C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra, Exact geometric computation made easy, Proc. 15th ACM Symp. Comp. Geom, pp.341-450, 1999.
DOI : 10.1145/304893.304988

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra, A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals, Algorithmica, vol.27, issue.1, pp.87-99, 2000.
DOI : 10.1007/s004530010005

URL : http://hdl.handle.net/11858/00-001M-0000-000F-3338-F

C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt, A separation bound for real algebraic expressions, In Lecture Notes in Computer Science, pp.254-265, 2001.

L. Homepage, Library of Efficient Data Structures and Algorithms (LEDA) Project. From the Max Planck Institute of Computer Science. See URL http, 1998.

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap, A Core library for robust numerical and geometric libraries, 15th ACM Symp, pp.351-359, 1999.

C. Li, Exact Geometric Computation: Theory and Applications, 2001.

C. Li and C. Yap, A new constructive root bound for algebraic expressions, Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pp.496-505, 2001.

M. Marden, The Geometry of Zeros of a Polynomial in a Complex Variable, Math. Surveys. American Math. Soc, 1949.

M. Mignotte, Identification of algebraic numbers, Journal of Algorithms, vol.3, issue.3, pp.197-204, 1982.
DOI : 10.1016/0196-6774(82)90019-0

G. Rota, Finite Operator Calculus, 1975.

H. Sekigawa, Using interval computation with the Mahler measure for zero determination of algebraic numbers, Josai Information Sciences Researches, vol.9, issue.1, 1998.

C. Yap, A new number core for robust numerical and geometric libraries, 3rd CGC Workshop on Geometric Computing, 1998.

C. K. Yap, Fundamental Problems in Algorithmic Algebra, 2000.

C. K. Yap and T. Dubé, THE EXACT COMPUTATION PARADIGM, Computing in Euclidean Geometry, pp.452-486, 1995.
DOI : 10.1142/9789812831699_0011