
HAL Id: inria-00349031
https://inria.hal.science/inria-00349031v1
Submitted on 22 Mar 2009 (v1), last revised 31 Mar 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Termination of Priority Rewriting - Extended version
Isabelle Gnaedig

To cite this version:
Isabelle Gnaedig. Termination of Priority Rewriting - Extended version. [Research Report] 2008.
�inria-00349031v1�

https://inria.hal.science/inria-00349031v1
https://hal.archives-ouvertes.fr

Termination of priority rewriting

Isabelle GNAEDIG

LORIA-INRIA
BP 239 F-54506 Vandœuvre-lès-Nancy Cedex

Phone: + 33 3 54 95 84 21
Fax: + 33 3 54 95 84 01

e-mail: Isabelle.Gnaedig@loria.fr

Abstract. Introducing priorities on rules increases the expressive power of
rewriting and helps to limit computations. Priority rewriting is used as a com-
putation model for the functional paradigm. Termination of priority rewriting
then warrants that programs give a result. We describe in this paper an induc-
tive proof method for termination of priority rewriting, lying on an inductive
mechanism on the termination property. It works by generating proof trees,
using abstraction and narrowing. As it specifically handles priorities on the
rules, our technique allows proving termination of rewrite systems that would
diverge without priorities.

1 Introduction

In [4, 3], priority rewriting systems (PRS’s in short) have been introduced. A PRS is
a rewrite system (RS in short) with a partial ordering on rules, determining a priority
between some of them. Considering priorities on the rewrite rules to be used can be
very useful for an implementation purpose to reduce the indeterminism of computa-
tions, or to enable divergent system to terminate, and for a semantical purpose, to
increase the expressive power of rewriting. Priority rewriting is used as a computation
model for functional programming [12], and is underlying in the functional strategy,
used for example in Lazy ML [1], Clean [5], or Haskell [9].

But priority rewriting is delicate to handle. First, the priority rewriting relation is
not always decidable, because a term rewrites with a given rule only if in the redex,
there is no reduction leading to another redex, reducible with a rule of higher priority.

A way to overcome the undecidability is to force evaluation of the terms in reducing
subterms to strong head normal form via some strategy [12]. But normalization can
lead to non-termination. In [11], a decidable innermost definition of rewriting using
PRS’s has been proposed.

Second, the semantics of a PRS is not always clearly defined. In [4], a semantics
is proposed, lying on the notion of unique sound an complete set of closed instances
of the rules of the PRS, and it is showed that bounded -a weaker property than
termination- PRS’s have a semantics. In [15], a fixed point based technique is pro-
posed to compute the semantics of a PRS. It is also proved that for a bounded PRS
with finitely many rules, the set of successors of any term is finite and computable.
In [11], a logical semantics of PRS’s, more closed to the notion of equational logic is
given. A particular class of PRS’s is proved sound and complete with respect to the
initial algebra, provided every priority rewriting sequence from every ground term
terminates.

Then the termination problem of the priority rewriting relation naturally arises,
either to warrant that it has a semantics, or to ensure that rewriting computations
always give a result. Surprisingly, it seems not to have been much investigated until
now.

To our knowledge, it has only been specifically addressed in [11], where the use of
reduction orderings is extended with an instantiation condition on rules linked with
the priority order. Let us cite also [13], discussing a normalizing strategy of PRSs, i.e
a strategy giving only finite derivations for terms having a normal form with usual
rewriting.

Our purpose here is to consider termination of priority rewriting from an opera-
tional point of view, with the concern of warrantying a result for every computation.
So it seems us interesting to focus on the innermost priority rewriting of [11], be-
cause it is decidable, easy to manipulate, and the innermost strategy is often used in
programming contexts where priorities on rules are considered.

Obviously, a PRS is terminating if the underlying RS is. So usual rewriting termi-
nation proof techniques can be used for priority rewriting. Here, we propose to be finer
in considering non (innermost) terminating RS’s, that precisely become terminating
using priorities on rules.

We use an inductive method, whose principle has already been applied for proving
termination of rewriting (without priorities) under strategies [8]. The idea is to prove
on the ground term algebra that every derivation starting from any term terminates,
supposing that it is true for terms smaller than the starting terms for an induction
ordering.

The background is given in Section 2. In Section 3, we present the inductive proof
principle of our approach. Section 4 develops the basic concepts of the inductive proof
mechanism based on abstraction and narrowing, and the involved constraints. Sec-
tion 5 presents the proof procedure and states the general theorem with its conditions
of application. We conclude in Section 6.

2 The background

We assume that the reader is familiar with the basic definitions and notations of term
rewriting given for instance in [2, 6, 14]. T (F ,X) is the set of terms built from a given
finite set F of function symbols f having arity n ∈ N, and a set X of variables denoted
x, y T (F) is the set of ground terms (without variables). The terms reduced to a
symbol of arity 0 are called constants. Positions in a term are represented as sequences
of integers. The empty sequence ǫ denotes the top position. Let p and p′ be two
positions. The position p′ is said to be (a strict) suffix of p if p′ = pλ, where λ is a
(non-empty) sequence of integers. For a position p of a term t, we note t|p the subterm
of t at position p, and t[s]p the term obtained in replacing by s the subterm at position
p in t.

A substitution is an assignment from X to T (F ,X), written σ = (x = t, . . . , y =
u). It uniquely extends to an endomorphism of T (F ,X). The result of applying σ

to a term t ∈ T (F ,X) is written σ(t) or σt. The domain of σ, denoted Dom(σ)
is the finite subset of X such that σx 6= x. The range of σ, denoted Ran(σ), is
defined by Ran(σ) =

⋃

x∈Dom(σ) V ar(σx). An instantiation or ground substitution is

an assignment from X to T (F). Id denotes the identity substitution. The composition
of substitutions σ1 followed by σ2 is denoted σ2σ1. Given a subset X1 of X , we write
σX1

for the restriction of σ to the variables of X1, i.e. the substitution such that
Dom(σX1

) ⊆ X1 and ∀x ∈ Dom(σX1
) : σX1

x = σx.

A set R of rewrite rules or rewrite system on T (F ,X) is a set of pairs of terms
of T (F ,X), denoted l → r, such that l 6∈ X and V ar(r) ⊆ V ar(l). Given a rewrite
system R, a function symbol in F is called a constructor iff it does not occur in R
at the top position of a left-hand side of rule, and is called a defined function symbol
otherwise. The set of defined function symbols is denoted DR (R is omitted when

2

there is no ambiguity). In this paper, we only consider finite sets of function symbols
and of rewrite rules.

The rewriting relation induced by R is denoted by →R (→ if there is no ambiguity
on R), and defined by s → t iff there is a substitution σ and a position p in s such that
s|p = σl for some rule l → r of R, and t = s[σr]p. This is written s →R

p,l→r,σ t where
p, l → r, σ or R may be omitted; s|p is called a redex. The reflexive transitive closure

of the rewriting relation induced by R is denoted by
∗
→

R
. The innermost rewriting

relation consists of always rewriting at the lowest possible positions.
Let R be a rewrite system on T (F ,X). A term t is narrowed into t′, at the non-

variable position p, using the rewrite rule l → r of R and the substitution σ, when σ

is a most general unifier of t|p and l, and t′ = σ(t[r]p). This is denoted t R
p,l→r,σ t′

where p, l → r, σ or R may be omitted. It is always assumed that there is no variable
in common between the rule and the term, i.e. that V ar(l) ∩ V ar(t) = ∅.

An ordering ≻ on T (F ,X) is said to be noetherian iff there is no infinitely decreas-
ing chain for this ordering. It is monotone iff for any pair of terms t, t′ of T (F ,X),
for any context f(.), t ≻ t′ implies f(. . . t . . .) ≻ f(. . . t′ . . .). It has the subterm
property iff for any t of T (F ,X), f(. . . t . . .) ≻ t.

For F and X finite, if ≻ is monotone and has the subterm property, then it is
noetherian [10]. If, in addition, ≻ is stable under substitution (for any substitution
σ, any pair of terms t, t′ ∈ T (F ,X), t ≻ t′ implies σt ≻ σt′), then it is called a
simplification ordering.

A priority rewrite system (PRS in short) is a pair (R, >) of an underlying rewrite
system R and a partial ordering > on the rules of R. A rule r1 has a higher priority
than a rule r2 iff r1 > r2, which is written ↓r1

r2
.

Definition 1. [11] Let R be a PRS on T (F ,X). A term s is IP -reducible and (IP -)
rewrites to t at position p with the rule l → r, and the substitution σ which is written
s →IP

p,l→r,σ t iff:

– s →p,l→r,σ t

– no proper subterm of the redex s|p is IP -reducible
– s|p is not IP -reducible by any rule in R of higher priority than l → r.

Example 1. With the rewrite system

f(g(x)) → b (1)






y

g(a) → c (2)
g(a) → d (3)

on the term f(g(a)), Rule (1) should apply, but this would not be an innermost
rewriting step. So Rule (2) applies, but Rule (3) does not, because (2) > (3).

A RS R IP -terminates if and only if every IP -derivation of the rewriting relation

induced by R is finite. If t
∗
→

IP
t′ with t′ IP -irreducible, then t′ is called a(n) (IP -)

normal form of t and denoted by t↓. Note that given t, t↓ may be not unique.

3 Inductively proving innermost termination of priority

rewriting

We prove termination of IP -rewriting by induction on the ground terms. Working on
ground terms is not a restriction since the algebraic semantics of rule-based languages
is often initial. Moreover, in [11], to warrant stability by substitution of the innermost
rewriting relation, the rules without highest priority only can reduce ground terms.

3

For proving that a priority rewrite system on T (F) IP -terminates, we reason with
a local notion of termination on terms: a term t of T (F) is said to be IP -terminating
for a PRS R if every IP -rewriting chain (or derivation) starting from t is finite.

For proving that a term t of T (F) is IP -terminating, we proceed by induction on
T (F) with a noetherian ordering ≻, assuming the property for every t′ such that t ≻ t′.
To warrant non emptiness of T (F), and a basis for the induction, we assume that F
contains at least one constructor constant. The main intuition is to observe rewriting
derivations starting from a ground term t ∈ T (F) which is any instance of a pattern
g(x1, . . . , xm) ∈ T (F ,X), for some defined function symbol g ∈ D, and variables
x1, . . . , xm. Proving the property of IP -termination on ground terms amounts to
proving that every ground instance of the patterns g(x1, . . . , xm) is terminating.

Rewriting derivations are simulated, using a lifting mechanism, by a proof tree
developed from g(x1, . . . , xm) on T (F ,X), for every g ∈ D, by alternatively using nar-
rowing and an abstraction mechanism. Narrowing schematizes the rewriting possibil-
ities of terms, abstraction simulates the reduction of subterms in the derivations until
these subterms become normal forms. It expresses the application of the induction
hypothesis on these subterms, for which, as they are supposed to be IP -terminating,
a normal form exists.

The schematization of ground rewriting derivations is achieved through constraints.
The nodes of the developed proof trees are composed of a current term of T (F ,X), and
a set of ground substitutions represented by a constraint progressively built along the
successive abstraction and narrowing steps. Each node in an abstract tree schematizes
the set of ground instances of the current term, which are solutions of the constraint.

The constraint is, in fact, composed of two kinds of formulas: ordering constraints,
set to warrant the validity of the inductive steps, and abstraction constraints combined
to narrowing substitutions, which effectively define the relevant sets of ground terms.

For a term t of T (F ,X) occurring in a proof tree issued from a reference term
tref = g(x1, . . . , xm),

– first, some subterms θt|j of θt are supposed to be IP -terminating for every θ

solution of the constraint associated to t, by the induction hypothesis, if θtref ≻
θt|j for the induction ordering ≻. So the t|j are replaced in t by abstraction
variables Xj representing respectively any of their normal forms. Reasoning by
induction allows us to only suppose the existence of the normal forms without
explicitly computing them. If the ground instances of the resulting term are IP -
terminating (either if the induction hypothesis can be applied to them, or if they
can be proved IP -terminating by other means, which we will present later), then
the ground instances of the initial term are IP -terminating. Otherwise,

– the resulting term u = t[Xj]{i1,...,ip} (where i1, . . . , ip are the abstraction positions
in t) is narrowed in all possible ways into terms v, with an appropriate narrowing
relation corresponding to IP -rewriting u according to the possible instances of
the Xj .

Then IP -termination of the ground instances of t is reduced to IP -termination of
the ground instances of the terms v. Now, if θtref ≻ θv for every ground substitution
θ that is a solution of the constraint associated to v, by the induction hypothesis, θv

is supposed to be IP -terminating. Otherwise, the process is iterated on v, until we
get a term t′ such that either θtref ≻ θt′, or θt′ can be proved IP -terminating.

This technique was inspired from the one we proposed for proving the innermost
termination of classical rewrite systems in [8]. We now detail the concepts needed to
formalize and automate it.

4

4 Abstraction, narrowing, constraints

The induction ordering is constrained along the proof by inequalities between terms
that must be comparable, each time the induction hypothesis is used in the abstraction
mechanism.

This ordering is not defined a priori, but just has to verify inequalities of the
form t > u1, . . . , um, accumulated along the proof, and which are called ordering
constraints. Thus, for establishing the inductive termination proof, it is sufficient to
decide whether ordering constraints are satisfiable.

Definition 2 (ordering constraint). An ordering constraint is a pair of terms of
T (F ,X) noted (t > t′). It is said to be satisfiable if there is an ordering ≻, such that
for every instantiation θ whose domain contains Var(t) ∪ Var(t′), we have θt ≻ θt′.
We say that ≻ satisfies (t > t′).

A conjunction C of ordering constraints is satisfiable if there is an ordering satis-
fying all conjuncts. The empty conjunction, always satisfied, is denoted by ⊤.

Satisfiability of a constraint conjunction C of this form is undecidable. But a
sufficient condition for an ordering ≻P on T (F ,X) to satisfy C is that t ≻P t′ for
every constraint t > t′ of C, and ≻P is stable under substitution.

Simplification orderings fulfill such a condition. So, in practice, it is sufficient to
find a simplification ordering ≻P such that t ≻P t′ for every constraint t > t′ of C.

The ordering ≻P , defined on T (F ,X), can then be seen as an extension of the
induction ordering ≻ on T (F). For convenience sake, ≻P will also be written ≻.

Solving ordering constraints in finding simplification orderings is a well-known
problem. The simplest way and an automatable way to proceed is to test simple
existing orderings like the subterm ordering, the Recursive Path Ordering, or the
Lexicographic Path Ordering. This is often sufficient for the constraints considered
here: thanks to the power of induction, they are often simpler than for termination
methods directly using ordering for orienting rewrite rules.

If these simple orderings are not powerful enough, automatic solvers like Cime 1

can provide adequate polynomial orderings.

4.1 Abstraction

Let us define the abstraction variables more formally.

Definition 3. Let N be a set of variables disjoint from X . Symbols of N are called
abstraction variables. Substitutions and instantiations are extended to T (F ,X ∪N)
in the following way: for any substitution σ (resp. instantiation θ) such that Dom(σ)
(resp. Dom(θ)) contains a variable X ∈ N , σX (resp. θX) is in IP -normal form.

Definition 4 (term abstraction). The term t[t|j]j∈{i1,...,ip} is said to be abstracted
into the term u (called abstraction of t) at positions {i1, . . . , ip} iff u = t[Xj]j∈{i1,...,ip},
where the Xj , j ∈ {i1, . . . , ip} are fresh distinct abstraction variables.

IP -termination on T (F) is in fact proved by reasoning on terms with abstraction
variables, i.e. on terms of T (F ,X ∪ N). Ordering constraints are extended to pairs of
terms of T (F ,X ∪N). When subterms t|j are abstracted by Xj , we state constraints
on abstraction variables, called abstraction constraints to express that their instances
can only be normal forms of the corresponding instances of t|j . Initially, they are of
the form t↓ = X where t ∈ T (F ,X ∪N), and X ∈ N , but we will see later how they
are combined with the substitutions used for the narrowing process.

1 Available at http://cime.lri.fr/

5

4.2 Narrowing

After abstracting the current term t into t[Xj]j∈{i1,...,ip}, we test whether the possible
ground instances of t[Xj]j∈{i1, ...,ip} are reducible, according to the possible values
of the instances of the Xj . This is achieved by innermost narrowing t[Xj]j∈{i1,...,ip},
with the priority rewrite system.

In a first time, to schematize innermost rewriting on ground terms, we need to
refine the usual notion of narrowing. In fact, with the usual innermost narrowing
relation, if a position p in a term t is a narrowing position, no suffix position of p

can be a narrowing position as well. However, if we consider ground instances of t,
we can have rewriting positions p for some instances, and p′ for other instances, such
that p′ is a suffix of p. So, when using the narrowing relation to schematize innermost
rewriting of ground instances of t, the narrowing positions p to consider depend on
a set of ground instances of t, which is defined by excluding the ground instances of
t that would be narrowable at some suffix position of p. For instance, with the RS
R = {g(a) → a, f(g(x)) → b}, the innermost narrowing positions of the term f(g(X))
are 1 with the narrowing substitution σ = (X = a), and ǫ with any σ such that
σX 6= a.

Let σ be a substitution on T (F ,X ∪N). In the following, we identify σ with the
equality formula

∧

i(xi = ti), with xi ∈ X ∪ N , ti ∈ T (F ,X ∪N). Similarly, we call
negation σ of the substitution σ the formula

∨

i(xi 6= ti). The negation of Id means
that no substitution can be applied.

Definition 5. A substitution σ is said to satisfy a constraint
∧

j

∨

ij
(xij

6= tij
), iff

for every ground instantiation θ,
∧

j

∨

ij
(θσxij

6= θσtij
). A constrained substitution σ

is a formula σ0 ∧
∧

j

∨

ij
(xij

6= tij
), where σ0 is a substitution, and

∧

j

∨

ij
(xij

6= tij
)

the constraint to be satisfied by σ0.

Definition 6 (Innermost narrowing). A term t ∈ T (F ,X ∪N) innermost nar-
rows into a a term t′ ∈ T (F ,X ∪N) at the non-variable position p of t, using the
rule l → r ∈ R with the constrained substitution σ = σ0∧

∧

j∈[1..k] σj, which is written

t Inn
p,l→r,σ t′ iff

σ0(l) = σ0(t|p) and t′ = σ0(t[r]p)

where σ0 is the most general unifier of t|p and l and σj , j ∈ [1..k] are all most general
unifiers of σ0t|p′ and a left-hand side l′ of a rule of R, for all suffix position p′ of p

in t.

Notice that we are interested in the narrowing substitution applied to the current
term t, but not in its definition on the variables of the left-hand side of the rule. So,
the narrowing substitutions we consider are restricted to the variables of the narrowed
term t.

Now, we have to see how to simulate the IP -rewriting steps of a given term follow-
ing the possible instances of its variables, by narrowing it with the rules, considering
their priority. Unlike for simulating rewriting without priorities, where the narrowing
process only depends of the term to be rewritten and of the rule considered, simulat-
ing IP -rewriting of ground instances of a term with a given rule requires to consider
the narrowing steps with the rules having a higher priority. This also requires to use
negations of substitutions. Let us consider the following example:











y

f(g(x), y) → a (1)
f(x, h(y)) → b (2)
f(x, y) → c (3).

6

The term f(x, y) innermost narrows into a with the first rule and the most general
unifier (x = g(x′)), then into b with the second rule, the most general unifier (y =
h(y′)) and the constraint x 6= g(x′), and finally with the third rule into c with the
most general unifier equal to Id and the constraint x 6= g(x′)∧y 6= h(y′). So, applying
the rules the one after the other, with the current narrowing most general unifier we
have to cumulate the negation of the most general unifiers of the previous constrained
substitutions, ignoring their constraint part.

If the narrowing substitutions σ0 ∧
∧

j∈[1..k] σj of the previous rules have a con-
straint part coming from the innermost mechanism of Definition 6, this constraint
part is also ignored by the priority mechanism. Indeed, the constraint part is defined
from σ0, and has no meaning for the negation of σ0. With the PRS:











y

f(g(h(x))) → a (1)
h(a) → b (2)
f(g(x)) → c (3)

the term f(x) innermost narrows with Rule (1) and σ1 = (x = g(h(x′))∧x 6= a), Rule
(2) does not apply, and Rule (3) applies with σ3 = (x = g(x′′) ∧ x 6= g(h(x′))).

If on the contrary, the constraint part of a substitution is due to the priority
mechanism, the negation of this substitution by the innermost mechanism also only
considers the most general unifier of the substitution. With the PRS:







y

f(g(h(x, y)), z) → a (1)
f(x, y) → b (2)







y

h(a, x) → a (3)
h(x, b) → b (4)

the term f(x, y) innermost narrows into a with Rule (1) and the constrained substi-
tution (x = g(h(x′, y′))∧x′ 6= a∧y′ 6= b), because h(x′, y′) narrows with Rule (3) and
the substitution (x′ = a), and with Rule (4) and the substitution (y′ = b ∧ x′ 6= a).

The term f(x, y) also innermost narrows into b with Rule (2) and the substitution
(Id ∧ x 6= g(h(x′, y′))).

Definition 7 (Innermost priority narrowing). Let R be a priority rewrite sys-
tem. A term t ∈ T (F ,X ∪N) IP -narrows into a term t′ ∈ T (F ,X ∪N) at the
non-variable position p of t, using the rule l → r ∈ R with the constrained substitu-

tion σ = σ0 ∧
∧

j∈[1..k] σj

∧

i∈[1..n] σ
i
0, which is written t IP

p,l→r,σ t′ iff

σ0(l) = σ0(t|p) and t′ = σ0(t[r]p)

where σ0 is the most general unifier of t|p and l, σj , j ∈ [1..k] are all most general
unifiers of σ0t|p′ and a left-hand side l′ of a rule of R, for all suffix position p′ of p

in t, and σ1
0 , . . . , σn

0 are the most general unifiers of t|p with the left-hand sides of the
rules having a greater priority than l → r.

4.3 Cumulating constraints

Abstraction constraints have to be combined with the narrowing substitutions to
characterize the ground terms schematized by the current term t in the proof tree.
Indeed, a narrowing branch on the current term u with narrowing substitution σ

represents a rewriting branch for any ground instance of σu.
In addition, σ has to satisfy the constraints on variables of u, already set in A. So,

σ, considered as the narrowing constraint attached to the narrowing branch, is added
to A. This leads to the introduction of abstraction constraint formulas.

7

Definition 8. An abstraction constrained formula (ACF in short) is a formula
∧

i(ti↓ =
t′i) ∧

∧

j(xj = uj), where xj ∈ X ∪N , ti, t
′
i, uj ,∈ T (F ,X ∪N).

Definition 9. An abstraction constrained formula A =
∧

i(ti↓ = t′i)∧
∧

j(xj = uj) is
satisfiable iff there is at least one instantiation θ such that

∧

i(θti↓ = θt′i)∧
∧

j(θxj =
θuj). The instantiation θ is then said to satisfy the ACF A and is called solution of
A.

For a better readability on examples, we can propagate σ into A (by applying the
substitution part of σ to A), thus getting instantiated abstraction constraints of the
form ti↓ = t′i from initial abstraction constraints of the form ti↓ = Xi.

An ACF A is attached to each term u in the proof trees; the ground substitutions
solutions of A define the instances of the current term u, for which we are observing
IP -termination. When A has no solution, the current node of the proof tree represents
no ground term. Such nodes are then irrelevant for the proof. Detecting and suppress-
ing them during a narrowing step allows us to control the narrowing mechanism, well
known to easily diverge. So, we have the choice between generating only the relevant
nodes of the proof tree, by testing the satisfiability of A at each step, or stopping the
proof on a branch on an irrelevant node, by testing the unsatisfiability of A.

Checking the satisfiability of A is in general undecidable, but it is often easy in
practice to exhibit an instantiation satisfying it. Automatable sufficient conditions,
lying in particular on the characterization of normal forms, are also under study. The
unsatisfiability of A is also undecidable in general, but simple automatable sufficient
conditions can be used [8], as to test whether A contains equalities t↓ = u, where u is
reducible. In the following, we present the procedure exactly simulating the rewriting
trees, i.e. dealing with the satisfiability of A.

5 The IP -termination procedure

We are now ready to describe the inference rules defining our mechanism. They trans-
form a set T of 3-tuples (U,A, C) where U = {t} or ∅, t is the current term whose
ground instances have to be proved IP -terminating, A is an abstraction constraint
formula, C is a conjunction of ordering constraints.

– The first rule abstracts the current term t at given positions i1, . . . , ip into
t[Xj]j∈{i1,...,ip}. The constraint

∧

j∈{i1,...,ip}
tref > t|j is set in C. The abstrac-

tion constraint
∧

j∈{i1,...,ip}
t|j↓ = Xj is added to the ACF A. We call this rule

Abstract.
The abstraction positions are chosen so that the abstraction mechanism captures
the greatest possible number of rewriting steps: then we abstract all of the great-
est possible subterms of t = f(t1, . . . , tm). More concretely, we try to abstract
t1, . . . , tm and, for each ti = g(t′1, . . . , t

′
n) that cannot be abstracted, we try to

abstract t′1, . . . , t
′
n, and so on. In the worst case, we are driven to abstract leaves

of the term, which are either variables, or constants.
Note also that it is not useful to abstract non-narrowable subterms of T (F ,N).
Indeed, by Definition 3, every ground instance of such subterms is in IP -normal
form.

– The second rule narrows the resulting term u in all possible ways in one step,
with all possible rewrite rules of the rewrite system R, and all possible substi-
tutions, into terms v1, . . . , vq, according to Definition 7. This step is a branching
step, creating as states as there are narrowing possibilities. The substitution σ is
integrated to A. This is the Narrow rule.

8

Table 1. Inference rules for IP-termination

Abstract:
{t}, A, C

{u}, A ∧
^

j∈{i1,...,ip}

t|j↓ = Xj , C ∧
^

j∈{i1,...,ip}

HC(t|j)

where t is abstracted into u at positions i1, . . . , ip 6= ǫ

if C ∧ HC(t|i1) . . . ∧ HC(t|ip) is satisfiable

Narrow:
{t}, A, C

{vi}, A ∧ σ, C

if if t
IP
σ vi and A ∧ σ is satisfiable

Stop:
{t}, A, C

∅, A ∧ HA(t), C ∧ HC(t)

if (C ∧ HC(t)) is satisfiable.

and HA(t) =



⊤ if t is in T (F ,N) and is not narrowable
t↓ = X otherwise.

HC(t) =



⊤ if IPT (t)
tref > t otherwise.

– We finally have a Stop rule halting the proof process on the current branch of
the proof tree, when the ground instances of the current term can be stated as
IP -terminating. This happens when the whole current term u can be abstracted,
i.e. when the induction hypothesis is applied to it, when u ∈ T (F ,N) and is not
narrowable, or when u ∈ T (F ,N) is narrowable with substitutions σ such that
A ∧ σ is not satisfiable.

Let us note that the inductive reasoning can be completed as follows. When the
induction hypothesis cannot be applied to a term u, it may be possible to prove IP -
termination of every ground instance of u in another way. Let IPT (u) be a predicate
that is true iff every ground instance of u is IP -terminating. In the previous first
and third steps of the inductive reasoning, we then associate the alternative predicate
IPT (u) to the condition t > u. It is true in particular when u ∈ T (F ,N) and is not
narrowable, as said above. Otherwise, we can use the notion of usable rule, as in [8].

The inference rules are given in Table 1. They use a reference term tref = g(x1, . . . ,

xm), where x1, . . . , xm ∈ X and g ∈ D (if g is a constant, then tref = g).

We generate the proof trees of R by applying, for each defined symbol g ∈ D,
the inference rules using the reference term tref = g(x1, . . . , xm) on the initial set
of 3-tuples {({tref = g(x1, . . . , xm)},⊤, ⊤)}, with a specific strategy S, repeating
the following steps: first, apply Abstract, and then try Stop. Then try all possible
applications of Narrow. Then, try Stop again.

Let us clarify that if A is satisfiable, the transformed forms of A by Abstract
and Stop are also satisfiable. Moreover, the first application of Abstract generates
A = (

∧

i xi↓ = Xi), always satisfied by the constructor constant supposed to exist in
F . Thus, with strategy S, it is useless to prove the satisfiability of A in the Abstract
and Stop rules.

The process may not terminate if there is an infinite number of applications of
Abstract and Narrow on the same branch of a proof tree. Nothing can be said
in that case about IP -termination. The process stops if no inference rule applies

9

anymore. Then, when all branches of the proof trees end with an application of Stop,
IP -termination is established.

A finite proof tree is said to be successful if its leaves are states of the form (∅, A, C).
We write SUCCESS (g , ≻) if the application of S on ({g(x1, . . . , xm)},⊤,⊤) gives a
successful proof tree, whose sets C of ordering constraints are satisfied by the same
ordering ≻.

Theorem 1. Let R be a priority rewrite system on T (F ,X) having at least one
constructor constant. Every term of T (F) is IP -terminating iff there is a noetherian
ordering ≻ such that for each symbol g ∈ D, we have SUCCESS (g ,≻).

Example 2. Let us consider the following PRS, whose underlying RS is neither ter-
minating, nor innermost terminating:











y

f(g(h(x))) → a (1)
h(a) → g(a) (2)
f(g(x)) → f(g(h(x))) (3).

The proof tree of f is:

tref = f(x)
A = ⊤, C = ⊤

Abstract
��

f(X)
A = (x↓ = X)
C = (f(x) > x)

NarrowX=g(h(X′))∧X′ 6=a

xxrrrrrrrrrrr
X=g(X′′)∧X 6=g(h(X′))

%%KKKKKKKKKK

a
A = (x↓ = g(h(X ′))

∧X ′ 6= a)

Stop

��

f(g(h(X”)))
A = (x↓ = g(X ′′)
∧X 6= g(h(X ′)))

NarrowX′′=a

zztttttttttt
Id∧X′′ 6=a

%%JJJJJJJJJ

∅

f(g(g(a)))
A = (x↓ = g(a)
∧X 6= g(h(X ′)))

Narrow Id

��

a
A = (x↓ = g(X ′′)
∧X 6= g(h(X ′)))

∧X ′′ 6= a

Stop

��

f(g(h(g(a))))

Narrow Id

��

∅

a

Stop
��

∅

To lighten the figure, the sets A and C are not repeated on a branch, when they
do not change. Abstract applies on f(x) because the ordering constraint f(x) > x is
satisfiable by any noetherian ordering having the subterm property. Then, Narrow
applies on f(X) using Rules (1) and (3), according to Definition 7.

10

On the second branch, the term f(g(h(X ′′))) narrows into f(g(g(a))) with Rule
(2) and σ = (X ′′ = a), into a with Rule (1) and σ = (Id ∧ X ′′ 6= a), but does not
narrow with Rule (3): the negation of Id does not exist.

The set A after the Abstract step is trivially satisfied by the instantiation θ =
(x = X = a). One can take θ = (x = g(h(g(a))), X ′ = g(a)) for the next set A on
the fist branch, θ = (x = g(a), X = X ′ = X ′′ = a) for the next set A on the second
branch, and θ = (x = g(a), X = X ′ = a) for the last set A on the second branch.

In the proof tree of h, we just have an Abstract, a Narrow and a Stop step.

So the PRS is IP -terminating.

Example 3. Consider now the following PRS, which is also neither terminating nor
innermost terminating:











y

f(a, y)) → a (1)
f(x, b) → b (2)
f(x, y) → f(y, x) (3).

tref = f(x, y)
A = ⊤, C = ⊤

Abstract
��

f(X, Y)
A = (x↓ = X, y↓ = Y)

C = (f(x) > x, y)

Narrow(X=a)

wwoooooooooooooo

(Y =b)∧(X 6=a)

��

Id∧(X 6=a)∧(Y 6=b)

''OOOOOOOOOOO

a
A = (x↓ = a, y↓ = Y)

Stop

��

b
A = (x↓ = X, y↓ = b)

∧X 6= a

Stop

��

f(Y, X)
A = (x↓ = X, y↓ = Y)

∧X 6= a ∧ Y 6= b

Stop
��

∅ ∅ ∅

The rule Stop applies on f(Y, X) because the term would only be narrowable
with the substitution σ = (Id∧Y 6= a∧X 6= b). But A∧σ = (x↓ = X, y↓ = Y)∧X 6=
a ∧ Y 6= b ∧ Y 6= a ∧ X 6= b) would be unsatisfiable: X and Y could only be of the
form f(X ′, Y ′), which is impossible since f(X ′, Y ′) is always reducible.

The set A after the Abstract step is trivially satisfied by the instantiation θ =
(x = X = y = Y = a). One can take θ = (x = y = Y = a) for the next set A

on the fist branch, θ = (x = X = y = b) for the set A on the second branch, and
θ = (x = X = b, y = Y = a) for the set A on the third branch.

Example 4. Let us consider the following PRS, whose underlying RS is also neither
terminating, nor innermost terminating:











y

f(x, h(y)) → a (1)
f(g(x), y) → f(g(x), h(y)) (2)
f(x, y) → f(g(x), y) (3).

11

The proof tree of the only defined symbol is:

tref = f(x, y)
A = ⊤, C = ⊤

Abstract
��

f(X, Y)
A = (x↓ = X, y↓ = Y))

C = (f(x) > x, y)

NarrowY =h(Y ′)

vvnnnnnnnnnnnnnnnn

X=g(X′)∧Y 6=h(Y ′)

��

Id∧Y 6=h(Y ′)∧X 6=g(X′)

''PPPPPPPPPPPP

a
A = (x↓ = X, y↓ = h(Y ′))

Stop

��

f(g(X ′), h(Y))
A = (x↓ = g(X ′), y↓ = Y,

Y 6= h(Y ′))

Narrow Id

��

f(g(X), Y)
A = (x↓ = X, y↓ = Y,

Y 6= h(Y ′), X 6= g(X ′))

Narrow Id∧Y 6=h(Y ′)

��

∅ a

Stop

��

f(g(X), h(Y))

Narrow Id

��

∅ a

Stop

��

∅

Abstract applies on f(x, y) because the ordering constraint f(x) > x, y is satisfi-
able by any noetherian ordering having the subterm property. Then, Narrow applies
on f(X, Y) using Rules (1), (2), and (3), according to Definition 7.

On the second branch, the term f(g(X ′), h(Y)) narrows into a with Rule (1) and
σ = Id, so the other rules cannot apply: the negation of Id does not exist. This
is coherent with the fact that Rule (1) has the highest priority, and applies for all
possible instances of the term.

On the third branch, f(g(X), Y) narrows into f(g(X), h(Y)) with Rule (2), but
does not narrow with Rule (1), because the narrowing substitution would be σ =
(Y = h(Y ′)), and A ∧ σ would be unsatisfiable. Indeed, we would have Y 6= h(Y ′)
and Y = h(Y ′). The term f(g(X), h(Y)) does not narrow with Rule (3) either: it first
narrows with Rule (2) and Id.

The set A after the Abstract step is trivially satisfied by the instantiation θ =
(x = X = y = Y = a). One can take θ = (x = X = Y ′ = a, y = h(a)) for the next
set A on the fist branch, θ = (X ′ = y = Y = a, x = g(a)) for the set A on the second
branch, and θ = (x = X = y = Y = a) for the set A on the third branch.

So the PRS is IP -terminating.

Example 5. Let us consider the following PRS, whose underlying RS is also neither
terminating, nor innermost terminating:







y

f(a) → a (1)
f(x) → g(f(a)) (2).

The proof tree of f is:

12

tref = f(x)
A = ⊤, C = ⊤

Abstract
��

f(X)
A = (x↓ = X)
C = (f(x) > x)

NarrowX=a

yyssssssssss
Id∧X 6=a

''OOOOOOOOOOO

a
A = (x↓ = a)

Stop

��

g(f(a))
A = (x↓ = X ∧ X 6= a)

NarrowId

��

∅ g(a)

Stop
��

∅

Note that in the four examples above, the irreducible constant of the algebra, and
more generally the constructors, can be used in an automatic way to find a solution
of A.

6 Conclusion

In this paper, we have proposed an inductive method for proving termination of the
decidable innermost priority rewriting relation of C.K. Mohan [11]. This work is an
extension to priority rewriting of an inductive approach given in [8] for proving inner-
most termination of rewriting. We have generalized the innermost narrowing relation
introduced in [8], to model the IP -rewriting relation on ground terms. A lifting lemma
involving priorities on the rules establishes correctness of this modelization, and then
of Theorem 1. For details, see the appendix.

Constraints are crucial in our approach: ordering constraints warrant the appli-
cability of the induction principle, abstraction constraints define the ground terms
considered at each step of the proof, and help to contain the narrowing mechanism.
As precised in Section 4, automatable sufficient conditions can be used to deal with
them, which allows our termination proof procedure to be completely automatic in
many cases.

As termination of the original priority rewriting relation of [3] warrants a semantics
for this relation, one can think that IP -termination warrants a semantics for the IP -
rewriting relation. This has to be investigated. We also plan to generalize our technique
to the termination proof of other priority rewriting relations.

References

1. Lennart Augustsson. A compiler for lazy ml. In LFP ’84: Proceedings of the 1984 ACM

Symposium on LISP and functional programming, pages 218–227, New York, NY, USA,
1984. ACM.

2. Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, New York, NY, USA, 1998.

3. J. C. M. Baeten, J. A. Bergstra, J. W. Klop, and W. P. Weijland. Term-rewriting systems
with rule priorities. Theoretical Computer Science, 67(2-3):283–301, 1989.

13

4. Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Term rewriting systems
with priorities. In Proceedings of the 2nd International Conference on Rewriting Tech-

niques and Applications, volume 256 of Lecture Notes in Computer Science, pages 83–94.
Springer Verlag, 1987.

5. Home of Clean. http://clean.cs.ru.nl/index.html.
6. N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and A. Voronkov, editors,

Handbook of Automated Reasoning, volume I, chapter 9, pages 535–610. Elsevier Science,
2001.

7. Isabelle Gnaedig. Termination of Priority Rewriting - Extended Version. Tech-
nical report, LORIA, 2007. Available at http://www.loria.fr/∼gnaedig/PAPERS/-
REPORTS/IP-termin-extended.pdf.

8. Isabelle Gnaedig and Hélène Kirchner. Termination of Rewriting under Strategies. ACM

Transactions on Computational Logic, 2007. To appear. Preliminary version available
at http://www.loria.fr/∼gnaedig/PAPERS/REPORTS/S-termin-2007-preli.pdf.

9. Wiki homepage of Haskell. http://www.haskell.org/haskellwiki/Haskell.
10. J. B. Kruskal. Well-quasi ordering, the tree theorem and Vazsonyi’s conjecture. Trans.

Amer. Math. Soc., 95:210–225, 1960.
11. Chilukuri K. Mohan. Priority rewriting: Semantics, confluence, and conditional. In Pro-

ceedings of the 3rd International Conference on Rewriting Techniques and Applications,
volume 355 of Lecture Notes in Computer Science, pages 278–291. Springer Verlag, 1989.

12. Rinus Plasmeijer and Marko van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison Wesley, 1993.
13. Masahiko Sakai and Yoshihito Toyama. Semantics and strong sequentiality of priority

term rewriting systems. Theoretical Computer Science, 208(1–2):87–110, 1998.
14. Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press, 2003.
15. Jaco van de Pol. Operational semantics of rewriting with priorities. Theoretical Computer

Science, 200(1-2):289–312, 1998.

14

Appendix

This appendix contains the proof of the lifting lemma and of the theorem.

A The lifting lemma

For the proof of Theorem 1, we need the following lifting lemma.

Lemma 1 (Priority Innermost Lifting Lemma). Let R be a rewrite system. Let
s ∈ T (F ,X), α a ground substitution such that αs is IP -reducible at a non variable
position p of s, and Y ⊆ X a set of variables such that V ar(s) ∪ Dom(α) ⊆ Y. If
αs →IP

p,l→r t′, then there exist a term s′ ∈ T (F ,X) and substitutions β, σ = σ0 ∧
∧

j∈[1..k] σj

∧

i∈[1..n] σ
i
0. such that:

1. s IP
p,l→r,σ s′,

2. βs′ = t′,

3. βσ0 = α[Y ∪ V ar(l)]

4. β satisfies
∧

j∈[1..k] σj

∧

i∈[1..n] σ
i
0.

where σ0 is the most general unifier of s|p and l and σj , j ∈ [1..k] are all most
general unifiers of σ0s|p′ and a left-hand side l′ of a rule of R, for all suffix position
p′ of p in s, and σ1

0 , . . . , σn
0 are the most general unifiers of s|p with the left-hand sides

of the rules having a greater priority than l → r.

For the proof of the lemma, we need the two following propositions.

Proposition 1. Let t ∈ T (F ,X) and σ be a substitution of T (F ,X). Then V ar(σt) =
(V ar(t) − Dom(σ)) ∪ Ran(σV ar(t)).

Proposition 2. Suppose we have substitutions σ, µ, ν and sets A,B of variables such
that (B − Dom(σ)) ∪ Ran(σ) ⊆ A. If µ = ν[A] then µσ = νσ[B].

Proof. Let us consider (µσ)B , which can be divided as follows: (µσ)B = (µσ)B∩Dom(σ)∪
(µσ)B−Dom(σ).
For x ∈ B ∩ Dom(σ), we have Var(σx) ⊆ Ran(σ), and then (µσ)x = µ(σx) =
µRan(σ)(σx) = (µRan(σ)σ)x. Therefore (µσ)B∩Dom(σ) = (µRan(σ)σ)B∩Dom(σ).
For x ∈ B − Dom(σ), we have σx = x, and then (µσ)x = µ(σx) = µx. Therefore we
have (µσ)B−Dom(σ) = µB−Dom(σ). Henceforth we get (µσ)B = (µRan(σ)σ)B∩Dom(σ)

∪µB−Dom(σ).
By a similar reasoning, we get (νσ)B = (νRan(σ)σ)B∩Dom(σ) ∪ νB−Dom(σ).
By hypothesis, we have Ran(σ) ⊆ A and µ = ν[A]. Then µRan(σ) = νRan(σ). Likewise,
since B − Dom(σ) ⊆ A, we have µB−Dom(σ) = νB−Dom(σ).
Then we have (µσ)B = (µRan(σ)σ)B∩Dom(σ) ∪ µB−Dom(σ) =
(νRan(σ)σ)B∩Dom(σ) ∪ νB−Dom(σ) = (νσ)B . Therefore (µσ) = (νσ)[B]. �

Proof (of Lemma 1).
In the following, we assume that Y ∩ Var(l) = ∅ for every l → r ∈ R.

If αs →IP
p,l→r t′, then there is a substitution τ such that Dom(τ) ⊆ Var(l) and

(αs)|p = τ l. Moreover, since p is a non variable position of s, we have (αs)|p = α(s|p).
Denoting µ = ατ , we have:
µ(s|p) = α(s|p) for Dom(τ) ⊆ Var(l) and Var(l) ∩ Var(s) = ∅

= τ l by definition of τ

= µl for Dom(α) ⊆ Y and Y ∩ Var(l) = ∅,

15

and therefore s|p and l are unifiable. Let us note σ0 the most general unifier of s|p
and l, and s′ = σ0(s[r]p).

Since σ0 is more general than µ, there is a substitution ρ such that ρσ0 = µ[Y ∪
V ar(l)]. Let Y1 = (Y − Dom(σ0)) ∪ Ran(σ0). We define β = ρY1

. Clearly Dom(β) ⊆
Y1.
We now show that Var(s′) ⊆ Y1, by the following reasoning:

– since s′ = σ0(s[r]p), we have Var(s′) = Var(σ0(s[r]p));
– the rule l → r is such that Var(r) ⊆ Var(l), therefore we have Var(σ0(s[r]p)) ⊆

Var(σ0(s[l]p)), and then, thanks to the previous point, Var(s′) ⊆ Var(σ0(s[l]p));
– since σ0(s[l]p) = σ0s[σ0l]p and since σ0 unifies l and s|p, we get σ0(s[l]p) =

(σ0s)[σ0(s|p)]p = σ0s[s|p]p = σ0s and, thanks to the previous point: Var(s′) ⊆
Var(σ0s);

– according to Proposition 1, we have Var(σ0(s)) = (Var(s) −Dom(σ0))∪
Ran(σ0Var(s)); by hypothesis, Var(s) ⊆ Y. Moreover, since Ran(σ0Var(s)) ⊆
Ran(σ0), we have Var(σ0(s)) ⊆ (Y−Dom(σ0))∪Ran(σ0), that is Var(σ0s) ⊆ Y1.
Therefore, with the previous point, we get V ar(s′) ⊆ Y1.

From Dom(β) ⊆ Y1 and V ar(s′) ⊆ Y1, we infer Dom(β) ∪ V ar(s′) ⊆ Y1.
Let us now prove that βs′ = t′.

Since β = ρY1
, we have β = ρ[Y1]. Since V ar(s′) ⊆ Y1, we get βs′ = ρs′. Since

s′ = σ0(s[r]p), we have ρs′ = ρσ0(s[r]p) = µ(s[r]p) = µs[µr]p. Then βs′ = µs[µr]p.
We have Dom(τ) ⊆ Var(l) and Y ∩ Var(l) = ∅, then we have Y ∩ Dom(τ) = ∅.
Therefore, from µ = ατ [Y ∪ V ar(l)], we get µ = α[Y]. Since Var(s) ⊆ Y, we get
µs = αs.
Likewise, by hypothesis we have Dom(α) ⊆ Y, Var(r) ⊆ Var(l) and Y ∩ Var(l) = ∅,
then we get V ar(r) ∩ Dom(α) = ∅, and then we have µ = τ [V ar(r)], and therefore
µr = τr.
From µs = αs and µr = τr we get µs[µr]p = αs[τr]p. Since, by hypothesis, αs →p t′,
with τ l = (αs)|p, then αs[τr]p = t′. Finally, as βs′ = µs[µr]p, we get βs′ = t′ (2).

Next let us prove that βσ0 = α[Y]. Reminding that Y1 = (Y−Dom(σ0))∪Ran(σ0),
Proposition 2 (with the notations A for Y1, B for Y, µ for β, ν for ρ and σ for σ0)
yields βσ0 = ρσ0[Y]. We already noticed that µ = α[Y]. Linking these two equalities
via the equation ρσ0 = µ yields βσ0 = α[Y] (3).

Let us now suppose that there exist a rule l′ → r′ ∈ R, a suffix position p′ of p

and a substitution σi such that σi(σ0(s|p′)) = σil
′.

Let us now suppose that β does not satisfy
∧

j∈[1..k] σj . There is i ∈ [1..k] such

that β satisfies σi =
∧

il∈[1..n](xil
= uil

). So β is such that
∧

il∈[1..n](βxil
= βuil

).

Thus, on Dom(β)∩Dom(σi) ⊆ {xil
, il ∈ [1..n]}, we have (βxil

= βuil
), so βσi = β.

Moreover, as β is a ground substitution, σiβ = β. Thus, βσi = σiβ.
On Dom(β) ∪ Dom(σi) − (Dom(β) ∩ Dom(σi)), either β = Id, or σi = Id, so

βσi = σiβ.
As a consequence, α(s) = σiα(s) = σiβσ0(s) = βσiσ0(s) is reducible at position

p′ with the rule l′ → r′, which is impossible by definition of innermost reducibility
of α(s) at position p. So the ground substitution β satisfies

∧

i∈[1..k] σi for all most
general unifiers σi of σ0s and a left-hand side of a rule of R at suffix positions of p.

Let us now suppose that there exist a rule l′ → r′ ∈ R of higher priority than
l → r and a substitution σi

0 such that σi
0(s|p) = σi

0l
′. With a similar reasoning than

previously, we get that α(s) is reducible at position p with the rule l′ → r′, which has
higher priority than l → r. This is impossible by definition of IP -reducibility of α(s)

by l → r at position p. So the ground substitution β also satisfies
∧

i∈[1..n] σ
i
0 where

σ1
0 , . . . , σn

0 are the most general unifiers of s|p with the left-hand sides of rules having
a greater priority than l → r (4).

16

Therefore, denoting σ = σ0 ∧
∧

j∈[1..k] σj ∧
∧

i∈[1..n] σ
i
0, from the beginning of the

proof, we get s IP
p,l→r,σ s′, and then the point (1) of the current lemma holds.

�

B The IP -termination theorem

Theorem 1. Let R be a priority rewrite system on T (F ,X) having at least one
constructor constant. Every term of T (F) is IP -terminating iff there is a noetherian
ordering ≻ such that for each symbol g ∈ D, we have SUCCESS (g ,≻).

Proof. Let us suppose that every ground term is IP -terminating and show that the
construction of the proof trees always terminate. Let f(x1, . . . , xm), f ∈ D any initial
pattern of a proof tree.

The rule Abstract applies to give f(X1, . . . , Xm), X1, . . . , Xm ∈ N . Indeed, by
hypothesis, we have IPT (xi). Then Stop applies, because we also have IPT (f (X1 , . . . ,

Xm). So any proof tree is finite, and SUCCESS (f ,≻) for every f ∈ D, with any
noetherian ordering ≻.

For the converse part, we prove by induction on T (F) that any ground instance
θf(x1, . . . , xm) IP -terminates for any term f(x1, . . . , xm) ∈ T (F ,X) with f ∈ F .
We use an abstraction lemma, a narrowing lemma, and a stopping lemma, which are
given after this main proof.

The induction ordering is constrained along the proof. At the beginning, it has
at least to be noetherian. Such an ordering always exists on T (F) (for instance the
embedding relation). Let us denote it ≻.

If f is a defined symbol, let us denote it g and prove that g(θx1, . . . , θxm) is IP -
terminating for any θ satisfying A = ⊤ if we have SUCCESS (h,≻) for every defined
symbol h. Note that g may be a reducible constant. Let us denote g(x1, . . . , xm) by
tref in the sequel of the proof.

To each state s of the proof tree of g, characterized by a current term t and the
set of constraints A, we associate the set of ground terms G = {αt | α satisfies A},
that is the set of ground instances represented by s. When t is a reducible constant,
the set of ground instances is reduced to t itself.

The Abstract inference rule (resp. Narrow) transforms ({t}, A, C) into ({t′}, A′,

C ′) to which is associated G′ = {βt′ | β satisfies A′} (resp. into ({t′i}, A
′
i), i ∈ [1..q] to

which are associated G′ = {βit
′
i | βi satisfies A′

i}).
By abstraction (resp. narrowing) Lemma, when applying Abstract (resp. Narrow),

for each reducible αt in G, there is a βt′ (resp. there are βit
′
i) in G′ and such that

IP -termination of βt′ (resp. of the βit
′
i) implies IP -termination of αt.

When the Stop inference rule applies on ({t}, A, C), by stopping lemma, every
term of G = {αt | α satisfies A} is IP -terminating. Therefore, IP -termination is en-
sured for all terms in all sets G in the proof tree.

As the process is initialized with {tref } and a set A of abstraction constraints sat-
isfiable by any ground substitution, we get that g(θx1, . . . , θxm) is IP -terminating,
for any tref = g(x1, . . . , xm), and any ground instance θ.

If f is a constructor, either it is a constant, which is irreducible, and then IP -
terminating, or we consider the pattern f(x1, . . . , xm). The proof then works like in

17

the case of defined symbols, but with just an application of Abstract and Stop. In-
deed, f(x1, . . . , xm) always abstracts into f(X1, . . . , Xm). Then Stop applies because
f(X1, . . . , Xm) is not narrowable and all its variables are in N .
�

Lemma 2 (Abstraction lemma). Let ({t}, A, C) be a state of any proof tree, giving
the state ({t′ = t[Xj]j∈{i1,...,ip}}, A′, C ′) by application of Abstract.

For any ground substitution α satisfying A, if αt is reducible, there is β such that
IP -termination of βt′ implies IP -termination of αt. Moreover, β satisfies A′.

Proof. We prove that αt
∗
→S βt′, where β = α∪

⋃

j∈{i1,...,ip}
Xj = αt|j↓.

First, the abstraction positions in t are chosen so that the αt|j can be supposed
IP -terminating. Indeed, each term t|j is such that:

– either IPT (t |j) is true, and then by definition of the predicate IPT , αt|j is IP -
terminating;

– or tref > t|j is satisfiable by ≻, and then, by induction hypothesis, αt|j is IP -
terminating.

So, αt|j reduces to an IP -normal form αt|j↓. Then, whatever the positions i1, . . . , ip

in the term t, we have αt
∗
→

IP
αt[αt|i1↓]i1 . . . [αt|ip

↓]ip
= βt′.

Thus, αt
∗
→

IP
βt′ for every derivation that normalizes all subtems αt|j↓, for

j ∈ {p1, . . . , pk}. As every βt′ represents a reduced form of αt on every possible
rewriting branch of αt, then IP-termination of βt′ implies IP-termination of αt.

Finally, , β satisfies A′ = A ∧ t|i1↓ = Xi1 . . . ∧ t|ip
↓ = Xip

, provided the Xi are
neither in A, nor in Dom(α), which is true since the Xi are fresh variables, neither
appearing in A, nor in Dom(α).
�

Lemma 3 (Narrowing lemma). Let ({t}, A, C) be a state of any proof tree, giving
the states ({vi}, A′

i, C
′
i), i ∈ [1..l], by application of Narrow. For any ground substi-

tution α satisfying A, if αt is IP -reducible, then, for each i ∈ [1..l], there is βi such
that IP -termination of the βivi, i ∈ [1..l], implies IP -termination of αt. Moreover, βi

satisfies A′
i for each i ∈ [1..l].

Proof. For any rewriting step αt →IP
p,l→r t′, by Lifting Lemma, there is a term v ∈

T (F ,X) and substitutions β, σ = σ0 ∧
∧

j∈[1..k] σj ∧
∧

i∈[1..n] σ
i
0 such that:

1. t IP
p,l→r,σ v,

2. βv = t′,

3. βσ0 = α[Y ∪ V ar(l)]

4. β satisfies
∧

j∈[1..k] σj ∧
∧

i∈[1..n] σ
i
0

where σ0 is the most general unifier of t|p and l, σj , j ∈ [1..k] are all the most
general unifiers of σ0t|p′ and a left-hand side l′ of a rule of R, for all suffix positions
p′ of p in s, σi

0, i ∈ [1..n] are all the most general unifiers of t|p with the left-hand
sides of the rules having greater priority than l → r.

The narrowing steps are effectively produced in the proof tree by the Narrow
rule, applied in all possible ways on t. Then, the narrowing step t IP

p,l→r,σ v is
produced. So a term βv is produced for every IP -rewriting branch starting from αt.
Then IP -termination of the βv implies IP -termination of αt.

Let us prove that β satisfies A′ = A ∧ σ0 ∧
∧

j∈[1..k] σj ∧
∧

i∈[1..n] σ
i
0.

18

By Lifting Lemma, we have α = βσ0 on Y. As we can take Y ⊇ V ar(A), we have
α = βσ0 on V ar(A).

More precisely, on Ran(σ0), β is such that βσ0 = α and on V ar(A) \ Ran(σ0),
β = α. As Ran(σ0) only contains fresh variables, we have V ar(A) ∩ Ran(σ0) = ∅, so
V ar(A) \ Ran(σ0) = V ar(A). So β = α on V ar(A) and then, β satisfies A.

Moreover, as βσ0 = α on Dom(σ0), β satisfies σ0.
So β satisfies A ∧ σ0. Finally, with the point 4. of the lifting lemma, we conclude

that β satisfies A′ = A ∧ σ0 ∧
∧

j∈[1..k] σj ∧
∧

i∈[1..n] σ
i
0.

�

Lemma 4 (Stopping lemma). Let ({t}, A, C) be a state of any proof tree, with A

satisfiable, and giving the state (∅, A′, C ′) by application of an inference rule. Then
for every ground substitution α satisfying A, αt is IP -terminating.

Proof. The only rule giving the state (∅, A′, C ′) is Stop. When Stop is applied, then

– either IPT (t) and then αt is IP -terminating for every ground substitution α,
– or (tref > t) is satisfiable. Then, for every ground substitution α satisfying A,

αtref ≻ αt. By induction hypothesis, αt is IP -terminating.

�

19

