Large scale vision based navigation without an accurate global reconstruction

S. Segvic 1 A. Remazeilles 1 A. Diosi 1 François Chaumette 1
1 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Autonomous cars will likely play an important role in the future. A vision system designed to support outdoor navigation for such vehicles has to deal with large dynamic environments, changing imaging conditions, and temporary occlusions by other moving objects. This paper presents a novel appearance-based navigation framework relying on a single perspective vision sensor, which is aimed towards resolving of the above issues. The solution is based on a hierarchical environment representation created during a teaching stage, when the robot is controlled by a human operator. At the top level, the representation contains a graph of key-images with extracted 2D features enabling a robust navigation by visual servoing. The information stored at the bottom level enables to efficiently predict the locations of the features which are currently not visible, and eventually (re-)start their tracking. The outstanding property of the proposed framework is that it enables robust and scalable navigation without requiring a globally consistent map, even in interconnected environments. This result has been confirmed by realistic off-line experiments and successful real-time navigation trials in public urban areas.
Type de document :
Communication dans un congrès
IEEE Int. Conf. on Computer Vision and Pattern Recognition, CVPR'07, 2007, Minneapolis, Minnesota, United States. pp.1-8, 2007
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00350599
Contributeur : Eric Marchand <>
Soumis le : mercredi 7 janvier 2009 - 14:00:11
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : mardi 8 juin 2010 - 18:52:22

Fichier

2007_cvpr_segvic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00350599, version 1

Citation

S. Segvic, A. Remazeilles, A. Diosi, François Chaumette. Large scale vision based navigation without an accurate global reconstruction. IEEE Int. Conf. on Computer Vision and Pattern Recognition, CVPR'07, 2007, Minneapolis, Minnesota, United States. pp.1-8, 2007. 〈inria-00350599〉

Partager

Métriques

Consultations de la notice

334

Téléchargements de fichiers

168