
HAL Id: inria-00348302
https://inria.hal.science/inria-00348302

Submitted on 18 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Price of Anonymity: Optimal Consensus despite
Asynchrony, Crash and Anonymity

François Bonnet, Michel Raynal

To cite this version:
François Bonnet, Michel Raynal. The Price of Anonymity: Optimal Consensus despite Asynchrony,
Crash and Anonymity. [Research Report] PI 1918, 2008, pp.32. �inria-00348302�

https://inria.hal.science/inria-00348302
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1918

THE PRICE OF ANONYMITY:
OPTIMAL CONSENSUS

DESPITE ASYNCHRONY, CRASH AND ANONYMITY

FRANÇOIS BONNET MICHEL RAYNAL

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

The Price of Anonymity:
Optimal Consensus

despite Asynchrony, Crash and Anonymity

François Bonnet* Michel Raynal**

Systèmes communicants
Projet ASAP

Publication interne n ˚ 1918 — Décembre 2008 — 30 pages

Abstract: This paper addresses the consensus problem in asynchronous systems prone to process crashes,
where additionally the processes are anonymous (they cannot be distinguished one from the other: they
have no name and execute the same code). To circumvent the three computational adversaries (asynchrony,
failures and anonymity) each process is provided with a failure detector of a class denoted ψ, that gives it an
upper bound on the number of processes that are currently alive (in a non-anonymous system, the classes ψ
and P -the class of perfect failure detectors- are equivalent).

The paper first presents a simple ψ-based consensus algorithm where the processes decide in 2t + 1
asynchronous rounds (where t is an upper bound on the number of faulty processes). It then shows one of
its main results, namely, 2t+ 1 is a lower bound for consensus in the anonymous systems equipped with ψ.
The second contribution addresses early-decision. The paper presents and proves correct an early-deciding
algorithm where the processes decide in min(2f + 2, 2t + 1) asynchronous rounds (where f is the actual
number of process failures). This leads to think that anonymity doubles the cost (wrt synchronous systems)
and it is conjectured that min(2f + 2, 2t + 1) is the corresponding lower bound.

The paper finally considers the k-set agreement problem in anonymous systems. It first shows that the
previous ψ-based consensus algorithm solves the k-set agreement problem in Rt = 2b t

k
c+ 1 asynchronous

rounds. Then, considering a family of failure detector classes {ψ`}1≤`≤k that generalizes the class ψ(= ψ1),
the paper presents an algorithm that solves the k-set agreement inRt,` = 2b t

k−`+1
c+1 asynchronous rounds.

This last formula relates the cost (Rt,`), the coordination degree of the problem (k), the maximum number
of failures (t) and the the strength (`) of the underlying failure detector. Finally the paper concludes by
presenting problems that remain open.

Key-words: Anonymity, Asynchronous system, Consensus, Distributed computability, Early decision,
Failure detector class, Message passing system, Round-based computation, Set agreement.

(Résumé : tsvp)

* IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France francois.bonnet@irisa.fr
** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, raynal@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Accord en dépit de l’anonymat

Résumé : Ce rapport étudie les problèmes d’accord dans les systèmes asynchrones anonymes sujets au
crash des processus.

Mots clés : Accord, Anonymat, Asynchronisme, Défaillances.

The price of anonymity 3

1 Introduction

Anonymous systems While (in a somewhat restrictive way) the aim of a real-time system is to master on
time computing, and the main aim of parallelism is to obtain efficient algorithms, we can say that the central
issue of distributed computing consists in mastering uncertainty. This uncertainty has first appeared under
the form of asynchrony, failure occurrences, and the multiplicity of loci of control (also referred as locality).
More recently, new facets of uncertainty (such as dynamicity, scalability and mobility) have appeared and
made distributed computing even more challenging.

Among the many facets of uncertainty that distributed computing has to cope with, anonymity is partic-
ularly important. It occurs when the computing entities (processes, agents, sensors, etc.) have no name, and
consequently cannot distinguish the ones from the others. It is worth noticing that, from a practical point of
view, anonymity is a first class property as soon as one is interested in guaranteeing privacy. As an example,
some peer-to-peer file-sharing systems assume the peers are anonymous [15]. In the same vein, not all the
sensor networks assume that each sensor as a proper identity [3, 18].

One of the very first works (to our knowledge) that addressed anonymous systems is from D. Angluin
[2]. In that paper, considering message passing systems, she was mainly interested in computability is-
sues, namely answering the question “which functions can be computed in presence of asynchrony and
anonymity?” The leader election problem is a simple example of a problem that is unsolvable in such a
setting (intuitively, this because symmetry cannot be broken in presence of asynchrony and anonymity).
Other works have then addressed anonymity in particular settings such as ring networks [7], or networks
with a regular structure [32]. Failure-free message passing anonymous systems have also been investigated
in [43, 44] where is given a characterization of problems solvable in this context according to which amount
on information about network attributes are initially known by the processes. Relations between broadcast
and shared memory in reliable anonymous distributed systems are addressed in [4].

Failure-free asynchronous shared memory systems have been studied in the context of anonymity. A
characterization of the problems (tasks) that can be solved in this setting (when additionally the number of
processes is not known) is given in [6]. The use of randomization to cope with crash-prone anonymous
shared memory systems has been addressed in [40], where a randomized wait-free naming algorithm is
given that solves the naming problem when each atomic register is a single-writer/multi-reader register. Re-
cently, wait-free algorithms implementing snapshot and weak counters have been proposed for anonymous
asynchronous shared memory systems prone to process crash [25]. Wait-free means that every non-faulty
process has to terminate its snapshot or counter operations, whatever the number of failures and and the
concurrency pattern [28].

Consensus in anonymous shared memory systems Consensus is one of the most famous distributed
computing problem. It is a coordination problem defined as follows: each process proposes a value, and each
non-faulty process has to decide a value (termination), such that no two processes decide different values
(agreement) and the decided value is a proposed value (validity). While it has a very simple statement and
can be trivially solved in (anonymous or not) failure-free systems where the number of processes is known,
and has simple solutions in (anonymous or not) crash-prone synchronous systems, the consensus problem
has no solution in asynchronous non-anonymous failure-prone systems, as soon as (even only) one process
can be faulty, be the failure a simple crash and the communication system a reliable shared memory system
[33], or a reliable message passing system [22]. Trivially, the problem cannot be solved either if anonymity
is added to asynchrony and failures.

An approach based on randomization is presented in [10] to circumvent the previous impossibility in
anonymous crash-prone shared memory systems. As noticed in [25], this shows that producing unique iden-

PI n ˚ 1918

4 F. Bonnet & M. Raynal

tifiers is harder than consensus. Interestingly, this approach has been extended to infinitely many processes
in [5].

Another approach to circumvent the previous impossibility consists in considering a weaker version of
the problem. Taking such an approach, [25] looks for obstruction-free consensus algorithms. Obstruction-
freedom is a termination property weaker than wait-freedom. While (in the consensus context) wait-freedom
requires that every non-faulty process always decides (see above), obstruction-freedom [29] requires that,
whatever the failure pattern, each non-faulty process p decides when the concurrency pattern is such that
p can execute “long enough” without concurrency. (From a practical point of view, “long enough” means
the time to execute its algorithm.) An obstruction-free consensus algorithm for anonymous shared memory
systems is described in [25]. This algorithm requires O(n) binary atomic registers (where n is the total
number of processes).

Content of the paper As far as we know, the consensus problem has not been investigated in anonymous
crash-prone message passing systems. This is the topic addressed in this paper. Several contributions are
presented. The first is a failure detector-based algorithm that solves the consensus problem despite the net
effect of asynchrony, crash failures and anonymity. The second (and, to our view, a main contribution) is a
lower bound on the number of rounds required by any algorithm that solves consensus in such an uncertainty
context. The third is an early-deciding algorithm while the last contribution is the investigation of the k-set
agreement problem in anonymous systems.

As consensus cannot be solved in presence of process crashes and asynchrony in a message passing sys-
tems [22], these systems have to be enriched with additional power in order the problem becomes solvable.
Failure detectors are a well-known approach proposed to provide processes with such an additional power
[11]. Informally, a failure detector provides each process with information on failures. As we are interested
in the most efficient asynchronous message passing algorithm that solves consensus despite crashes and
anonymity (and not in the weakest Ω-like [12] failure detector to face anonymity), we consider here the fail-
ure detector class denoted ψ. That failure detector class is the strongest of a family of failure detector classes
that has been introduced in [37]. When queried by a process, such a failure detector returns an over-estimate
of the number of alive processes. (A simple combination of results established in [37] and [38] shows that
ψ and the class P of perfect failure detectors are equivalent in asynchronous non-anonymous systems. A
failure detector of the class P provides each process with a set that does not contain the id of a process
before it crashes and eventually contains the ids of all the crashed processes.) Interestingly, both ψ and P
are classes of realistic failure detectors. (A realistic failure is a failure detector that can be implemented in a
synchronous system. Said differently, a realistic failure detector cannot guess the future [16].)

The paper first presents an asynchronous anonymous ψ-based algorithm that solves the consensus prob-
lem in 2t + 1 rounds, where t is an upper bound on the number of processes that are allowed to crash in a
run (1 ≤ t ≤ n − 1). Its design principle is pretty simple, namely the algorithm applies the well-known
flood-set strategy to the anonymous context. Then the paper presents one of its results, namely, a proof that,
whatever the crash failure pattern, 2t + 1 is a lower bound on the number of rounds required to solve the
consensus problem in the proposed round-based model.

While t+ 1 is a lower bound on the number of rounds to solve consensus in both synchronous message
passing systems [1, 21, 31], and asynchronous message passing systems equipped with a perfect failure
detector [27], it appears that 2t + 1 is the corresponding lower bound for anonymous systems. This is a
noteworthy feature of anonymity as it shows that, when one wants to solve consensus despite anonymity,
an additional price of t rounds has to be paid The lesson learned is that, from a time complexity point of
view, the combination of asynchrony and anonymity doubles the price. (Let us notice that, in a synchronous
system, consensus can easily be solved with a classical flood-set algorithm in (t+ 1) rounds).

Irisa

The price of anonymity 5

The paper then considers early decision in anonymous systems enriched with ψ. It presents an algorithm
where the processes decide and halt by min(2f + 2, 2t+ 1) rounds (where f is the actual number of faulty
processes, 0 ≤ f ≤ t). This leads to think that min(2f +2, 2t+1) could be the lower bound on the number
of rounds for solving consensus in these asynchronous systems.

Finally, the paper focuses on the k-set agreement problem [13] that extends consensus in the sense
it allows up to k values to be decided. It first shows that the previous ψ-based algorithm (designed for
consensus) solves k-set agreement in 2

⌊

t
k

⌋

+ 1 rounds. As k-set agreement is a weaker problem than
consensus, a failure detector weaker than ψ should be able to solve it. To investigate this idea, a family of
failure detector classes, denoted {ψ`}1≤`≤n, is introduced; ψ1 is ψ, and ψ`+1 is weaker than ψ`. It is shown
that ` ≤ k is a sufficient requirement to solve k-set agreement with the help of ψ`. Moreover a ψ`-based
k-set agreement is presented that requires R = 2b t

k−`+1
c + 1 rounds. Interestingly, this formula relates the

cost (R), the coordination degree of the problem (k), and the strength (`) of the underlying failure detector.
It also clearly exhibits the point until which the failure detector class can be weakened while still solving
k-set agreement, namely ` cannot be greater than k (the threshold value ` = k+1, i.e. the value from which
ψ` is too weak to solve k-set agreement, corresponds to a division by 0 in the formula).

Roadmap The paper is made up of 7 sections. Section 2 presents the system model which includes
the failure detector class ψ. Section 3 presents and proves correct a simple ψ-based algorithm that solves
consensus despite asynchrony, process crashes and anonymity. Then, Section 4 proves a main theorem of
the paper: (2t + 1) is a lower bound on the number of rounds for any algorithm that solves the consensus
problem in that computation model. Then, Section 5 addresses early decision, and Section 6 focuses on the
k-set agreement problem. Finally, Section 7 concludes the paper.

2 Computation model

2.1 Base model

Process model The system is made up of a fixed number n of processes, denoted p1, . . . , pn. The value
of the system parameter n is not known by the processes. Moreover, the process pi does not know its index
i, which means that indexes are only used for a presentation purpose. Processes are anonymous in the sense
that they have no name and execute the same algorithm. They are asynchronous in the sense that there is no
assumption on their respective speeds.

Failure model Up to t processes can crash in a run, 0 ≤ t ≤ n − 1. A process executes correctly its
algorithm until it possibly crashes. A crash is a premature stop; after it has crashed, a process executes no
statement. The value of the system parameter t is know by the processes. A process that does not crash in a
run is correct in that run. Otherwise, it is faulty in that run.

Communication The processes communicate by exchanging messages through reliable channels. These
channels are asynchronous, which means that there is no assumption on the speed of messages on channels,
except that it is positive (eventually every message arrives).

The processes are provided with a brodcast() communication primitive that allows the invoking process
to send the same message to all the processes (including itself). The brodcast() primitive is not reliable in
the sense that, if a process pi crashes while broadcasting a message, that message can be received by an
arbitrary subset of processes. When it receives a message, a process cannot determine the sender of the
message. Moreover, given any set of messages it has received, a process cannot determine if these messages
are from the same sender or from different senders.
PI n ˚ 1918

6 F. Bonnet & M. Raynal

Round-based model The processes execute asynchronous rounds. During each round, a process broad-
casts a message, receives messages sent during the very same round and executes local computation. This
means that, as in the asynchronous models described in [8, 23, 34], the rounds are communication-closed [20].

Notation The previous computation model is denoted AARS cl
n,t[∅]. AARS stands for Anonymous

Asynchronous Round-based System, with communication-closed rounds, while ∅ means there is no ad-
ditional assumption.

2.2 The failure detector class ψ

As indicated in the introduction this failure detector class has been introduced in [37]. The class ψ is the
equivalent of the class of perfect failure detectors P , when we consider non-anonymous systems (“equiv-
alent” means that, if we associate distinct names with each process of an anonymous system, we have the
following: given a failure detector of any one class it is possible to build a failure detector of the other class
[37, 38]).

Definition Let f denote the number of processes that crash in a given run (0 ≤ f ≤ t), and f τ denote the
number of processes that have crashed up to time τ . A failure detector of the class ψ provides each process
pi with a positive integer denoted aa`i (approximate number of a`ive processes) that satisfies the following
properties (where aa`τi denotes the value of aa`i at time τ):

• Safety: ∀τ : aa`τi ≥ n− f τ .

• Liveness: ∃τ : ∀τ ′ ≥ τ : aa`τ
′

i = n− f .

The safety property states that aa`i is always an over-estimate of the number of processes that are still alive,
while the liveness property states that it eventually converges to its exact value1.

2.3 The computation model AARScl
n,t[ψ]

This computation model is AARScl
n,t[∅] enriched with ψ and where, in

each round, the number of messages received by a process pi is deter-
mined by the current value of aa`i. More precisely, for each process pi,
the algorithms have the canonical form described at the right. The local
variable ri is the current round number of pi. Each process pi execute
asynchronous rounds until some condition is satisfied. During its round
ri, pi broadcast a message tagged ri, waits until it has received aa`i
messages tagged ri, and executes local computation. (aa`i is repeatedly
read until the wait statement terminates.) Before proceeding to the next
round, the process pi increases ri. (As the model is asynchronous it is
up to each process pi to manage its round number).

ri ← 1;
while (¬ condition) do

begin asynchronous round
broadcast a msg tagged (ri,−);
wait until

�
aa`i msgs tagged ri

have been received � ;
Local computation;
ri ← ri + 1
end asynchronous round

end while;
Local computation.

Misleading notification Let us consider Figure 1 where the rounds r− 1, r and r+1 are represented, the
processes pa crashes during the round r− 1 (a crash is represented by a cross in the figure), and the process
pb crashes after it has broadcast its round r message (in the figure, the corresponding crash appears during
the round r + 1). The asynchronous notification of each crash appears at pi as a decrease of aa`i; each is
indicated with a dotted line. As pa crashes during the round r−1, it will not send round r messages, and so,
during the round r, pi has to wait for at least 3 messages (aa`i = 3). Differently, pi is notified of the crash

1In [37], n is known and ψ provides each process pi with an integer anci such that n = aa`i + anci.

Irisa

The price of anonymity 7

of pb (i.e., aa`i is decreased to 2) while it is waiting for round r messages. As a result pi waits for only two
messages and, as it has received two round r messages (from pb and itself), it terminates its participation to
the round r. Such an early failure notification is called a misleading notification, and the message m sent
by the corresponding crashed process is called a misleading message. More precisely, a message m sent at
round r is misleading if it allows its receiver to terminate its round r, while the corresponding sender has
crashed after or during the broadcast of m. These misleading notifications/messages come from the inde-
pendence between the asynchronous communication-closed rounds on one side, and the crash notifications
supplied by failure detector ψ on the other side (it is such an independence that makes the system different
from a synchronous system).

pa

pb
m

pi
aa`i = 3 aa`i = 2

m′
pj

r r + 1r − 1

Figure 1: Misleading notification

The following theorem captures the synchronization power of ψ in this round-based model.

Theorem 1 If x processes crash while they execute the round r, no process can proceed to the round r + 1
while there are still (x+ 1) processes that are alive and execute the round r − 1.

Proof let τ be the time at which the first process (say pi) progresses from the round r to the round r + 1.
Moreover, let A(τ) be the number of processes that are alive at time τ , and R(τ, r) be the number of
processes that, at time τ , have entered a round r ′ ≥ r. We have R(τ, r) = RA(τ, r) + RC(τ, r) where
RA(τ, r) is the number of processes that, at τ , are alive and execute a round r ′ ≥ r (notice that only pi

starts executing r′ = r + 1, the other processes of RA(τ, r) are executing r), and RC(τ, r) is the number
of processes that have started executing the round r and have crashed by time τ).

• It follows from the safety property of ψ that, when the process pi progresses from the round r to the
round r + 1, we have aa`i(τ) ≥ A(τ). Moreover, during the round r, pi receives and processes only
messages sent during the same round r, from which we conclude that R(τ, r) ≥ aa`i(τ), and by
transitivity we obtain R(τ, r) ≥ A(τ).

• At time τ , there are A(τ) − RA(τ, r) alive processes that have not yet entered the round r. As
RA(τ, r) = R(τ, r) − RC(τ, r) and 0 ≤ RC(τ, r) ≤ x, we conclude that there are at most A(τ) −
R(τ, r) + x alive processes that have not yet entered the round r.

Finally, as, at time τ , there are at most A(τ) − R(τ, r) + x alive processes that have not yet entered the
round r, and R(τ, r) ≥ A(τ), we conclude that A(τ) −R(τ, r) + x ≤ x, which completes the proof of the
theorem. 2Theorem 1

The corollary that follows considers the case x = 0.

Definition 1 We say that a process pi terminates a round r, if r < 2t + 1 and pi proceeds to r + 1, or
r = 2t+ 1 and pi decides during that round.

Corollary 1 If no process crashes while executing round r, no process terminates the round r while there
are alive processes executing the round r − 1.

PI n ˚ 1918

8 F. Bonnet & M. Raynal

3 Solving consensus in AARS cl
n,t[ψ]

3.1 The algorithm

A consensus algorithm for the AARScl
n,t[ψ] model is described in Figure 2. This algorithm is a simple

enrichment of the skeleton described in the previous section that adapts to AARS cl
n,t[ψ] the classical flood

set consensus algorithm designed for synchronous system [8, 34, 41].
A process pi invokes propose(vi) where vi is the value it proposes to the consensus. It terminates when

it executes the return(esti) statement (line 10) where esti is the value it decides. The processes execute
(2t + 1) asynchronous rounds (line 02). In each round, each process pi broadcasts its current estimate
(denoted esti and initialized to vi) of the decision value and updates it (by taking the minimum on the
values it has received and taken into account up to now, lines 05-06).

operation propose(vi):
(01) esti ← vi; ri ← 1;
(02) while (ri ≤ 2t + 1) do
(03) begin asynchronous round
(04) brodcast EST(ri, esti);
(05) wait until

�
aa`i messages EST(ri,−) have been received � ;

(06) esti ← min(est values received at the previous line);
(07) ri ← ri + 1;
(08) end asynchronous round
(09) end while;
(10) return(esti).

Figure 2: Anonymous consensus in AARScl
n,t[ψ]

Remark If n is known by the processes, the algorithm can be improved to reduce the number of rounds
in the particular case where t = n − 1 (wait-free case). Instead of (2t + 1) rounds, the processes can then
execute only 2t rounds.

3.2 Proof of the algorithm

Lemma 1 A decided value is a proposed value (validity).

Proof The proof of the validity property is a direct consequence of the following simple observations: (1)
each local estimate esti is initialized to a proposed value (line 01), (2) only estimate values are commu-
nicated (lines 04-05), and (3) the new value of an estimate local variable is the minimum of the estimates
values received and taken into account so far (lines 06). 2Lemma 1

Lemma 2 Every correct process decides in (2t+ 1) rounds (termination).

Proof Let us first observe that, due to the liveness properties of ψ, during any round r no process can be
blocked forever at line 05. The lemma follows directly from this observation: every process that does not
crash by the end of the (2t+ 1)th round decide at line 10. 2Lemma 2

Lemma 3 If no process crashes during two consecutive rounds r and r + 1, then all the processes that
terminate the round r have the same estimate value.

Irisa

The price of anonymity 9

Proof Let r and r + 1 be two consecutive rounds without crash, and AR the set of processes that execute
these two rounds. Let first observe that, due to Corollary 1 no process is alive in the round r − 1 when a
process of AR proceeds to r + 1, and as no process crashes while executing the round r + 1, there is no
misleading message. Finally, due to the safety property of ψ and the fact that no process that crashed before
r can send round r messages, it follows that each process in AR receives a round r message from each
process in AR and does not receive a round r message from any process not in AR. Consequently, during
the round r, the processes of AR compute their new estimate as the smallest value from the same set, which
proves the lemma. 2Lemma 3

Lemma 4 No two processes decide different values (agreement).

Proof We consider two cases.

• Case 1. In the sequence of (2t + 1) rounds, there are two consecutive rounds without crash. Let r
and r + 1 be these two rounds, with ≤ r ≤ 2t. It follows from Lemma 3 that all the processes that
proceed to the round r + 1 have the same estimate value. Hence, a single value can be decided at the
end of the round (2t+ 1).

• Case 2. In the sequence of (2t + 1) rounds, there are no two consecutive rounds without crash. This
means that the odd rounds are crash-free, while each even round has exactly one crash. So, the t
possible crashes occurred during the rounds 2, 4, . . . , 2t. As the last round is crash-free and there are
no misleading messages during the round 2t+1, it follows (from the safety property of ψ) that during
that round every process receives a message from every process. They all consequently compute the
same minimum value, which completes the proof of the lemma.

2Lemma 4

Theorem 2 The algorithm described in Figure 2 solves the consensus problem in (2t + 1) rounds in the
AARScl

n,t[ψ] model.

Proof The proof follows from the lemmas 1, 2 and 4. 2Theorem 2

p3

p4

p5

p2

p1

0 0

0 0

0

1

1

1

1 1

1

1 1

1

11

1

1

1

decide 1

decide 1

decide 0

Figure 3: The algorithm requires (2t+ 1) rounds

3.3 Why the algorithm requires (2t+ 1) rounds

A simple run of the previous algorithm is depicted in Figure 3. This run, that considers t = 2, involves
n = 5 processes and requires 2t + 1 = 5 rounds for the non-faulty processes to decide. In that run, the
process denoted p1 crashes during the second round, and the process denoted p2 crashes during the fourth
PI n ˚ 1918

10 F. Bonnet & M. Raynal

round. Moreover, the message sent by p1 during the first round is received only by itself, and its round 2
message is received only by p2. Similarly for p2 during the rounds 3 and 4. As we can see, if the algorithm
stops at the 4th round, it does not solves the consensus problem.

The behavior of the chain of processes p1, p2 during the first four rounds (where the bold arrows are
associated with the messages that carry the value 0) is similar to the chain of faulty processes that delays the
decision until the round (t + 1) in synchronous systems. The next section shows that the (2t + 1) rounds
price is not a particular feature of the proposed algorithm, but a feature of all the algorithms that solve the
consensus problem in AARScl

n,t[ψ].

4 (2t+ 1) is a lower bound

Assuming t < n− 1, this section shows that (2t+ 1) is a lower bound on the number of rounds to solve the
consensus problem in both the model AARScl

n,t[ψ] and the model AARSop
n,t[ψ] described in the next section

devoted to early decision (the main difference is that AARS op
n,t[ψ] is not round communication-closed).

The proof is by contradiction. Assuming that there is an algorithm A that solves the binary consensus
problem in 2t rounds, it shows that such an algorithm cannot be designed. (In the binary consensus problem,
only the values 0 and 1 can be proposed by the processes. It is easy to see that considering only binary
consensus can be done without loss of generality.)

Definitions A configuration is a global state of the considered consensus algorithm. The notion of valence
has been introduced and used for the first time in [22]. A configuration C is 0-valent (resp., 1-valent) if,
starting from C , the only value that can be decided is 0 (resp., 1). A univalent configuration is either 0-valent
or 1-valent. A bivalent configuration is a configuration that is not univalent (this means that, starting from a
bivalent configuration there is a run of the algorithm that decides 0, and another run that decides 1).

Here we are interested in the configurations C[r] (where r ≥ 0 is a round number) defined as follows.
Let τr be the first time at which there is no more process alive in a round ≤ r, i.e., τr occurs when the last
alive process in a round ≤ r either crashes or proceeds to the round r + 1 (in that case, the process was in
the round r). C[r] is the state of the considered algorithm at time τr. Let us notice that, in C[r], r ≥ 1, it is
possible that processes are in rounds r ′ > r. C[0] denotes the initial configuration. In C[0], each process is
in its initial state (that includes the value it proposes), all the buffers are empty and there is no message in
transit.

Structure of the proof The structure of the proof is as in [1, 22]. The contradiction follows from the
following lemmas. The first lemma shows that a configuration of A after 2(t − 1) rounds is univalent
(Lemma 5). The second lemma shows that there is a configuration of A that, after 2(t − 1) rounds, is
bivalent (Lemma 7). That lemma uses the fact that, assuming the existence of an algorithm A that solves the
binary consensus problem, there is an initial bivalent configuration (Lemma 6).

The proof does not consider all the possible runs ofA. It relies only on the runs ofA in which no process
crashes in odd rounds, and there is at most one process crash per even round. As the algorithm described in
Figure 2 needs 2t+ 1 rounds, the 2t+ 1 bound proved for these runs is a tight lower bound (Theorem 4).

Lemma 5 Let t < n− 1. Any configuration C[2(t− 1)] produced by A is univalent.

Proof The proof is by contradiction. Supposing that there is a configuration C[2(t − 1)] produced by A
that is bivalent, it considers two cases, namely, either there is a bivalent configuration C[2t − 1] that can
be attained by A from C[2(t − 1)] (case 1, Figure 4.a), or no configuration C[2t − 1] attained by A from
C[2(t− 1)] is bivalent (case 2, Figure 5.a).

Irisa

The price of anonymity 11

bivalent

C[2(t− 1)]

C = C[2t− 1]

0-valent
C0[2t]

1-valent
C1[2t]

Run R0 Run R1

(a) C is bivalent

C = C[2t− 1] bivalent

C0[2t] C ′
0[2t] C1[2t]C ′

1[2t]

0-valent 1-valent
py and px decide 0 pz and px decide 1

R1

R′
1

R0

R′
0

C ′
0[2t] and C ′

1[2t] are equivalent for px

(b) Obtaining the contradiction

Figure 4: The configuration C[2t− 1] is bivalent (Lemma 5, Case 1)

Case 1. Let C = C[2t − 1] be a bivalent configuration attained by A from C[2(t − 1)]. As C is
bivalent and A decides in 2t rounds (assumption), there are two runs R0 and R1 of A that extend C to
C0[2t] and C1[2t], respectively, such that C0[2t] is 0-valent (0 is decided by the end of the round 2t), and
C1[2t] is 1-valent (1 is decided by the end of the round 2t). (See Figure 4.) Let us notice that (1) until the
configuration C , R0 and R1 are identical, and (2) during the round 2t of R0 or R1 (or both), one process
crashes (otherwise, the non-faulty processes would receive the same messages during the round 2t and
would consequently decide the same value by the end of that round in both the runs R0 and R1). In both the
runs R0 and R1, the same set P of processes enter the round 2t. This follows from the fact that no process
crashes during the round 2t− 1 (by assumption, no process crashes during the odd rounds). Let k = |P |.

Let P ′ be the set of processes that are correct in both the runs R0 and R1. We have |P ′| ≥ k−2, because
there is at most one crash during the last round of R0, at most one crash during the last round of R1, and
these crashes can be from two different processes. Moreover, as k ≥ n− (t− 1) (from the first round until
the (2t − 1)th round, there is at most one crash per even round), and t < n − 1 (lemma assumption), we
have k − 2 ≥ 1, which means that P ′ contains at least one process. Let px a process of P ′.

Let C ′
0[2t] (resp., C ′

1[2t]) be a configuration similar to C0[2t] (resp., C1[2t]) except for px, and R′
0 (resp.,

R′
1) be the corresponding run producing C ′

0[2t] (resp., C ′
1[2t]) (see Figure 4.b). More precisely, during the

round 2t, all the correct processes in C ′
0[2t] (resp., C ′

1[2t]) have received the same messages, but px that has
received exactly k messages, one from each process that has entered the 2tth round (as indicated before, one
process has crashed during the round 2t in R0, R1 or both, but that process has sent its round 2t message to
px before crashing)2 . We have the following.

• Only the state of px can differ in C0[2t] and C ′
0[2t]. As t < n − 1, in addition to px, there is at

least another correct process py that decides in both the runs R0 and R′
0 ending at C0[2t] and C ′

0[2t],
respectively. Due to the agreement property of A, they decide the same value in both runs, namely 0.

• Similarly, only the state of px can differ in C1[2t] and C ′
1[2t]. As t < n − 1, in addition to px, there

is at least another correct process pz that decides in both the runs R1 and R′
1 ending at C1[2t] and

C ′
1[2t]. Due to the agreement property of A, they decide the same value in both runs, namely 1.

2Let us notice that C0[2t] and C′

0[2t] can be identical if px has also received the k messages in R0 (and then R0 and R′

0 also
can be identical). The same can occur for C1[2t] and C′

1[2t].

PI n ˚ 1918

12 F. Bonnet & M. Raynal

• Let us finally observe that px has the same local state in C ′
0[2t] and C ′

1[2t]. It follows that it decides
the same value v in both the runs R′

0 and R′
1. A contradiction with the two previous items, which

concludes the proof of the lemma for the first case.

bivalent

C0[2t− 1] C1[2t− 1]

0-valent

C1[2t]

1-valent
C0[2t]
0-valent

R1R0

1-valent

C[2(t− 1)]

(a) Univalent configurations

C[2(t− 1)]
bivalent

C0[2t− 1]

0-valent

C0[2t]

0-valent

C ′
0[2t− 1]

0-valent
C ′

1[2t− 1]
1-valent

1-valent
C ′

0[2t] C ′
1[2t]

1-valent
C1[2t]

1-valent
C1[2t− 1]

R1
R0

0-valent 1-valent

0-valent

Cannot be distinguished from P \ {pc, py}

(b) Obtaining the contradiction

Figure 5: All the configurations C[2t− 1] are univalent (Lemma 5, Case 2)

Case 2. No bivalent configuration C[2t − 1] is attained by A from C[2(t − 1)]. Starting from the
bivalent configuration C[2(t − 1)], let us consider the run R0 that extends the configuration C[2(t− 1)] to
the configuration C0[2t] such that there is no crash between these two configurations. Let us notice that,
as there is no crash, C0[2t] is unique. As A decides during the 2tth round, let us assume (without loss
of generality) that C0[2t] is 0-valent. Moreover, as C[2(t − 1)] is bivalent, there is a run R1 that extends
C[2(t − 1)] to a 1-valent configuration C1[2t]. Due to the case assumption, each of C0[2t] and C1[2t] is
obtained from an intermediary univalent configuration, that we denote C0[2t−1] and C1[2t−1], respectively
(see Figure 5.a).

Let us observe that, in the run R1 ending in C1[2t], there is at least one crash, otherwise we would
have C1[2t] = C0[2t]. Moreover, when considering additionally the pattern of failures (no crash in odd
rounds, and at most one crash during each even round), we can conclude that there is exactly one crash, and
the corresponding process crashes while executing the 2tth round. Moreover, this crash occurs before the
configuration C1[2t − 1] (i.e., before the last alive process in round 2t − 1 enters the round 2t), otherwise
the configurations C0[2t − 1] and C1[2t − 1] could not be distinguished (a contradiction as one is 0-valent
while the other is 1-valent).

Let P be the set of processes that start the (2t − 1)th round in R0 and R1 (they are the same processes
as R0 and R1 are identical until C[2(t − 1)] and, by assumption, no process crashes during an odd round,
here the round (2t − 1)). Let |P | = k. As in the first case (same reasoning), we have k ≥ 3. Let pc be the
process that crashes while executing the last round of R1.

As, after the round 2(t − 1), the run R0 has no crash, each of the k processes of P enters the round
2t after having received k messages during the round 2t − 1. Differently, when the run R1 attains the
configuration C1[2t − 1], due to the crash of pc, some processes enter the round 2t after having received
k messages (let Pk be this set of processes), while other processes enter the round 2t after having received

Irisa

The price of anonymity 13

k − 1 messages (let Pk−1 be this set of processes)3 . The set Pk ⊂ P is not empty, otherwise the same final
configuration C[2t] could be attained from both the configurations C0[2t− 1] and C1[2t− 1].

To obtain the final contradiction that will prove the lemma for the second case, let us construct “inter-
mediate” configurations between C1[2t − 1] and C0[2t − 1] as follows. We iteratively move one process
from Pk−1 to Pk (each iteration defining a new configuration) until all the processes of Pk−1 have been
moved into Pk . The process that is moved receives now k messages, while the other processes receives k
or k − 1 messages (as in the configuration from which the new configuration is obtained). In that way, we
obtain a sequence of “C[2t − 1] configurations” that starts at the configuration C1[2t − 1] and ends at the
configuration C0[2t − 1] (see Figure 5.b). All these configurations can be attained from C[2(t − 1)], and
by assumption are univalent (if one of them was bivalent, we would be in Case 1). Consequently, there are
two adjacent configurations C ′

0[2t − 1] and C ′
1[2t − 1] in this sequence such that one is 0-valent while the

other is 1-valent. Moreover, these two configurations differ only in the number of message received during
the (2t − 1)th round by a process py ∈ P \ {pc}. Let us recall that P contains at least 3 processes, and
consequently |P \ {py, pc}| ≥ 1.

Let us consider the run where, after C ′
0[2t − 1] (resp., C ′

1[2t − 1]), all the processes in P \ {pc, py}
(there is at least one such process) receives the k − 1 messages from the processes in P \ {py}. This run
ends in the final configuration C ′

0[2t] (resp., C ′
1[2t]). As C ′

0[2t− 1] is 0-valent, C ′
0[2t] is 0-valent. Similarly,

as C ′
1[2t − 1] is 1-valent, C ′

1[2t] is 1-valent. But the processes in the set P \ {py, pc} cannot distinguish
C ′

0[2t] from C ′
1[2t]. Consequently, these two configurations have the same valence, a contradiction which

completes the proof of the lemma for the second case. 2Lemma 5

Lemma 6 There is a bivalent initial configuration.

Proof (The proof is close to the corresponding proof given in [22]). Due to the very existence of A and
the fact that it satisfies the consensus validity property, the configuration with only zeroes (ones) is trivially
0-valent (1-valent). Let us suppose that all the initial configurations are univalent. Clearly, there are two
initial configurations C0 and C1 that differ in the value proposed by only one process (say px) such that C0

is 0-valent, while C1 is 1-valent.
As indicated before, this lemma is used in the proof of Lemma 7. As that lemma considers only the

runs in which no process crashes in the odd rounds and at most one process crashes at each even round, this
pattern of failures is also considered in the current proof. Let us consider the configuration C[1] attained by
the algorithm A in the following run that satisfies the previous crash pattern.

When it executes the first round, the process px receives a message from each process, proceeds to the
second round, and crashes before sending any message during the second round. On the other side, each
other process pi is informed of the crash of px while it is waiting for messages sent during the first round
and terminates this round without receiving the message from px. As, no process pi 6= px ever receives
a message from px, the configuration C[1] can be attained from any of the initial configuration C0 or C1.
Hence, C[1] is bivalent, and consequently both C0 and C1 have to be bivalent, which contradicts the initial
assumption. 2Lemma 6

Lemma 7 Let t < n− 1. There is a configuration C[2(t− 1)] produced by A that is bivalent.

Proof The proof is by induction. Lemma 6 has proved the base case, namely, given a binary consensus
algorithm A, there is an initial bivalent configuration. Let us assume that there is a bivalent configuration

3This is due to a misleading notification of the crash of pc. Moreover, let us notice that, due to asynchrony, the missing message
is not necessarily the message from pc.

PI n ˚ 1918

14 F. Bonnet & M. Raynal

C[2(`− 1)] for some ` such that 1 ≤ ` ≤ t− 1. We show that there is a configuration C[2`] produced by A
that is bivalent.

As for the previous lemmas, the proof that there is a bivalent configuration C[2`] is by contradiction,
so we assume that all the configurations C[2`] attained by A are univalent. The proof considers two cases:
there is a configuration C[2` − 1] attained from C[2(` − 1)] that is bivalent (case 1), or no configuration
C[2` − 1] attained from C[2(` − 1)] is bivalent (case 2). The proof of each case resembles the proof of a
case in Lemma 5. The main difference lies in the fact that the reasoning can no longer use the fact that C[2`]
is a final configuration. As in Lemma 6 (that considered the case of C[0]), configurations that follow C[2`]
have to be considered.

C[2(`− 1)]

C0[2`]

C ′
0[2` + 1]

C ′
0[2`]

C ′
1[2` + 1]

C ′
1[2`] C1[2`]

1-valent

R0
R1

0-valent

C[2`− 1]

R′
0

R′
0 R′

1

R′
1

bivalent

bivalent

Figure 6: The configuration C[2`− 1] is bivalent (Lemma 7, Case 1)

Case 1. There is a configuration C[2` − 1] attained from C[2(` − 1)] that is bivalent (see Figure 6).
Considering that configuration, let us consider two runs R0 and R1, identical until C[2`− 1], and such that
R0 attains the configuration C0[2`] that is 0-valent, while R1 attains the configuration C1[2`] that is 1-valent
(C0[2`] and C1[2`] are univalent by assumption). Moreover, without loss of generality, let us assume that no
process crashes in R0 between C[2`− 1] and C[2`], while a process pc crashes in R1 while it executes the
round 2`. Let us notice that, due to asynchrony, the crash of pc can appear in the configuration C[2` − 1],
and be notified to some processes before this configuration is attained, and after it for other processes.

The reasoning is now similar as the one used in case 2 of the proof of Lemma 54. Let P be the set of
processes that started the round 2`. They are the same processes that start this round in R0 and R1. Let
k = |P |. Due to ` ≤ t − 1, t < n− 1, and the assumption that no process crashes while executing an odd
round and at most one process crashes per even round, we have k ≥ 4 (as at most ` − 1 processes crash
during the first 2` − 1 rounds, n − (` − 1) ≥ n − t + 2 ≥ 4 processes start the round 2`). In R0, each
of k processes pi that enters the round 2` receives a set of k or k − 1 messages (this difference is due the
misleading notification of the crash of pc). Let P 0

i be this set of messages. Similarly, let P 1
j be the set of k

or k − 1 messages received by each process pj (but pc) that execute the round 2` in R1.
Similarly to the proof of Lemma 5, it is possible to construct a sequence of univalent configurations

starting from C1[2`] and ending at C0[2`] including two adjacent configurations C ′
1[2`] and C ′

0[2`] such that
(1) C ′

1[2`] is 1-valent, C ′
0[2`] is 0-valent, (2) they differ only in the set of messages received by some process

py ∈ P \ {pc}, and (3) they cannot be distinguished by the processes in P \ {pc, py} (see Figure 6).
Now, because the configurations C ′

1[2`] and C ′
0[2`] are not final configurations, the reasoning is similar

to the one used in Lemma 6. Let R′
0 (resp., R′

1) be a run such that from C ′
0[2`] (resp., C ′

1[2`]):
4While the reasoning in Lemma 5 is based on the number k or k − 1 of messages received by a process during the round 2t,

here the reasoning is based on the set of the messages received by a process during the round 2`.

Irisa

The price of anonymity 15

1. py receives a message from each process that started the round 2` + 1 (those are the processes in
P \ {pc}), and then crashes just after entering the round 2`+ 2 and before sending any message (let
us notice that py can be crashed only in an even round),

2. Each other process is informed of the crash of py while it is waiting for messages sent during the
round 2`+ 1, and terminates its current round 2`+ 1 without receiving the message from py .

As py has not sent a round 2`+2 message, it follows that no alive process can distinguish C ′
0[2`+1] and

C ′
1[2`+1]. It follows that both 0 and 1 can be decided from C ′

0[2`+1] and C ′
1[2`+1], i.e., they are bivalent,

which contradicts the assumption they are univalent. This completes the proof of the lemma for the first case.

bivalent

R0
R1

C = C[2(`− 1)]

C ′
1[2`− 1]C ′

0[2`− 1]C0[2`− 1]

C0[2`] C ′
0[2`] C ′

1[2`] C1[2`]

C ′
0[2` + 1] C ′

1[2` + 1]

C1[2`− 1]

0-valent 1-valent

bivalent

Figure 7: No configuration C[2`− 1] is bivalent (Lemma 7, Case 2)

Case 2. No configuration C[2`− 1] attained from C[2(`− 1)] is bivalent. The structure of the proof and
its underlying design are depicted implicitly in Figure 7. The associated reasoning, is nearly the same as in
the previous cases, and is left to the reader. 2Lemma 7

Theorem 3 Let t < n− 1. There is no consensus algorithm that always terminates in at most 2t rounds in
the AARSn,t[ψ] model.

Proof The proof is an immediate consequence of the Lemmas 5 and 7. 2Theorem 3

The following theorem is an immediate consequence of the previous theorem and Theorem 2.

Theorem 4 Let t < n− 1. The algorithm described in Figure 2 is optimal (for the number of rounds) in the
AARSn,t[ψ] model.

5 Early decision and halting

5.1 Early decision

The aim is here to allow the processes to decide before the round 2t + 1 when there are few failures. Let
f (0 ≤ f ≤ t) be the actual number of faulty processes. The corresponding consensus lower bound is
min(t+1, f +2) rounds in synchronous systems [8, 31, 34, 41]. What is the lower bound in AARS cl

n,t[ψ]?
PI n ˚ 1918

16 F. Bonnet & M. Raynal

Compared to synchronous systems, the new difficulty we have to cope with in AARS cl
n,t[ψ] lies in

the fact that, due misleading messages, during a round a process can miss messages from processes that
have not crashed. Providing early decision in such a context is a real challenge. Our intuition is that
early decision in AARScl

n,t[ψ] requires the processes to decide simultaneously during the very same round.
The simultaneous agreement problem, introduced in [17, 19], has been shown to be strongly related to the
“common knowledge” theory [26], and has received some attention in the literature (e.g., [35, 36]). So, we
conjecture that early decision and halting in AARS cl

n,t[ψ] requires simultaneous agreement and should be
attained in 2t+1−D rounds where D (0 ≤ D ≤ t) is parameter defined from the actual failure pattern [19].
A first step in that direction is done in Appendix C where it is shown that, in AARS cl

n,t[ψ], simultaneous
decision by round t+ 1 is impossible when f = 0.

5.2 The system model AARSop
n,t[ψ]

This paper addresses early decision in a model, denoted AARS op
n,t[ψ](where op stands for open), derived

from, and less constraining than, AARScl
n,t[ψ]. This model is round-based but not round communication-

closed. During any round r, in addition to the messages tagged r, a process can send or receive and process
a round-free message, i.e., a message that is not tagged by a round number. This model allows the behavior
of a process to be defined by two tasks: a round-based task T1, and a task T2 that processes the round free
messages. The model AARSop

n,t[ψ] assumes also that each process knows initially n and t.
It is interesting to recall that, differently from what can be done in the round-based synchronous model,

a lot of “round-based” asynchronous algorithms do actually assume a model similar to AARS op
n,t[ψ]. This

is the case, for example, of the round-based consensus algorithms that assume an underlying failure detector
such as the eventual leader Ω. Before deciding, a process broadcasts a DECIDE() that allows its receiver to
stop executing its round-based task, and decide immediately (e.g., [11, 12, 39]).

5.3 An early deciding algorithm for AARSop
n,t[ψ]

An algorithm that solves the consensus problem in min(2t + 1, 2f + 2) rounds in the AARS op
n,t[ψ] model

is described in Figure 8. As announced, it is made up of two tasks. The task T2 is to prevent deadlock:
when a process early decides (line N5), it broadcasts a round-free DECIDE() message and, if a process p i

has not yet decided when it receives such a message, it forwards it and returns the decided value (and stops
accordingly).

The main task T1 is a round-based task partly similar to the the behavior described in Figure 2. The
lines common to both algorithms have the same number. M is appended to the number of a line that is
modified, while the new lines are numbered N1, N2, etc.

Each process pi manages the following additional local variables: earlyi initialized to false (its meaning
will be explained later), reci that counts the number of messages received during the current round (line N1),
and a variable k whose current value is such that ri = 2k+ 1 in odd rounds and ri = 2k+ 2 in even rounds
(line N2). Moreover, a round message now carries the additional boolean value earlyi (line 04M).

The core of the early decision is at lines N3-N6, namely a process pi early decides during the round
r if the following round-dependent predicate is satisfied: the round is even, exactly n − k = n −

⌊

r−1

2

⌋

messages EST(r,−,−) have been received and each carries the value true (lines N3-N4). As we will see in
the proof, when satisfied, this locally evaluable predicate says that pi knows (1) the minimal value (v) of the
estj variables of the set of the processes pj that started the round 2k+1, and (2) that all the processes pj that
started the round 2k + 2, know that value v. It follows that the estj values of all the processes that started
the round 2k+2 are equal to v, and consequently no other value can be decided. The boolean earlyj is used
by a process pj to indicate (line 04) if during an odd round r = 2k + 1, it has received n− k = n−

⌊

r−1

2

⌋

round r messages (line N6).
Irisa

The price of anonymity 17

operation propose(vi):
task T1:

(01M)esti ← vi; ri ← 1; earlyi ← false;
(02) while (ri ≤ 2t+ 1) do
(03) begin asynchronous round
(04M) brodcast EST(ri, esti, earlyi);
(05) wait until

�
aa`i messages EST(ri,−,−) have been received � ;

(06) esti ← min(est values received at the previous line);
(N1) let reci[ri] = number of messages received at the previous line;
(N2) let k = � ri−1

2 � ;
(N3) if (ri is even) ∧ (reci[ri] = n− k)
(N4) ∧(each EST(ri,−, early) received is such that early = true)
(N5) then brodcast DECIDE(esti); return(esti) end if;
(N6) if (ri + 1 is even) then earlyi ← (reci[ri] = n− k) end if;
(07) ri ← ri + 1
(08) end asynchronous round
(09) end while;
(10) return(esti).
===

task T2: when DECIDE(est) is received do brodcast DECIDE(est); return(est) end do.

Figure 8: Early deciding anonymous consensus in AARSop
n,t[ψ] (n and t are known)

5.4 Proof of the early deciding algorithm

Definition Let EST [r] be the set of the values in the variables esti of the processes that enter the round
r. Let us observe that r1 > r2 ⇒ EST [r1] ⊆ EST [r2]. Moreover, we say “pi knows v” at the end of a
round, if esti = v at the end of that round.

Lemma 8 A decided value is a proposed value.

Proof The proof is the same as the one of Lemma 1. 2Lemma 8

Lemma 9 Let 0 ≤ k ≤ t−1. This lemma consists of two propositions depending on the parity of the round.

(i) If a process p receives n−k messages EST(2k+1,−,−) during a round 2k+1, it knows min(EST [2k+
1]) at the end of the round 2k + 1.

(ii) If a process p receives n− k messages EST(2k + 2,−, true) during a round 2k + 2, it knows that all
processes that have started the round 2k+1 knew min(EST [2k+1]) at the end of the round 2k+1.

Proof The proof is by induction on k.
Base step (k = 0). For the rounds r = 1 and r = 2 the result is trivial. If a process receives n mes-

sages during the first round, it knows that it has received a message from each process and consequently it
knows all the values in EST [1]. If a process receives n messages EST(2,−, true) during the second round,
it knows that all processes know all the values in EST [1] (due to the boolean early which is true for all
processes).

Induction step. Let k > 0. Assuming that the lemma is true for any k ′ < k we have to show that it is
also true for k, i.e. for the next pair of rounds (2k + 1, 2k + 2).

PI n ˚ 1918

18 F. Bonnet & M. Raynal

• Proof of (i). Let p be a process that receives n − k messages EST(2k + 1,−,−) during the round
2k + 1. Let S be the number of processes that have started the round 2k+ 1. Let us notice that, since
p receives n − k messages during the round 2k + 1, we have S ≥ n − k. The proof considers two
cases according to the value of S.

– S = n− k. In that case, p has received a message from each process that have started the round
2k + 1, i.e., p knows EST [2k + 1]. Hence, it knows min(EST [2k + 1]).

– S > n− k. We claim that there is a k′ < k such that:

1. There are n− k′ processes that started the round 2k ′ + 1,

2. There are n− k′ processes that started the round 2k ′ + 2,

3. There are n− k′ processes that started the round 2k ′ + 3.

This claim implies that the n − k′ processes that have started the round 2k ′ + 1 have received
n − k′ messages EST(, 2k′ + 1,−,−) (since there is neither crashes nor decision in the rounds
2k′ + 1 and 2k′ + 2)5. Due to the item (i) of the induction assumption, it follows that p knows
min(EST [2k′ +1]) at the end of round 2k′ +1. Since (1) p keeps this minimum in esti, and (2)
2k+1 > 2k′ +1 ⇒ EST [2k+1] ⊆ EST [2k′ +1], it follows that p cannot receive in the future
a value smaller than min(EST [2k′ + 1]). Hence, min(EST [2k′ + 1]) = min(EST [2k + 1]),
which proves item (i) of the lemma for that case.

The proof of the claim is by contradiction. Suppose that there is no such k ′ < k. This implies
that at most n− 1 processes have started the round 3 (otherwise k ′ = 0 would be such a “good”
k′). It implies also that at most n−2 processes have started the round 5 (otherwise k ′ = 1 would
be such a “good” k′). More generally it implies that at most n − x processes have started the
round 2x + 1 (otherwise k′ = x − 1 would be such a “good” k′). Taking x = k implies that
at most n − k processes have started the round 2k + 1, which contradicts the case assumption
S > n− k, and concludes the proof of the the claim.

• Proof of (ii). Let p be a process that receives n− k messages EST(2k + 2,−, true) during the round
2k + 2. Let S be the number of processes that start the round 2k + 1. Let us notice that, since p
receives n − k messages during the round 2k + 2, we have S ≥ n − k. As previously, the proof
considers two cases according to the values of S.

– S = n − k. In that case, p has received in the round 2k + 2 a message from each process that
started the round 2k + 1. If all these messages contains the boolean early equals to true, it
means that each of these n− k processes has received n− k messages in round 2k + 1, which
(due to (i)) implies that all of them know min(EST [2k + 1]).

– S > n− k. The claim stated in the proof of item (i) is still correct. That claim implies that the
n− k′ processes that have started the round 2k ′ + 1 have received n− k messages (since there
is neither a crash nor decision in the rounds 2k ′ + 1 and 2k′ + 2, see footnote 5). It follows by
induction that all these processes know min(EST [2k ′ + 1]) at the end of round 2k′ + 1, and as
EST [2k′ + 1] ⊆ EST [2k + 2], this remains true at the end of the round 2k + 2.

2Lemma 9

Lemma 10 No two processes decide different values.
5 This follows from the following observation. If X processes start the round r and X processes start the round r + 1, then no

process has crashed or decided during the round r. Taking X = n− k′ and the round r = 2k′ + 1, and X = n− k′ and the round
r = 2k′ + 2, shows that there are neither crashes no decision during the rounds 2k′ + 1 and 2k′ + 2.

Irisa

The price of anonymity 19

Proof If no process decides at line N5, the algorithm behaves as the non-early deciding algorithm described
in Figure 2, and then the agreement property follows from Lemma 4. So, the rest of the proof considers only
the case where a process decides at line N5. Let r be the first round during which a process (say pi) decides
at line N5. We show that the estimate value estj of all the processes that terminate the round r are equal.
Hence, the processes that at line N5 of r decides the same value v, and the processes that progress to r + 1
have v as estimate value, which proves the agreement property.

As pi decides during r at line N5, the early termination predicate of lines N3-N4 is satisfied, i.e., r is
even (say r = 2k + 2), and pi has received exactly n − k EST(2k + 2,−, early) messages, and each of
these messages is such that early = true . It follows from the item (ii) of Lemma 9 that all the processes
pj that terminated the round 2k+1, have estj = min(EST [2k+ 1]) by the end of the round 2k+ 1, which
completes the proof of the lemma. 2Lemma 10

Lemma 11 Let f denote the actual number of process crashes. We have (i) each correct process decides,
and (ii) no process decides in more than min(2f + 2, 2t + 1) rounds.

Proof The proof considers each item separately.

• Proof of (i). If no process executes line N5, the proof of Lemma 2 applies, and all the correct
processes decide in 2t + 1 rounds. If a process executes line N5, the item (i) follows due to the
DECIDE() messages send by that process.

• Proof of (ii). If f = t, due to item (i) all processes decide and, as there are at most 2t + 1 rounds,
the item (ii) follows. So, let us assume f < t and a process (say pi) starts the round 2f + 3. We
show a contradiction. As it has not decided by round 2f , it follows from the early decision predicate
evaluated at the lines N3-N4 that:

– (reci[2] 6= n) ∨ (∃ j : recj [1] 6= n) (as pi does not decide during the round 2),
– (reci[4] 6= n− 1) ∨ (∃ j : recj[3] 6= n− 1) (as pi does not decide during the round 4), etc.,
– (reci[2f] 6= n− f)∨ (∃ j : recj [2f − 1] 6= n− f) (as pi does not decide during the round 2f).

It follows from these items (and the safety of the failure detector ψ) that n−f processes have crashed
by the end of the round 2f , from which we conclude that no more crash occurs during the round
2f + 1 and 2f + 2. During these two rounds, each of the n − f correct processes receives n − f
EST(2f +1,−,−) messages and n−f EST(2f +2,−, true) messages. The predicate of lines N3-N4
is then satisfied for each correct process, which proves the lemma.

2Lemma 11

Theorem 5 The algorithm described in Figure 8 solves the consensus problem in min(2f+2, 2t+1) rounds
in the AARSop

n,t[ψ] model (where f denotes the actual number of process crashes).

Proof The proof follows from the Lemmas 8, 10 and 11. 2Theorem 5

6 From consensus to k-set agreement

This section considers the k-set agreement problem in anonymous asynchronous crash-prone message pass-
ing systems.

PI n ˚ 1918

20 F. Bonnet & M. Raynal

The k-set agreement problem The k-set agreement problem has been introduced in [13] to study how
the number of choices (k) allowed to the processes is related to the maximum number of faulty processes
(t). It is defined by the same validity and termination properties as the consensus problem, and the following
agreement property: at most k different values can be decided (so, consensus is 1-set agreement). The k-set
agreement problem cannot be solved in non-anonymous asynchronous crash-prone systems as soon as k ≤ t
[9, 30, 42]. Differently, it can always be solved in round-based synchronous systems where

⌊

t
k

⌋

+ 1 is a
lower bound on the number of rounds [14].

6.1 Solving k-set agreement in AARS cl
n,t[ψ] with t ≤ n− k

The algorithm described in Figure 2, where 2t + 1 is replaced by 2
⌊

t
k

⌋

+ 1 solves the k-set agreement in
AARScl

n,t[ψ]. The proof of the validity and termination properties are the same as their consensus counter-
parts. So, we consider here only the proof of the agreement property. The assumption t ≤ n−k generalizes
the assumption t ≤ n− 1 associated with the consensus problem.

Lemma 12 Let t ≤ n−k. If at most k−1 processes crash during two consecutive rounds r and r+1, then
the set of the estimates of the processes that terminate the round r+ 1 contains at most k different values at
the end of r + 1.

Proof The proof is the proof of Lemma 14 where ` is replaced by 1. 2Lemma 12

Lemma 13 Let t ≤ n− k. At most k different values are decided (agreement).

Proof As previously, the proof is the proof of Lemma 15 where ` is replaced by 1. 2Lemma 13

Theorem 6 The algorithm described in Figure 2 (where (2t+ 1) is replaced by 2
⌊

t
k

⌋

+ 1) solves the k-set
agreement problem in 2

⌊

t
k

⌋

+ 1 rounds in the AARScl
n,t[ψ] model where t ≤ n− k.

Proof The proof follows from the lemmas 1, 2, and 13. 2Theorem 6

6.2 Solving the k-set agreement with weaker failure detectors

The failure detector class ψ` As, when k > 1, the k-set agreement problem is weaker than consensus, it
should be possible to use a failure detector weaker than ψ in order to solve it. So, let us consider the class
of failure detectors, denoted ψ`, 1 ≤ ` ≤ n, that is a simple generalization of ψ. It is defined as follows (the
notation is the same as in Section 2.2):

• Safety: ∀τ : aa`τi ≥ n− f τ − (`− 1).

• Liveness: ∃τ : ∀τ ′ ≥ τ : n− f − (`− 1) ≤ aa`τ
′

i ≤ n− f .

From this definition, we obtain a family of failure detector classes {ψ`}1≤`≤n. It is easy to see that ψ1

is ψ and ψ` is weaker than ψ`−1.

Irisa

The price of anonymity 21

A k-set algorithm for AARScl
n,t[ψ`] Interestingly, when the number of rounds 2t + 1 is replaced by

2b t
k−`+1

c + 1, the algorithm described in Figure 2 solves the k-set agreement problem in AARS cl
n,t[ψ`]

(assuming t < n− k+ ` and ` ≤ k). As we can see, the ψ-based consensus algorithm described in Figure 2
and its ψ-based k-set agreement variant (described in the previous section), are two particular instances
of the general ψ`-based algorithm. These instances consider ` = 1, i.e., the strongest class in the failure
detector family {ψ`}1≤`≤n.

As previously, the proof of the validity and termination properties are the same as their consensus coun-
terparts. So, we consider here only the proof of the agreement property (that has the same structure as in the
consensus case). Let us recall (Definition 1) that a processes terminates a round r if it proceeds to r + 1 or
decides if r is the last round it executes.

Lemma 14 Let t ≤ n− k and 1 ≤ ` ≤ k. If at most k − ` processes crash during two consecutive rounds
r and r + 1, then the set of the estimates of the processes that terminate the round r + 1 contains at most k
different values at the end of r + 1.

Proof Let r and r+1 be two consecutive rounds with at most k−` crashes (as ` ≤ k, we have k−` ≥ 0), and
Pr the set of processes that enter the round r (whatever the time they enter it). Let p be the first process that
terminates the round r+ 1 and τ the corresponding time. Finally, let Qr+1 be the subset of Pr that contains
the processes that have entered the round r + 1 at time τ , and considering a process pi that terminates the
round r + 1, let aa`(i, r + 1) be the number of round r + 1 messages that allow pi to terminate that round.

To terminate the round r+1, the process p has received (at the latest at time τ) aa`(i, r+1) round r+1
messages, from which we conclude that at least aa`(i, r + 1) processes has entered the round r + 1 at time
τ . Moreover, aa`(i, r + 1) ≥ |Pr| − (k − `) − (`− 1) = |Pr| − (k − 1),6 from which follows that at most
k − 1 processes have not yet entered the round r + 1 at time τ (those are the processes in Pr \Qr+1). The
reasoning is now made up of two steps.

1. During the round r, each process in Qr+1 has received between |Pr| − (k − 1) and |Pr| round r
messages in order to to enter the round r + 1. Consequently, these processes have at most k different
estimate values which are amongst the k smallest estimates of the processes in Pr.

2. The processes in Pr \Qr+1 eventually enter the round r + 1 (or crash before entering it). When they
enter the round r + 1, there may be additional crashes, and consequently these processes may enter
the round r + 1 with an estimate that does not belong to the k smallest estimates of the processes in
Pr . However, as t ≤ n−k, we have t+k ≤ n which means that there are at least k correct processes.

It follows that, in order to terminate the round r+ 1, each process q in Pr \Qr+1 (that does not crash
when it is in r or r + 1) receives at least k round r + 1 messages. As |Pr \Qr+1| ≤ k − 1, it follows
that q receives at least one round r + 1 message from a process in the set Qr+1. Consequently it
updates its estimate to one of the k smallest estimates of the processes in Pr . Hence, any process that
terminates the round r + 1 is such that its current estimate is one of the k smallest estimates of the
processes in Pr.

2Lemma 14

Lemma 15 Let t ≤ n− k and 1 ≤ ` ≤ k. At most different values are decided (agreement).

Proof The proof is nearly the same as its consensus counterpart. There are two cases.
6In the lower bound of aa`(i, r+1), the quantity (`−1) corresponds to the maximal mistake that the output aa`i of pi’s failure

detector can make (as ` ≥ 1, this quantity cannot be negative), while the quantity (k − `) corresponds to the maximal number of
crashes during the rounds r and r + 1 (by assumption k − ` ≥ 0).

PI n ˚ 1918

22 F. Bonnet & M. Raynal

• Case 1. In the sequence of 2bt/(k − ` + 1)c + 1 rounds, there are two consecutive rounds with at
most k − ` crashes. Let r and r + 1 be these two rounds, with r ≤ 2bt/(k − `+ 1)c. It follows from
Lemma 12 that all the processes that terminate the round r + 1 have at most k different estimates.
Hence, at most k different values can be decided at the end of the round 2bt/(k − `+ 1)c + 1.

• Case 2. In the sequence of 2bt/(k− `+1)c+1 rounds, there are no two consecutive rounds with less
than k − `+ 1 crashes. Let us observe that, in that case, the 2bt/(k − ` + 1)c. first rounds are such
that they suffer at least (k − `+ 1)bt/(k − `+ 1)c crashes. Hence, the last round can contain at most
t− (k − `+ 1)bt/(k − `+ 1)c crashes. As t− (k − `+ 1)bt/(k − `+ 1)c < (k − `+ 1), it follows
that at most k different estimates can be computed during the last round (since each process that enter
in the last round misses at most (k − `) messages due to crashes and at most (`− 1) messages due to
behavior of the failure detector), which completes the proof of the lemma.

2Lemma 15

Theorem 7 Let k ≤ t ≤ n − k and 1 ≤ ` ≤ k. The algorithm described in Figure 2,where (2t + 1) is

replaced by 2
⌊

t
k−`+1

⌋

+1, solves the k-set agreement problem in 2
⌊

t
k−`+1

⌋

+1 rounds in the AARScl
n,t[ψ`]

model.

Proof The proof follows from the lemmas 1, 2, and 15. 2Theorem 7

Discussion Let us consider the instance of the general ψ`-based algorithm where the number of rounds is
fixed to a predetermined value R (instead of 2b(t/k − `+ 1)c + 1.

• Then, that algorithm instance solves the k-set agreement problem where k is the smallest value such
that R ≥ 2bt/(k − `+ 1)c + 1.

• From a different point of view, the weakest failure detector class ψ` for which that instance can
solve the k-set agreement problem in R rounds is defined by the greatest value of ` such that R ≥
2bt/(k − `+ 1)c + 1 (if such a value does exist7).

This clearly shows how the algorithm captures and links its cost (measured by its time complexity R),
the power of the failure detector the system is equipped with (this power is defined by `, the greater `,
the weaker the power of the underlying failure detector), and the difficulty of the considered set agreement
problem (measured by the coordination degree k: k ′-set agreement is more difficult than k-set agreement if
k′ < k). Solving a more difficult problem requires either more rounds, or a more powerful failure detector
class than solving an easier problem. In the AARSn,t[ψ`] model, the three critical parameters R, k and `
are related by the simple formula R = 2b t

k−`+1
c + 1.

7 Conclusion

This paper has investigated the consensus problem in asynchronous systems where the processes are (1)
prone to crash and (2) anonymous. Due to the impossibility of solving consensus in presence of crashes
and asynchrony only, the anonymous system has to be enriched with a failure detector strong enough to
face these three adversaries (asynchrony, failures and anonymity). The proposed class of failure detectors
(denoted ψ) provides each process with an upper bound on the number of alive processes. (Such a failure

7Let us notice that there are cases where such an integer ` does not exist. As an example, let us take t = 3, k = 1 and R = 2.
It is easy to see that there is no positive value for ` such that R = 2 ≥ 2b 3

1−`+1
c + 1. This means that to solve consensus (k = 1)

in AARScl
n,t[ψ`], we need ` = 1 and this entails R = 2b 3

1
c+ 1 = 7 rounds.

Irisa

The price of anonymity 23

detector is the counterpart of a perfect failure detector in an asynchronous non-anonymous system). After
having shown that it is possible to solve consensus in such a system in 2t+1 rounds, the paper has presented
one of its main results, namely the proof that no ψ-based algorithm can solve consensus in less than 2t+ 1
rounds. An early-deciding consensus algorithm has then been presented in which the processes decide in at
most min(2f + 2, 2t + 1) rounds. This makes us inclined to think that, when comparing to asynchronous
non-anonymous system enriched with a perfect failure detector (in which case consensus can be solved in
min(t+ 1, f + 2) rounds), anonymity doubles the price. It is conjectured that min(2f + 2, 2t + 1) rounds
is the early deciding lower bound.

Then the paper has generalized the previous results to the k-set agreement problem. To that end, it
has considered a weakened family of failure detector classes, denoted {ψ`}1≤`≤k, and has shown that k-set
agreement can be solved in Rt,` = 2b t

k−`+1
c + 1 asynchronous rounds despite anonymity. As ψ1 is ψ, this

means that 2b t
k
c + 1 rounds are sufficient in systems equipped with ψ.

This work leaves open problems for future research. Among them there are the following ones.

• Design a simultaneous consensus algorithm in the AARS cl
n,t[ψ] model.

• Prove (or disprove) that min(2f + 2, 2t + 1) rounds is the lower bound for early decision in the
AARSop

n,t[ψ] model.

• Investigate the question of the weakest failure detector class for solving consensus despite asynchrony,
anonymity and failures. (An introductory view of this problem appears in Appendix B.

• Assuming k < t ≤ n − k, show (or disprove) that there is a ψ`-based k-set agreement algorithm in
the AARScl

n,t[ψ] model if and only if 1 ≤ ` ≤ k.

• Design an early deciding k-set agreement algorithm for the AARS op
n,t[ψ] model.

References

[1] Aguilera M.K. and Toueg S., A Simple Bivalency Proof that t-Resilient Consensus Requires t + 1 Rounds.
Information Processing Letters, 71:155-178, 1999.

[2] Angluin D., Local and Global Properties in Networks of Processes. Proc. 12th Symposium on Theory of Com-
puting (STOC’80), ACM Press, pp. 82-93, 1980.

[3] Angluin D., Aspnes J., Diamadi Z., Fischer M.J. and Peralta R., Computation in Networks of Passively Mobile
Finite-state Sensors. Distributed Computing, 18(4):235-253, 2006.

[4] Aspnes J., Fich Ellen F. and Ruppert E., Relationship between Broadcast and Shared Memory in Reliable Anony-
mous Distributed Systems. Distributed Computing, 18(3):209-219, 2006.

[5] Aspnes J., Wait-free Consensus with Infinite Arrivals. Proc. 34th Symposium on Theory of Computing
(STOC’02), ACM Press, pp. 524-533, 2002.

[6] Attiya H., Gorbach A. and Moran S., Computing in Totally Anonymous Asynchronous Shared Memory Systems.
Information and Computation, 173(2):162-183, 2002.

[7] Attiya H., Snir M. and Warmuth M.K., Computing on an Anonymous Ring. Journal of the ACM, 35(4):845-875,
1988.

[8] Attiya H. and Welch J., Distributed Computing, Fundamentals, Simulation and Advanced Topics (Second edi-
tion). Wiley Series on Parallel and Distributed Computing, 414 pages, 2004.

[9] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations.
Proc. 25th ACM Symposium on Theory of Computation (STOC’93), California (USA), pp. 91-100, 1993.

PI n ˚ 1918

24 F. Bonnet & M. Raynal

[10] Buhrman H., Panconesi A., Silvestri R. and Vityani P., On the Importance of Having an Identity or Is Consensus
Really Universal? Distributed Computing, 18(3):167-175, 2006.

[11] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[12] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685–722, 1996.

[13] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems.
Information and Computation, 105:132-158, 1993.

[14] Chaudhuri S., Herlihy M., Lynch N. and Tuttle M., Tight Bounds for k-Set Agreement. Journal of the ACM,
47(5):912-943, 2000.

[15] Chothia T. and Chatzikokolakis K., A Survey of Anonymous Peer-to-Peer File-Sharing. Proc. Satellite workshop
of the Int’l Conference on Embedded and Ubiquitous Systems (EUS’05), pp. 744-755, 2005.

[16] Delporte-Gallet C., Fauconnier H. and Guerraoui R., A Realistic Look at Failure Detectors. Proc. IEEE Int’l
Conference on Dependable Systems and Networks (DSN’02), IEEE Computer Society Press, pp. 345-352, 2002.

[17] Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of the ACM, 37(4):720-
741, April 1990.

[18] Durresi A., Paruchuri V., Durresi M. and Barolli L., A Hierarchical Anonymous Communication Protocol for
Sensor Networks. Proc. Int’l Conference on Embedded and Ubiquitous Systems (EUS’05), Springer verlag
LNCS #3824, pp. 1123-1132, 2005.

[19] Dwork C. and Moses Y., Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures.
Information and Computation, 88(2):156-186, 1990.

[20] Elrad T.E. and Francez N., Decomposition of Distributed Programs into Communication-Closed Layers. Science
of Computer Programming, 2(3):155-173, 1982.

[21] Fischer M.J., Lynch N.A., A Lower Bound on the Time to Assure Interactive Consistency. Information Process-
ing Letters, 14(4):183-186, 1982.

[22] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2):374-382, 1985.

[23] Gafni E., Round-by-round Fault Detectors: Unifying Synchrony and Asynchrony. Proc. 17th ACM Symposium
on Principles of Distributed Computing (PODC’00), ACM Press, pp. 143-152, 1998.

[24] Guerraoui R. and Raynal M., The Alpha of indulgent consensus. The Computer Journal, 50(1):53-67, 2007.

[25] Guerraoui R. and Ruppert E., Anonymous and Fault-tolerant Shared Memory Computing. Distributed Comput-
ing, 20(3):165-177, 2007.

[26] Halpern J.Y. and Moses Y., Knowledge and Common Knowledge in a Distributed Environment. Journal of the
ACM, 37(3):549-587, 1990.

[27] Hélary J.-M., Hurfin M., Mostefaoui A., Raynal M. and Tronel F. Computing Global Functions in Asynchronous
Distributed Systems with Perfect Failure Detectors. IEEE Transactions on Parallel and Distributed Systems,
11(9):897-909, 2000.

[28] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149, 1991.

Irisa

The price of anonymity 25

[29] Herlihy M.P., Luchangco V. and Moir M., Obstruction-Free Synchronization: Double-ended Queues as an Ex-
ample. Proc. 23th Int’l IEEE Conference on Distributed Computing Systems (ICDCS’03), pp. 522-529, 2003.

[30] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Journal of the ACM,
46(6):858-923, 1999.

[31] Keidar I. and Rajsbaum S., A Simple Proof of the Uniform Consensus Synchronous Lower Bound. Information
Processing Letters, 85:47-52, 2003.

[32] Lakshman T.V. and Wei V.K., Distributed Computing on Regular Networks with Anonymous Nodes. IEEE
Transactions on Computers, 43(2):211-218, 1994.

[33] Loui M.C., Abu-Amara H., Memory Requirements for Agreement Among Unreliable Asynchronous Processes.
Advances in Computing research, JAI Press, 4:163-183, 1987.

[34] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[35] Moses Y. and Raynal M., No Double Discount: Condition-Based Simultaneity Yields Limited Gain. Proc. 22th
Int’l Symposium on Distributed Computing (DISC’08), Springer-Verlag LNCS #5218, pp. 423-437, 2008.

[36] Moses Y. and Tuttle M.R., Programming Simultaneous Actions Using Common Knowledge. Algorithmica,
3:121-169, 1988.

[37] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C., On the Computability Power and the Robustness of Set
Agreement-oriented Failure Detector Classes. Distributed Computing, 21(3):201-222, 2008.

[38] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C., The Combined Power of Conditions and Information
on Failures to Solve Asynchronous Set Agreement. To appear in SIAM Journal of Computing, 2009.

[39] Mostefaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters, 11(1):95-107, 2001.

[40] Panconesi A., Papatriantafilou M., Tsigas Ph. and Vityani P., Randomized Naming Using Wait-free Shared
Variables. Distributed Computing, 11(3):113-124, 1998.

[41] Raynal M., Consensus in Synchronous Systems: a Concise Guided Tour. Proc. 9th IEEE Pacific Rim Int’l
Symposium on Dependable Computing (PRDC’02), IEEE Computer Press, pp. 221-228, 2002.

[42] Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge.
SIAM Journal on Computing, 29(5):1449-1483, 2000.

[43] Yamashita M. and Kameda T., Computing on Anonymous Networks: Part I -Characterizing the Solvable Cases.
IEEE Transactions on Parallel Distributed Systems, 7(1):69-89, 1996.

[44] Yamashita M. and Kameda T., Computing on Anonymous Networks: Part II -Decision and Membership Prob-
lems. IEEE Transactions on Parallel Distributed Systems, 7(1):90-96, 1996.

A On the formal definition of ψ

This section presents a formal definition of the failure detector class ψ that fits into the formal failure detector
framework defined in [11].

PI n ˚ 1918

26 F. Bonnet & M. Raynal

On the framework The definitions that follows assume the following framework.
• As in [11], the framework provides us with a discrete global clock whose domain is the set N of

positive integers. (The notation τ is used to denote a time value.) As indicated in [11], this time
notion can be used to reason on the behavior of failure detector-based algorithms, but remains always
unknown by the processes.

• The framework provides us with a set of indexes I = {1, . . . , n} such that each process has a unique
index in I (an index can be interpreted as a process identity/name). This allows us to use the notation
pi to denote a given process and distinguish it from another process pj . In [11], these indexes are
known by the processes that can use them (e.g., to select a rotating coordinator). Differently, in
the anonymous model defined here, the processes do not known the existence of the indexes, and
consequently -similarly to the global clock- these indexes cannot be used in the algorithms. This
constitutes a fundamental difference between anonymous and non-anonymous systems.

Chandra and Toueg’s definitions The following definitions are from [11].
• A failure pattern is a function F : N → 2I where F (τ) denotes the set of processes that have crashed

through time τ . As no crashed process recovers, we have F (τ) ⊆ F (τ + 1).

Given a run, let Faulty = ∪τ≥0F (τ) (the indexes of the processes that crash during that run), and
Correct = I \ Faulty (the indexes of the processes that do not crash during that run).

• A failure detector history with range R describes the behavior of a failure detector during a run. It is
a function H : I ×N → R where H(i, τ) describes the value of the failure detector at pi at time τ .
That value belongs to R.

• A failure detector D with range R is a function that maps each failure pattern F to a set of failure
detector histories with range R: D(F) is the set of failure detector histories that D can exhibit when
the failure pattern is F .

The failure detector class ψ The range R of the class ψ is the set of integers {1, . . . , n}. For every failure
pattern F we have:

• Safety. ∀τ : ∀i /∈ F (τ) : H(i, τ) ≥ n− |F (τ)|.

• Liveness. ∃τ : ∀τ ′ ≥ τ : ∀i /∈ F (τ ′) : H(i, τ ′) = n− |Faulty|.

B On the hierarchy of failure detectors to solve consensus despite anonymity

A hierarchy of failure detector classes in non-anonymous systems In non-anonymous asynchronous
systems, the failure detector classes denoted P , 3P and Ω (defined in [11, 12]) define a strict hierarchy,
namely we have P ⊂ 3P ⊂ Ω. These three failure detector classes output process names. P is the class of
perfect failure detectors (they never suspect a process while it is alive, and eventually suspect all the crashed
processes). 3P is the class of eventually perfect failure detectors (they is a finite time after which they
behave as a perfect failure detector). Ω is the class of eventual leader failure detectors. It includes all the
failure detectors that provide each process pi with a local variable leaderi, that pi can only read. At any
time, each local variable leaderi contains a process name, and there is a finite time after which the local
variables leadersi of all the correct processes contain forever the same process name that is the name of
a correct process (before that time they can behave arbitrarily). The fact that P ⊂ 3P follows from their
definition. the fact that 3P ⊂ Ω is a consequence of transformations given in several papers (e.g., [12]).

Moreover, as far as the consensus problem is concerned, it is shown in [12] that Ω is the weakest class of
failure detectors that allows solving consensus despite asynchrony and process crashes in non-anonymous
systems where t < n/2.

Irisa

The price of anonymity 27

Is there a hierarchy in anonymous systems? As indicated in the introduction of the paper, if we give
distinct names to the processes of an initially anonymous system, the failure detector classes P and ψ are
equivalent [37, 38], which means that, in a non-anonymous asynchronous system, given a failure detector
of any of the classes P and ψ, it is possible to construct a failure detector of the other class.

It is easy to define a class of anonymous eventual leader failure detectors that is the counterpart of Ω for
anonymous systems. Let ΩA denote that class. It is defined as follows. Each process pi is provided with
a boolean leaderi (that pi can only read) such that, after some finite time, the boolean of a correct process
remains forever true (this process is not known in advance and can never be explicitly known) while the
boolean of all the other processes remain forever false (during an arbitrary long period of time, the values
of the boolean local variables can be arbitrary). Such an anonymous “view” of the Ω class is used in several
papers (e.g., [24]). It appears that a slight modification of the Ω-based consensus algorithm described in
[39] works for anonymous systems where n and t are known, and Ω is replaced by ΩA.

The previous observations set two questions that state open problems (for future research).

• As (1) ψ and ΩA are the anonymous counterparts of P and Ω, respectively, and (2) Ω is weaker than P ,
a natural question is the following: Is there a relation linking ψ and ΩA? More precisely, is ψ stronger
than ΩA (in an anonymous system)? Up to now, we do not know if ψ and ΩA can be compared.

• Another important question is related to the lower bound on information on failures, more precisely,
which is the (or is there a) weakest failure detector class for solving the consensus problem in an
anonymous system?

C An impossibility in the model AARS cl
n,t[ψ]

This appendix shows that, in the round communication-closed model AARS cl
n,t[ψ], there is no early decid-

ing consensus algorithm in which the processes decide and halt in af + b rounds, where a and b are any
predefined constant values.

Lemma 16 Let 1 ≤ t < n− 1. There is no algorithm that allows the processes to decide and halt in t+ 1
rounds when f = 0 (and 2t+ 1 rounds otherwise) in the model AARS cl

n,t[ψ].

Proof The proof is by contradiction. Let us suppose that there is an algorithm A that allows the processes
to decide and halt in t+ 1 rounds when there is no crash (f = 0). Starting from a failure-free synchronous
run R0, we build successive runs R1, . . . , Rt in which the processes must decide and halt as in R0. The
contradiction is obtained in the last run Rt where processes must decide a value they have never received.

Run R0 Let us consider the runs of A where each process pi proposes the value i (1 ≤ i ≤ n). Let R0

be a crash-free run of A whose behavior is exactly the same as the one in a pure synchronous system. This
run is represented on Figure 9 (where the value proposed by each process appears at the left of its time
line, and the integer -here n- at the end of a round indicates how many messages have been received by the
corresponding processes by the end of that round). Let us suppose that, without loss of generality, all the
processes decide the value 1 after t+ 1 rounds (indicated by D(1) in the figure).

From R0 to R1 Let R′
0 be a run identical to R0 up to round t, and where during the round t + 1, the t

processes p1, . . . , pt crash after having sent their round t + 1 message (Figure 10(a)). Moreover, in R ′
0,

the processes pt+1, . . . pn−1 (8) receive n round t + 1 messages. As they cannot distinguish R′
0 from R0,

they decide the same value (i.e., 1) in both runs. In R′
0, differently from the other processes, the process pn

8Actually at least one process in this set is sufficient.

PI n ˚ 1918

28 F. Bonnet & M. Raynal

r = 1 r = 2 r = t
1

2

t

t+ 1

n− 1

n

r = t+ 1
D(1)

D(1)

D(1)

D(1)

D(1)

D(1)

n

n

n

n

n n n n n

nnnn

n n n n

nn nn

n n n n

n n n n n

Figure 9: Run R0

receives only n− t round t+1 messages (let us notice that these n− t messages may come from any subset
of processes that start round t + 1, including the processes that crash during that round). As indicated in
Figure 10(a), the process pn decides 1 as the other correct processes.

Let R′′
0 (Figure 10(b)) a run identical to R′

0 except that all the processes pt+1, . . . pn behave as pn, i.e.,
each of them receives n− t round t+ 1 messages from any subset of processes that start round t+ 1. As pn

cannot distinguish R′
0 and R′′

0 , it follows that the correct processes pt+1, . . . pn decide 1 in R′′
0 .

n− 1

t+ 1

1

2

t

n

D(1)

D(1)

D(1)

n

n

n

n

n

n

n

n

n

n

n

n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n− t

r = t+ 1r = tr = 2r = 1

(a) Run R′

0

n

t+ 1

n− 1

t

2

1

r = 1 r = 2 r = t r = t+ 1

n n n n

nnnn

n

n n

n n n

nn

n

n n

n n

n n

n

D(1)

D(1)

D(1)

n− t

n− t

n− t

(b) Run R′′

0

Figure 10: From the run R0 to the run R′′
0

Let us now consider the run R′′′
0 (Figure 11(a)) that is identical to R′′

0 up to round t − 1. Then, the t
processes p1, . . . , pt receives n round t messages, proceed to the round t + 1 and crash. The processes
pt+1, . . . , pn−1 receive n round t messages (in round t), and any subset of n − t round t + 1 messages (in
round t + 1) from the processes p1, . . . , pn−1 (all but pn). Differently, the correct process pn is informed

Irisa

The price of anonymity 29

(due to its failure detector) of the t crashes (of the processes p1, . . . , pt) while it is still in round t, and
consequently receives only n− t round tmessages (in round t) before proceeding to the round t+1 , during
which it receives the same n − t round t + 1 messages as in R′′

0 . Since no correct process (but pn) can
distinguish R′′

0 and R′′′
0 and as there are at least two correct processes (because t < n − 1), all the correct

processes have to decide 1. Hence, pn decides 1.
Let us now define the run R1 that is identical to R′′

0 up to round t− 1, and where during the rounds t and
t + 1, the processes pt+1, . . . pn behave as pn behaves in R′′′

0 (each of them receives a set of n− t round t
messages during the round r and a set of n− t round t+1 messages during the round t+1. It follows from
the previous discussion that all the correct processes decide 1 in R1.

n− 1

n

t+ 1

t

2

1
r = 1 r = 2 r = t r = t+ 1

n

n

n

n

n

n

n

n

n

n

n

n n

n

n

n

n

n

n

n

n

n

n

n− t

n− t

n− tn− t

D(1)

D(1)

D(1)

(a) Run R′′′

0

nn

1

2

t

t+ 1

n− 1

n

D(1)

D(1)

D(1)
n− t n− t

n− t n− t

n− tn− tn

n

nnn

n n

r = 1 r = 2 r = t r = t+ 1

nnnn

n

n n

n n

n

n

n

(b) Run R1

Figure 11: From the run R0 to the run R1

From the run Rk−1 to the run Rk We now define the run Rk from the run Rk−1 for 1 ≤ k ≤ t. Rk is
defined as follows.

• ∀x such that t − k + 1 ≤ x ≤ t, the process px crashes in the round x + 1, and ∀x such that
1 ≤ x ≤ t− k, the process px crashes in round t− k + 2. The other processes do not crash.

• All the processes terminate the rounds from 1 to t−k by receiving nmessages in each of these rounds.
In others words, up to the round t− k, Rk is identical to R0 (which is crash-free).

• During the round t − k + 1, the processes p1, . . . , pt−k+1 receive n messages and then crash while
they are in the round t−k+2. Moreover, during the round t−k+1, each of the remaining processes
(i.e., each of pt−k+2, . . . , pn) receives n− (t− k + 1) round t− k + 1 messages.

• In any round r such that t− k + 2 ≤ r ≤ t, the process pr (1) receives n− r + 1 round r messages;
(2) enters the round r + 1 (let us observe that this is possible because, at that time, there are exactly
n− r + 1 non-crashed processes); (3) and then crashes while executing the round r + 1.

Moreover, during that round r, each of the remaining processes (i.e., each of pr+1, . . . , pn) is in-
formed of that crash by its failure detector, and enters the round r + 1 by receiving only n− r round
r messages.

PI n ˚ 1918

30 F. Bonnet & M. Raynal

• In the last round t + 1, the process pt crashes and this crash allows the processes pt+1, . . . , pn to
receive only n− t round t messages in order to enter the round t+ 1. Each of these n− t) processes
receives again n− t round t+ 1 messages, and decides.

n− (t− k) − 2

End of round t− 1

n− t + 1

n− t + 1

n− t + 1

n− (t− k) − 1

n− (t− k) − 1

n− (t− k) − 1

n− (t− k) − 1

n− (t− k) − 1

n− (t− k) − 2

n− (t− k) − 2

n− (t− k) − 2

n− (t− k) − 2

n− (t− k) − 3

n− (t− k) − 3

n− (t− k) − 3

n− t + 1

n

1

t− k + 1

t− k + 2

t− k + 3

t

t+ 1

n− (t− k) − 1

n n nn

n

n

n

n

n n nn

n n n n

nn n

n

n

nnn

n n

n

n− t n− t

n− t n− t

End of round t− k

Figure 12: Run Rk

The same pattern as the one employed to go fromR0 toR1, allows to go fromRk−1 toRk, for 1 ≤ k ≤ t.
Moreover, for any such k, all the correct decide at the end of the round t + 1 of Rk the same value as the
one they decide in Rk−1.

Obtaining the contradiction In the run Rt, the correct processes must decide as in R0, i.e., they must
decide value 1. However, there exists a particular runR′

t, where the set of messages received by all processes
does not include the value proposed by p1. More precisely, in the first round of R′

t, all the processes but
p1 receive n − 1 messages (one from each other but p1). In the second round of R′

t, all the processes but
p1 receive n − 1 messages (one from each other but p1), and p1 crashes during that round. It is clear that
no process will ever know the value proposed by p1, and consequently no correct process can decide the
value 1 proposed by p1 (recall that only pi proposes the value i). As, due its very construction, R′

t is Rt, the
contradiction follows. 2Lemma 16

Theorem 8 There is no algorithm in the model AARS cl
n,t[ψ] where the processes decide and halt in at most

af + b rounds where a and b are predefined constant values.

Proof The proof follows from Lemma 16 that has shown that t + 1 rounds are necessary when f = 0.
2Theorem 8

Irisa

