements are taken from the ATESST report on East-ADL
timing model [7]. The functional architecture model is shown in Figure 2. It is described
in Papyrus (http://www.papyrusuml.org) with the uml profile for East-ADL. The ABS
architecture consists of four sensors, four actuators and an indicator of the vehicle speed.
The sensors measure the rotation speed of the vehicle wheels: ifl (front left), ifr (front
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6 Mallet, Peraldi-Frati, André

Figure 2: ABS system in East-ADL2

right), irl (rear left) and irr (rear right). The actuators indicate the brake pressure to
be applied on the wheels (ofl, ofr, orr and orl). The FunctionalArchitecture is composed of
FunctionalDevices for sensors and actuators and a ADLFunctionType for the functional part of
the ABS. An ADLOutFlowPort provides the vehicule speed (speed).

The essential timing parameters for capturing the timing model of the ABS are repre-
sented in Figure 3. This figure is adapted from the atesst report to remove ambiguities
discussed in Section 5.

The execution of the ABS is triggered at the time R. Ls parameter measures the la-
tency of sensor sampling. The values of the four sensors involved in the ABS computing
must arrive on the input ADLFlowPorts within the delay Jii (InputSynchronization). A simi-
lar OuputSynchronization delay Joo is represented on the output interface side. The Lio

represents the delay from the first event on the input set of the ABS until the last event

INRIA



Marte CCSL and East-ADL2 Timing Requirements 7

occurrence on the output set. The Lispeed stands for the delay between the first event on
the input set until the speed output occurrence. The sampling interval of the sensor is given
by the H parameter. These parameters are modeled by timing requirements characterized
by timing values or intervals with jitters. Values applied for the timing requirements are
summarized in Table 1.

Rk-1 Rk

Lsk-1 Liok-1 Joo,kJii,kJoo,k-1Jii,k-1 Lsk Liok

Hk-1

ABS ABS

Hk

H : Sampling Interval

Ls : Sampling Latency 

Lio : Input-Output Latency 

Jii : Input Synchronization 

Joo : Output Synchronization 

R : Trigger Period 

Figure 3: Timing model of the ABS

Parameter nominal upper lower jitter
R 5 ms - - 1 ms
Ls - 3 ms - 2 ms
Joo - 0.5 ms - -
Jii - 0.5 ms - -
Lio - 5 ms - 2 ms

Lispeed - 5 ms - 3 ms

Table 1: Timing values

3 MARTE Time Model

3.1 Time Structure
Marte defines a broadly expressive Time Model that provides for a generic timed interpre-
tation of uml models. In Marte, time can be explicitly associated with uml model elements
like ValueSpecification, Constraint, Event, Behavior . . . Usage examples of these timed concepts
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8 Mallet, Peraldi-Frati, André

are available in a paper on Marte applicability to complex real-time control systems [5].
In this presentation we focus on clocks and clock constraints.

Marte time model deals with both discrete and dense time. A clock gives access to a
time structure. A clock can be either chronometric or logical. The former implicitly refers
to “physical time”, whereas the latter does not. Logical clocks, which focus on the ordering
of instants, may ignore the physical duration between instants, but this does not preclude
quantitative information attached to (logical) clock instants. In Marte, a discrete logical
clock can be associated with any uml event. This clock ticks whenever the event occurs.
Such clocks are useful in control applications. Marte also allows multiform time modeling.
This concept is inherited from synchronous languages: time observations (through clocks)
can rely on different referentials. Thus, a timed model in Marte relies on many clocks, which
are generally interdependent. Interdependency results from relationships existing between
instants i and j from different clocks: precedence (i ≺ j), coincidence (i ≡ j) or exclusion
(i#j). The reader interested in the underlying mathematics may refer to a previously
published paper [1]. Since instant relations are defined on pairs of instants, they are obviously
not suitable to specify complex time structures (i.e., complex clock dependencies). Instead,
we rather use constraints on clocks (clock relations): a clock relation specifies many—usually
infinitely many—instant relations. ccsl is a language to express these relations. It is briefly
presented in the next subsection.

3.2 CCSL
ccsl (Clock Constraint Specification Language) is a non normative language annexed to
Marte specification. It is a declarative language that specifies constraints imposed on
the clocks (activation conditions) of a model. These constraints can be classified into four
categories: synchronous, asynchronous, mixed, and non-functional.

Synchronous clock constraints rely on coincidence. Subclocking is such a constraint:
each instant of the subclock must coincide with one instant of the superclock. Of course,
the mapping must be order-preserving. To model the example (see Section 4) we need two
other synchronous constraints: discretizedBy and isPeriodicOn. The former discretizes a dense
clock. It is mainly used to derive a discrete chronometric clock from IdealClk. IdealClk
is a dense chronometric clock, predefined in Marte Time Library, and supposed to follow
“physical time” faithfully. For instance:

Clock c10 = IdealClk discretizedBy 0.0001 (1)

Eq. 1 specifies that c10 is a discrete chronometric clock whose period is 0.0001 s, where
s is the time unit associated with IdealClk, therefore c10 is a 10 kHz clock.

Clock c1 isPeriodicOn c10 period 10 (2)

Eqs. 2 reads that there is a tick of c1 every 10th ticks of c10 (i.e., c1 is a 1 kHz clock).
More precisely,

∀k ∈ N?, c1[k] ≡ c10[10(k − 1) + 1]

INRIA



Marte CCSL and East-ADL2 Timing Requirements 9

Asynchronous clock constraints are based on precedence, which may appear in a strict
(≺) or a non-strict (4) form.

The clock constraint “a isFasterThan b” (symbolically denoted by a 4 b) specifies that a

is (non-strictly) faster than b, that is for all natural number k, the kth instant of a precedes or
is coincident with the kth instant of b (∀k ∈ N, a[k] 4 b[k]). “b isSlowerThan a” is equivalent
to “a isFasterThan b”.

Alternation is a form of mutual precedence. “a alternatesWith b” (symbolically denoted
by a ∼ b) states that ∀k ∈ N?, a[k] ≺ b[k] ≺ a[k + 1].

Mixed clock constraints combine coincidence and precedence. Given 2 clocks a and b,
“c = inf(a, b)” is the slowest clock among all clocks faster than both a and b
(∀k ∈ N?, c[k] ≡ if a[k] 4 b[k] then a[k] else b[k]).
Similarly, “d = sup(a, b)” is the fastest clock among all clocks slower than both a and b(
∀k ∈ N, d[k] ≡ if a[k] 4 b[k] then b[k] else a[k]

)
. Most of the time, inf and sup clocks are

neither a nor b. inf and sup are easily extended to sets of clocks.
Another mixed clock constraint enforces delayed coincidences. “c = a delayedFor n on b”

imposes c to tick synchronously with the nth tick of b following a tick of a. It is considered
as a mixed constraint since a and b are not assumed to be synchronous.

Non Functional Property constraints apply to chronometric clocks. While IdealClk is
supposed to be perfect, an actual clock may have flaws. For instance, its period may not be
strictly constant with respect to IdealClk. ccsl introduces special constraints to specify
stability, drift, offset . . . of chronometric clocks. Examples of stability are given in Section 4.
Here is an example of offset:

Clock c2 = IdealClk discretizedBy 0.0001 (3)
c10, c2 haveOffset 0.00002 (4)

c2 (Eq. 3) and c10 (Eq. 1) are both 10 kHz clocks, but they may be out of phase. Eq. 4 says
that the offset between the two clocks is less than 0.00002 s = 20 us.

Stochastic parameters are available in ccsl. Nondetermism introduced by such pa-
rameters may reflect a partial knowledge about the actual constraints. It may also be a
deliberate choice for hiding unnecessary details. Several probability distributions are pro-
vided. The uniform distribution is often used to represent a tolerance interval on a duration.
Examples are given in Section 4.

3.3 TimeSquare
TimeSquare is the software environment we propose to deal with Marte time model and
ccsl. TimeSquare is an Eclipse plugin that has four main functionalities: 1) interactive

RR n° 6781



10 Mallet, Peraldi-Frati, André

clock-related specifications, 2) clock constraint checking, 3) generation of a solution, 4)
displaying and exploring waveforms.

TimeSquare has been designed to be used with UML tools applying Marte profile. In
this profile, clocks and clock constraints can be associated with many and various model ele-
ments. A wizard is included in TimeSquare. It facilitates clock definitions, clock constraint
specifications, model element browsing, and parameter setting.

The second functionality checks constraint sanity and is called when the above mentioned
wizard is not used.

The third functionality relies on a constraint solver that yields a satisfying execution
trace or issues an error message in case of inconsistency. The traces are given as waveforms
written in vcd format. vcd (Value Change Dump) [6] is an ieee standard textual format for
dumpfiles used by EDA logic simulation tools. The solver intensively uses Binary Decision
Diagrams (bdd) to manipulate boolean equations induced by ccsl clock constraints.

Waveforms can be displayed with any vcd viewer. TimeSquare has its own viewer
enriched with interactive constraint highlighting and access facilities.

4 Modeling East-ADL requirements in CCSL

4.1 Clocks and events
The term clock used in ccsl may be misleading and deserves to be further discussed. Every
event on which we want to attach time constraints can be associated with a clock. Event is
taken here in the very broad sense (as in uml) to denote something that happens (the start
of an action, the receipt of a message, . . . ). In that case, ccsl clocks represent the set of
instants at which the concerned event occurs. ccsl clock constraints are relations amongst
instants of the related clocks.

The first action to be undertaken is to select the events in the model on which clock
relations should be applied. In this section, we give systematic rules to identify, for a given
kind of timing requirement expressed in East-ADL, the events and the clock relations to
apply.

Overall there are two kinds of relations supported by East-ADL timing requirements.
Either, a timing requirement specifies a temporal relation between two successive occurrences
of a single event (i.e., two successive instants of the same clock), or between occurrences
of different events. In the latter case, it is mostly between events that occur at the same
rate and relations mostly concern the ith occurrence of one event and the ith occurrences
of other events. Additionally, all requirements involve physical time but most also induce
logical relations. A part of our contribution is to make explicit these logical relations by
applying the adequate ccsl constraints. This section shows how to express in ccsl the
example described in Section 2.

INRIA



Marte CCSL and East-ADL2 Timing Requirements 11

4.2 Repetition rate
A RepetitionRate concerns successive occurrences of the same event (data arriving to or de-
parting from a port, triggering of a function). In all cases, it consists in giving a nominal
duration between two successive occurrences/instants of the same event/clock. When the
duration is specified in terms of number of occurrences of another event (for instance, num-
ber of clock cycles), ccsl relation isPeriodicOn must be used. When the duration is given in
seconds (time unit s), then relation discretizedBy must be used. The two relations can also be
combined to give both logical and physical constraints. Eq. 2 (Section 3.2) builds a discrete,
1 kHz chronometric clock c1. Eq. 5 uses c1 to specify a 5 ms repetition rate for function f .
The latter defines f.start as being a subclock of c1 five times less frequent.

f.start isPeriodicOn c1 period 5 (5)
f.start hasStability 1E−3 (6)

f.start is a clock associated with the beginning of function f . Marte stereotype Timed-
Processing enables the association of a clock with the start event of a given behavior.

If a jitter is associated with the period, ccsl relation hasStability should be used. Eq. 6
refines Eq. 5 and states that the jitter on the nominal 5 ms period is 1 ms. Eq. 5 com-
bined with Eq. 6 are ccsl equivalent of East-ADL repetition rate and that is the way to
implement the first row of Table 1 for requirement R.

It may also happen that the period assigned is not just a nominal value, but a time
interval. In that case, a ccsl precedence-based relation like isFasterThan (denoted 4 )
can be used to specify the minimum and maximum bounds within which a clock must tick.
Eqs. 7 state that the repetition rate of f is between 4 ms and 6 ms.

Clock flower, fupper

flower isPeriodicOn c1 period 4
fupper isPeriodicOn c1 period 6 (7)

flower 4 f.start 4 fupper

4.3 Delay requirements
A DelayRequirement constrains the delay between a set of inputs and a set of outputs. Input
(resp. output) synchronizations are a specialization without outputs (resp. inputs). At
each iteration, all inputs and outputs must occur. So for each iteration i, it is a matter of
constraining the temporal distance between the ith occurrences of two events (occurring on
inputs or outputs).

With general delay requirements, the delay applies between the earliest input and the
latest output. With input synchronizations, it concerns the distance from the earliest input
to the latest input. With output synchronizations, it is about the earliest and the latest
outputs. Note that the earliest/latest input/output does not necessarily concern the same
event at each iteration. CCSL relation inf builds a new clock so that its ith instant precedes
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12 Mallet, Peraldi-Frati, André

all ith instants for a given set of clocks. CCSL relation sup builds a new clock so that its ith

instant follows all ith instants for a given set of clocks.
In our example, function abs has four inputs (ifl, ifr, irl, irr), one for each wheel. There

also are four outputs to control the breaking systems (ofl, ofr, orl, orr), and one output for
the vehicle speed (ospeed). Eqs. 8–11 specify the sup and inf for the inputs and outputs.

Clock iinf = inf(ifl, ifr, irl, irr); (8)
Clock isup = sup(ifl, ifr, irl, irr); (9)
Clock oinf = inf(ofl, ofr, orl, orr); (10)
Clock osup = sup(ofl, ofr, orl, orr); (11)

CCSL operator delayedFor builds from an initial clock a delayed clock for a given duration.
Combining delayedFor with isFasterThan allows for specifying distances between two clocks.
Here again, distance are a priori expressed in number of ticks of a reference clock (not
necessarily a super clock). If the reference clock is chronometric, then the duration directly
refers to physical time. When referring to IdealClk, duration are expressed in seconds. Eq. 12
denotes a delay requirement and states that the maximum end-to-end latency of the func-
tion abs is 3 ms. It characterizes the requirement Lio (see Table 1 in Section 2). Eq. 13
denotes an input synchronization of 0.5 ms (requirement Jii) and Eq. 14 denotes an output
synchronization (requirement Joo). Note that these last two equations refer to clock c10 (a
10 khz discrete chronometric clock defined in Eq. 1, Section 3.2) instead of c1 as in previous
equations.

osup 4 (iinf delayedFor 3 on c1) (12)

isup 4 (iinf delayedFor 5 on c10) (13)

osup 4 (oinf delayedFor 5 on c10) (14)

When the latency is not a nominal value, similar mechanisms as the one explained in
the previous subsection can be exploited to define lower or upper bounds, jitters.

4.4 Causal relationships
An ADLFunctionType like the one introduced in Figure 2 implies a data flow execution, even
though the actual notation is similar to uml structural models. In this particular example,
the flow goes from sensors to actuators and is repeated infinitely or at least until some-
one decides to shut the system down. This causal flow can be modeled in CCSL with the
precedence-based relation alternatesWith

(
∼

)
. For instance, Eqs. 15-17 state that each re-

lease must be followed by one and only one capture of each input, one execution of the
function abs and one output emission and all these actions must be performed before the
next release (no pipeline is allowed here). Eq. 18 states that all inputs must occur before

INRIA



Marte CCSL and East-ADL2 Timing Requirements 13

any output is emitted and all outputs must be delivered before the next iteration.

R ∼ iinf R ∼ isup (15)
R ∼ abs (16)
R ∼ oinf R ∼ osup (17)

isup ∼ oinf (18)

5 Discussion and results

5.1 ABS as a Time structure
The previous section has shown how to express the timing requirements of the ABS systems
in a declarative way using ccsl. This specification can be used as a golden model to
validate existing realizations of the system. With TimeSquare, we may go a step further
towards executable specifications. Starting with timing requirements expressed in ccsl, we
build a refined model of the timed behavior of the ABS system. Refining a constraint
may consist in fixing some parameter values, in accordance with the initial specification.
Then, TimeSquare simulates the refined model, possibly revealing inconsistency in the
specification.

The Anti-Lock Braking system, the functional structure of which is described in Figure 2,
can be modeled as a periodic data flow system. Since periods between successive occurrences
of the same event can slightly vary (jitter), the system is not strictly periodic. In such models
some processes produce data (or tokens) consumed by others whose executions are triggered
by the receipt of their incoming data. Marte clocks and clock constraints can easily capture
such a behavior. We use Timers for modeling communication and processing. Timers rely
on constraint delayedFor. For a communication, the delay is the communication duration,
the sender (token producer) is the clock to be delayed (the trigger) and the receiver (token
consumer) is the delayed clock. For a processing, the trigger represents the processing
start, the delayed clock is the processing end, and the parameter the execution time. Often
communication and processing are taken as a whole, and in this case the parameter stands
for the latency. For instance, R triggers sensor sampling. In Eq. 19, R causes the availability
of a sample (clock i) with a latency Ls. Note that Ls is a stochastic delay defined here by
a uniform distribution Uniform(10..30). Since the delay is measured on clock c10 (10 kHz),
Eq. 19 states that 1 ms ≤ Ls ≤ 3 ms, in accordance with the specification given in Table 1.

i = R delayedFor Ls on c10 (19)

Clock i is not part of the ABS specification. We have introduced this auxiliary clock to
respect faithfully Figure 3 borrowed from the atesst example. Since there are 4 values to
acquire, instead of one clock (i), we had to consider 4 clocks (ifl, ifr, irl, irr) each of them
being delayed from i for a random duration Uniform(0..5) on c10 (i.e., 0 ≤ delay ≤ 0.5 ms).
This gives rise to the input synchronization jitter Jii forced to be less than 0.5 ms in Table 1.
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14 Mallet, Peraldi-Frati, André

Figure 4: TimeSquare ABS simulation

As explained in Section 4.3, this jitter can be characterized by the two clocks iinf (Eq. 8)
and isup (Eq. 9). Nevertheless, such an implementation guarantees by construction the upper
bound requirement for Jii.

Besides system behavior modeling, ccsl can also be used to express properties. Eqs. 12–
14 declare maximal response time. Eqs. 15–18 are other forms of (logical) deadline: an event
a must occur once and only once before an event b. TimeSquare solver detects possible
property violations.

5.2 Simulation
Figure 4 shows a screen copy of the ABS simulation, augmented with indications on timing
parameters. Since chronometric clocks are used in the model, the top ruler indicates physical
time and the unit is us (microsecond) here.

TimeSquare allows the user to hide traces (here all auxiliary clocks and timers). In
the waveforms, clock instants are shown as pulses whereas a timer is depicted as a hexagon
stretching over its active phase. TimeSquare can also represent clock constraints by special
annotations: coincidence by a solid vertical line between coincident instants, precedence by
black oblique dashed arrows (e.g., the alternation between R and osup in Figure 4).

The current version of TimeSquare generates a sequence of steps that satisfies the set
of constraints. An inconsistent specification can lead to a deadlock : after a finite sequence
of steps, the simulation gets at a point where all the clocks are disabled (not allowed to
tick). This is the case in Figure 4. Here, the cause of the deadlock is the violation of an
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Figure 5: Specification lower–upper

alternation: R tries to occur while osup has not occurred yet. R being the (indirect) cause
of all other events, the simulation cannot proceed on. This diagnostic is facilitated by the
generation of an anomaly report file that contains the history upto the deadlock and the
state of all clocks at the faulty step. Raising the period of R from 7 ms to 8 ms allows osup

to occur in time and the simulation runs without abortion. Of course, this is not a proof
of correctness. A simulation is conclusive only when it reveals a counter-example. Note
that the initial specification (Table 1) allowed only 5 ms to R period, which was certainly
insufficient and surely rejected by the simulator.

An inconsistent specification may also lead to a “ livelock ”: a subset of clocks are mutually
exclusive so that they cannot tick any more. This behavior is easily spotted on the simulation
display by the persistent absence of pulses for these clocks. This is only a presumption of
livelock, that should be confirmed or invalidated by inspection of the simulation trace.

5.3 Feedback on East-ADL specifications
The AutoSar community has screened the Time model proposed by the atesst project
and identified a number of delicate issues. Our approach meets these conclusions and can
be considered as a proposal to solve some of the issues.

We have found it pretty hard to understand how attributes nominal, jitter, upper and lower
combine themselves in East-ADL. Indeed, it seems that most of the time combining two
among four should be enough to specify an interval. However, East-ADL specification
gives example where the four attributes are used and where the upper bounds seems to be
altered by the value of the jitter itself. There are also cases where a jitter (e.g., a sampling
latency jitter) is expressed as a timing requirement itself associated with the four attributes
(including a jitter). In our model we can express both lower/upper and nominal/jitter.
However, our upper value is an actual upper bound and when combined with a jitter, it only
acts on the lower bound. In Section 4, Eqs. 7 defines a possible interval for the repetition
rate and the expected result is illustrated by Figure 5. This specification can result in an
unbounded jitter, which is surely not the expected behavior. Instead, we propose to fix the
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Figure 6: Specification nominal–jitter

nominal value and the jitter, leading to waveforms in Figure 6. The jitter is specified either
with constraint hasStability as in Eq. 6 or with a constraint isPeriodicOn where the actual
period is expressed with a probability distribution (see Eq. 20). This ability of ccsl to mix
constant with distributed values is directly inspired from SysML distributed properties.

f.start isPeriodicOn c1 period Uniform(4..6) (20)

6 Conclusion
In this paper, we have expressed the semantics of East-ADL timing requirements using
Marte ccsl. Making the semantics formal allows for an automatic detection of logical
inconsistencies. Then, requirements have been refined into an executable specification to
run simulations and explore the dynamic properties of acceptable executions. We also give
examples of ambiguities in East-ADL specification and explain choices made in our imple-
mentation.

Even though the simulation can detect some errors in the specification, it should be com-
bined with exhaustive formal analyses. For instance, livelock detection can be automated
with model-checking approaches, provided that the state-space is finite. TimeSquare al-
ready generates the state-space at each step. For now, our default simulation policy consists
in randomly selecting a minimum acceptable firing sequence from the set of possible se-
quences. Other policies must be implemented and combined with validation of properties.

References
[1] C. André, F. Mallet, and R. de Simone. Modeling time(s). In G. Engels, B. Opdyke, D. C.

Schmidt, and F. Weil, editors, MoDELS, volume 4735 of Lecture Notes in Computer Science,

INRIA



Marte CCSL and East-ADL2 Timing Requirements 17

pages 559–573. Springer, 2007.
[2] C. André, F. Mallet, and R. de Simone. Modeling of AADL data-communications with UML

Marte, volume 10 of LNEE, chapter 11, pages 150–170. Springer, May 2008.
[3] P. Braun and M. Rappl. A model-based approach for automotive software development. In

P. P. Hofmann and A. Schürr, editors, OMER, volume 5 of LNI, pages 100–105. GI, 2001.
[4] P. Cuenot, D. Chen, S. Gérard, H. Lönn, M.-O. Reiser, D. Servat, C.-J. Sjostedt, R. T.

Kolagari, M. Torngren, and M. Weber. Managing complexity of automotive electronics using
the East-ADL. In ICECCS ’07: Proceedings of the 12th IEEE International Conference on
Engineering Complex Computer Systems (ICECCS 2007), pages 353–358, Washington, DC,
USA, 2007. IEEE Computer Society.

[5] S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Terrier. First experiments using the
uml profile for marte. In ISORC, pages 50–57. IEEE Computer Society, 2008.

[6] IEEE Standards Association. IEEE Standard for Verilog Hardware Description Language.
Design Automation Standards Committee, 2005. IEEE Std 1364TM-2005.

[7] R. Johansson, H. Lönn, and P. Frey. ATESST timing model. Technical report, ITEA, 2008.
Deliverable D2.1.3.

[8] H. Lönn and U. Freund. Automotive Architecture Description Language, chapter 9. CRC
Press, December 2008.

[9] OMG. Systems Modeling Language (SysML) Specification 1.1. Object Management Group,
May 2008. OMG document number: ptc/08-05-17.

[10] K. Richter. Defining a timing model for AUTOSAR - status and challenges. In W. Maalej and
B. Brügge, editors, Software Engineering (Workshops), volume 122 of LNI, pages 93–97. GI,
2008.

[11] SAE. Architecture Analysis and Design Language. Society of Automotive Engineers, June
2006. Document AS5506/1.

[12] O. Sokolsky, I. Lee, and D. Clarke. Schedulability analysis of AADL models. In IPDPS. IEEE,
2006.

[13] The ATESST Consortium. East-ADL2 specification. Technical report, ITEA, March 2008.
http://www.atesst.org, 2008-03-20.

[14] The East-EEA Project. Definition of language for automotive embedded electronic architecture
approach. Technical report, ITEA, 2004. Deliverable D.3.6.

[15] The ProMARTE Consortium. UML Profile for MARTE, beta 2. Object Management Group,
June 2008. OMG document number: ptc/08-06-08.

[16] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, Design. The
MK/OMG Press, Burlington, MA, USA., 2008.

RR n° 6781



18 Mallet, Peraldi-Frati, André

Contents
1 Introduction 3

2 Overview of East-ADL2 4
2.1 Structural modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 MARTE Time Model 7
3.1 Time Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 CCSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 TimeSquare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Modeling East-ADL requirements in CCSL 10
4.1 Clocks and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Repetition rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Delay requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Causal relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Discussion and results 13
5.1 ABS as a Time structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Feedback on East-ADL specifications . . . . . . . . . . . . . . . . . . . . . . . 15

6 Conclusion 16

INRIA



Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399


	Introduction
	Overview of East-ADL2
	Structural modeling
	Timing Requirements
	Example

	MARTE Time Model
	Time Structure
	CCSL
	TimeSquare

	Modeling East-ADL requirements in CCSL
	Clocks and events
	Repetition rate
	Delay requirements
	Causal relationships

	Discussion and results
	ABS as a Time structure
	Simulation
	Feedback on East-ADL specifications

	Conclusion

