
�>���G �A�/�, �B�M�`�B���@�y�y�j�8�y�e�8�9

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�B�M�`�B���@�y�y�j�8�y�e�8�9

�a�m�#�K�B�i�i�2�/ �Q�M �d �C���M �k�y�y�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�o�B�b�m���H�H�v�@�;�m�B�/�2�/ �;�`���b�T�B�M�; �r�?�B�H�2 �r���H�F�B�M�; �Q�M �� �?�m�K���M�Q�B�/
�`�Q�#�Q�i

�L�B�+�Q�H���b �J���M�b���`�/�- �P�H�B�p�B�2�` �a�i���b�b�2�- �6�`���M�Ï�Q�B�b �*�?���m�K�2�i�i�2�- �E�X �u�Q�F�Q�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�L�B�+�Q�H���b �J���M�b���`�/�- �P�H�B�p�B�2�` �a�i���b�b�2�- �6�`���M�Ï�Q�B�b �*�?���m�K�2�i�i�2�- �E�X �u�Q�F�Q�B�X �o�B�b�m���H�H�v�@�;�m�B�/�2�/ �;�`���b�T�B�M�; �r�?�B�H�2 �r���H�F�@
�B�M�; �Q�M �� �?�m�K���M�Q�B�/ �`�Q�#�Q�i�X �A�1�1�1 �A�M�i�X �*�Q�M�7�X �Q�M �_�Q�#�Q�i�B�+�b ���M�/ ���m�i�Q�K���i�B�Q�M�- �A�*�_���ö�y�d�- �k�y�y�d�- �_�Q�K���-
�A�i���H�v�- �6�`���M�+�2�X �T�T�X�j�y�9�R�@�j�y�9�d�- �k�y�y�d�X �I�B�M�`�B���@�y�y�j�8�y�e�8�9�=

https://hal.inria.fr/inria-00350654
https://hal.archives-ouvertes.fr

Visually-GuidedGrasping while Walking
on a Humanoid Robot

Nicolas Mansard, Olivier Stasse, François Chaumette, Kazuhito Yokoi

Abstract— In this paper, we apply a general framework for
build ing complex whole-body control for highly redundant
robot, and we propose to implement it for visually -guided
grasping while walkin g on a humanoid robot. The key idea
is to divide the control into several sensor-based control tasks
that are simultaneously executed by a general structure called
stack of tasks. This structure enables a very simple access for
task sequencing, and can be used for task-level control. This
framework was applied for a visual servoing task. The robot
walks along a planed path, keeping the speci� ed object in the
middle of its � eld of view and �n ally, when it is close enough,
the robot grasps the object while walkin g .

I . INTRODUCTION

In this paper, we describe a complete implementation of
a complex whole-body motion to realize a visually-guided
grasping while walking on a humanoid robot. It is based
on a general framework for building whole-body control for
highly redundant robot, that is easily modulable and can be
adapted for a vast classof robotic problems.

Oneof the � rst approach to generate full -bodymotioncon-
sidering a human-size humanoid robot is motion planning.
Proposed by Kuffner et al. [11] it relies on a discretization
of the possible foot steps for walking, and a general path
planning algorithm for manipulation. By choosing a reason-
able number of foot placement it is possible to plan footstep
in a dynamic environment based on vision feedback [16].
In [17], a whole body motion based on a combination of
several postures is planned to reach a distant point with the
arm end-effector. Those remarkable results however did not
addressthe problem of manipulation while walking, and the
problem of motion generation based on sensor feedback.

In answer to this problem, we mainly focus on implement-
ing a complex sensor-based reactive full -body control on a
humanoid robot. Sensor-feedback control loop techniques,
such as visual servoing [6], [4] provide very ef� cient solu-
tions to control robot motions. It supplies high positioning
accuracy, good robustness to sensor noise and calibration
uncertainties, and reactivity to environment changes.

Very few work can be found for sensor-based control of
a whole-body humanoid robot. In [26] visual servoing is
used to position the leg of a HOAP-1 Fujitsu humanoid
robot. Several works have been proposed to solve a vision-
based manipulation task on humanoid torso or on non-

N. Mansard and F. Chaumette are with IRISA / INRIA Rennes, France
f Nicolas.Mansard,Francois.Chaumette g@irisa.fr

O. Stasse and K. Yokoi are with JRL ISRI/AIST-CNRS Tsukuba, Japan
f Olivier.Stasse,Kazuhito.Yokoi g@aist.go.jp

walking robot [3], [24], [13]. All these works demonstrate
the ef� ciency of sensor-based reactive control for developing
robust and accurate task for humanoid robots. However, none
of them was extended for full -body motion generation.

Such framework has been proposed by Sentis et al. in
[19]. It integrates task-oriented dynamic control and control
prioritization. Impressive results have been demonstrated on
simulation. Another framework has been proposed by Sian
et al. [20] which relies on the use of Kajita's preview control
for the walking and onResolved Momentum Control (RMC)
to make sure that the tasks demanded at the upper body
level keep the robot balance. As the � nal goal of this work
is to teleoperate aHRP-2 humanoid robot, real-time whole-
body motion generation with short cycle is necessary. This
framework has been proved very reliable during several days
at the AICHI 2005 universal exposition.

In this work we propose to implement visual servoing for
full -body motion generation on a humanoid robot, using a
similar framework that was already proposed and validated
for arm manipulator robot [15]. This framework iscalled task
sequencing. Like the frameworks presented above, it enables
simple de� nitions of a complex task. Using the easy access
on the low-level controller, a task-level controller has also
been designed to deal with obstacles. The general idea is
to sequence aset of tasks to extend the local convergence
domain of the reactive visual-based control schemes, through
theuseof ageneral structure called stack of task, that ensures
the task prioritization along with the motor input continuity
at task change. This work is based on earlier works such
as switching control laws [5], [2] and task sequencing [22],
[18] that use atask-level reasoning controller to modify the
reactive-level control loop, in order to extend the conver-
gence domain and avoid obstacles. We will prove in the
following that the task sequencing framework isvery suitable
for whole-body motion generation of a humanoid robot, and
that it allows to implement complex tasks such as grasping
while walking, by a simple and very ef� cient way.

The next section will recall the task sequencing frame-
work, as a generic solution for humanoid control. Section III
presents the application of this framework to the HRP-2
robot. Asan application, wepropose to implement avisually-
guided grasping while walking, taking into account the joint
limits of the robot. The experiments on the real robot are
� nally presented in Section IV.

II . GENERAL CONTROL METHOD

The general control method used to realize a full -body-
motion sensor-based task is � rst presented. It is easily mod-
ulable, and could be adapted very ef� ciently for various type
of task. The control law iscomputed usingageneral structure
called stack of tasks [14] that is able to apply simultaneously
several tasks while ordering them to avoid con� icts. This
structure enables a very easy high-level control access, by
providing a simple way to activate or inactivate any task
during the execution to modify the robot behavior.

In the following, the stack of tasks structure is recalled,
in a generic way. We will i nsist on the use of the stack
of task for whole-body motion generation, to automatically
compensate the motions due to the walk that could perturb
the manipulation task.

A. Stack of tasks

The stack of tasks is a structure that orders the tasks
currently active. Only the tasks in the stack are taken into
account in the control law. The task at the bottom level has
priority over all the others, and the priority decreases as the
stack level increases. The control law is computed from the
tasks in the stack, in accordance with threerules:

- any new task added in the stack does not disturb the
tasks already in the stack.

- the control law is continuous, even when a task is added
or removed from the stack.

- if possible, the additional constraints should be added
to the control law, but without disturbing the tasks in
the stack.

The control law is computed from the stack, using the
redundancy formalism introduced in [21]. The additional
constraints are added at the very top of the stack, which
means that they are taken into account only if some degrees
of freedom (DOF) remain free after applying the active
tasks. This priority order may seem ill ogical, considering
that the constraints are obstacles that the robot should avoid.
However, the positioning task has priority since it is the task
we want to see completed, despite the obstacles. The high-
level controller is then used to ensure that the constraints are
respected when it is obvious that the robot will violate them.

1) Ensuring the priority: Let (e1 ; J1) ... (en ; Jn) be n
tasks. The control law computed from these n tasks should
ensure the priority, that is the task ei should not disturb the
task ej if i > j . A recursive computation of the articular
velocity is proposed in [21]:

�
_q0 = 0
_q i = _q i � 1 + (J i P A

i � 1)+ (_ei � J i _q i � 1); i = 1::n
(1)

where P A
i is the projector onto the null -spaceof the aug-

mented Jacobian JA
i = (J1 ; : : : J i) and eJ i = J i P A

i � 1 is the
limited Jacobian of the task i . The robot articular velocity
realizing all the tasks in the stack is _q = _qn .

2) Ensuring the continuity: ¿From (1), the control law is
obtained by imposing a referencevelocity _ei for each task in
the stack. Generally, an exponential decrease is required by
imposing the � rst order differential equation _ei = � � i ei .
However, this equation does not ensure the continuity of
the robot velocity when the stack is changed. In [14], we
proposed a solution to properly smooth the robot velocity at
the transition, by imposing a speci� c second order equation:

•ei + (� i + �) _ei + (� i �) ei = 0 (2)

where � i is the gain that tunes the convergencespeed of task
ei , and � sets the transition smoothnessof the global control
law. The control law is obtained by introducing (2) in (1):

�
_q i = _q i � 1 + (J i P A

i � 1)+ (� � i ei � J i _q i � 1)
_q = _qn + e� � (t � �)

�
_e(�) + � e(�)

� (3)

where � is the time of the last modi� cation of the stack.
3) Adding the secondary constraints: The constraints are

added using the Gradient Projection Method [12], [10].
The constraints are described by a cost function V. The
gradient g(q) of this cost function can be considered as an
arti� cial force, pushing the robot away from the undesirable
con� gurations. It is introduced as the last task of the stack.
It has thus to be projected onto the null spaceof each task
into the stack. Using (3), the complete control law is � nally

_q = _qn + e� � (t � �) �
_e(�) + � e(�)

�
� � P A

n g (4)

The reader is invited to refer to [14], [15] for more details.

B. Pattern generator

We re-implemented a pattern generator similar to the one
commercially available on the HRP-2 robot, based on [7].
From the footsteps given as an input, the center of mass
(CoM) trajectory is generated using a 3D linear inverted
pendulum model of the robot whose CoM moves on a plane.
The key is to solve an inverse problem from the ZMP
reference position deduced from the footsteps. This inverse
problem is solved usingapreview controller and thus implies
to know the future in the corresponding window (here 1.6
seconds). In order to take into account the real model of
the robot, Kajita proposed to use asecond stage of preview
control to compensate the difference between the ZMP of
the multibodymodel and the ZMP of the inverted pendulum.
This second stage of preview control is extremely ef� cient
but adds 1.6 seconds of the future to be known, and thus in
total 3.2 secondsof the future areneeded. Therefore themain
problem regarding a reactive control loop is to integrate the
immediate command generated by the task using the upper
body and the pattern generator to maintain stabilit y.

Some solutions to this problem are the RMC [8] and the
CoM Jacobian [23]. In both cases, the main ideais to cancel
disturbances of the CoM reference trajectory by using the
remaining DOF. Full bodymotion generation based onRMC
has been already realized in [20] but did not integrate atask
prioritization as in this work. In previous works, we have
tested experimentally the capabiliti es of the pattern generator
together with the stabili zer to cope with violations of the

CoM's planar motion and small disturbances of the ZMP. It
allowed us to make the � rst humanoid dynamically stepping
over obstacles [25]. For sake of simplicity and as a � rst
step we implemented a simple heuristic where the left arm
is used to compensate partially for the perturbation induced
by the stack of tasks implemented. For this reason we did
not integrate the chest as a free joint to stay in the area of
stabilit y. Our future work will i ntegrate COG Jacobian to use
fully the capabiliti es of the system.

C. Using the stack of task to compensate the inner motions
due to the walk

At each iteration, the pattern generator produces the next
reference position that should be reached by the robot. The
walking behavior can thus be written as a task function:

ew al k = q l eg � q l eg
� (5)

where q l eg is the current articular position of the two legs
and q l eg

� is the reference position produced by the pattern
generator. The jacobian Jw al k is very simply:

Jw al k =
�

I n l eg 0n l eg 0n � 2n l eg

0n l eg I n l eg 0n � 2n l eg

�
(6)

where n is the total number robot joints, and nl eg = 6 is
the number of joints of each leg. As shown by (5), the
walking task uses the 12-DOF of the legs and noredundancy
isavailable for any other task. Theother taskscan be realized
using the upper-body joints. Let us � rst consider a controller
whose only entries are the upper-bodyarticular velocity _qup .
Let eup be a task function whose jacobian Jup

up = @eup

@ _q up

is full rank. If the support leg moves (for example while
walking), then the task eup is perturbed. The time derivative
of the task error can thus be written:

_eup = Jup
up _qup +

@eup

@t
(7)

where @eup

@t are all the motions that are not due to the upper
body. In the present case, this motions are equals to the
perturbation due to the support-leg motions. They can be
written @eup

@t = @eup

@q l eg
_q l eg . The control law that executes

the reference task motion _eup
� while compensating the leg

motions can � nally be written:

_qup = Jup
up

+ �
_eup

� �
@eup

@q l eg
_q l eg

�
(8)

We suppose now that the stack state is
�

ew al k eup
�
. Let

us prove that the stack of task is able to generate exactly
the same compensation of the upper-body motion due to the
walk. The full -bodyjacobian Jup can be decomposed in two
parts by separating the legs from the rest of the body:

Jup =
h

J l eg
up Jup

up

i
(9)

where J l eg
up = @eup

@ _q l eg
. For the two tasks in the stack, the

control law (1) can be simply written:

_q = J+
w al k _ew al k +

�
Jup P w al k

� +
�

_eup � Jup J+
w al k _ew al k

�

(10)

Since Jw al k =
�
I 2n l eg 0

�
, the projector is:

P w al k =
�

02n l eg 0
0 I

�
(11)

Eq. (10) can � nally be written:

_q =
�

_ew al k

0

�
+ Jup

up
+ �

_eup � Jup J+
w al k _ew al k

�

=
�

_ew al k

Jup
up

+ �
_eup � Jup _q l eg

�
� (12)

where _q l eg = _ew al k . The second part of control vector
(which corresponds to theupper-bodymotion) isequal to (8).
This last result proves that the stack of task is appropriate
to generate full -body motion by automatically compensating
any motions due to the walk.

D. Execution controller

The stack of tasks provides a very simple solution to
allow control at the task level. In [15], we have proposed
a complete solution that ensures the respect of several
constraints during the execution of a non-redundant task on a
manipulator robot. Here this solution is applied for ensuring
the joint limits avoidance while walking and grasping.

As explained in the previous sections, the constraints are
applied at the top of the stack. They could thus be respected
only locally, and nothing ensures that some tasks of the
stack will not violate them. To ensure that the constraints
are never violated, a task-level controller has been designed.
The controller detects the colli sion by a linear prediction. It
then chooses the best task to be removed according to an
optimal criteria proposed in [15]. The optimal DOF is thus
freed up, and can be used to avoid the colli sion.

A secondcontroller was added to ensure the realization of
the global task when far enough from the constraints. The
second controller detects that the colli sion has been avoided
by a second prediction phase, and pushes back the removed
tasks in the stack as soon as possible. The reader is invited
to refer to [15] for more details.

III . APPLICATION TO GRASPING

We now present how the task sequencing framework can
be used for a speci� c task. We have implemented a grasping
based on visual servoing. Thanks to the stack structure that
intrinsically compensates the motion due to the walk, the
robot is able to grasp an object while walking. Thanks to
the robustness of visual servoing, it was even possible to
grasp a slowly-moving object.

A good estimate of the object position is obtained using
the two stereo cameras mounted on the robot head. The
� rst task is to keep the object centered in the image by
visual servoing during all the humanoid motion, to ensure
its visibilit y. The second task brings the robot gripper at the
object position so that it can grasp it. Finally, the joint limits
constraint is taken into account throughthe stack of tasks. In
the following, we will present this threetasks, alongwith the
high-level rules that have been used to realize the grasping
and to ensure the joint-limit avoidance.

The robot input controller is the full -body joint velocity:

_q =
�

_q ll ; _qr l ; _qch est ; _qn eck ; _qr ar m ; _q l ar m
�

(13)

where _qr l , _q ll , _qch est , _qn eck , _qr ar m and _q l ar m are the joint
velocities of the left leg, right leg, chest, neck, right and left
arm respectively.

A. Visual servoing

A visual servoing task is based on an error ei de� ned as
the difference between the current value of a visual feature
si observed in the image, and its desired value s�

i [4]:

ei = si � s�
i (14)

wheresi is the current valueof thevisual features for subtask
ei and s�

i their desired value. The interaction matrix L si

related to si is de� ned so that _si = L si v , where v is the
instantaneous camera velocity. From (14), it is clear that the
interaction matrix L si and the task Jacobian J i are linked by
the relation:

J i = L si M Jq (15)

where the matrix Jq denotes the robot Jacobian (_r = Jq _q)
and M is the matrix that relates the variation of the camera
velocity v to the variation of the chosen camera pose
parametrization (v = M _r).

B. Centering task

In order to ensure the object visibilit y during the servo,
and to stabili ze the image motion to improve the image
processing, the image of the object is centered in one of
the camera view. The centering task is thus simply:

eG = p l ef t (16)

where p l ef t =
�
xG ; yG

�
is the current position of the object

centroid in the left camera image. The interaction matrix of
eG is the well known interaction matrix of the point [4].
Finally, the full -body jacobian of the centering task is:

JqG =
�

cam Jsl
cam Jch est

cam Jn eck 0 0
�

(17)

where cam Jsl , cam Jch est and cam Jn eck are the jacobians of
thesupport leg, the chest and theneck respectively, computed
in the left camera frame. If the right leg is on the ground,
the jacobian of the support leg is:

cam Jsl =
� cam T r foo t

r foo t T w ai st J r l eg 0
�

(18)

where cam T r foo t and r foo t T w ai st are the twist matrices
from the right foot frame (right-leg end effector) to the
camera frame and from the waist frame to the camera frame
respectively. The matrix J r l eg is the jacobian of the right leg
computed in the waist frame. The opposite construction of
cam Jsl is done if the right foot is in � ight.

C. Grasping task

The grasping task is mainly a 3D-positioning of the right-
hand gripper at the object position. However, to ensure that
the gripper will be properly oriented when grasping, we have
chosen to dissociate the positioning task in two parts. The
� rst part controls the orientation of the gripper, the second
part controls the distance to the object.

poF r cam

y r h

x r h

xw

F r hand

zr h

P r ef

F l cam

zw

yw

Fwaist

xw

Fig. 1. De� nition of frames F r h and and F l cam .

1) Gripper orientation control: The end effector of the
right hand is noted F r h and (see Fig. 1). The origin of this
frame is set at the center of the grip, and the Z-axis is set to
correspond to the opening of the gripper. To properly grasp
theobject, it has to bebekept in front of thegripper opening,
that is to say on the Z-axis. We note po =

�
X o; Yo; Zo

�

the center of the object expressed in F r h and . The orientation
task is thus:

e� =
�

X o

Yo

�
(19)

The interaction matrix of this task can be obtained by
derivation of e� :

_e� =
� _X o

_Yo

�
=

�
1 0 0
0 1 0

�
_po (20)

We note v r h and =
�
v; !

�
the cartesian velocity of frame

F r h and (v r h and = r h Jq _q). The velocity of po with respect
to the arm velocity is given by:

_po = � v + ! � po = � v � fpo ! =
�

I 3 fpo
�

v (21)

where fpo is the cross-product matrix of po . By introducing
(21) into (20), the interaction matrix L � of e� is � nally
obtained:

L � =
�

� 1 0 0 0 � Zo Yo

0 � 1 0 Zo 0 � X o

�
(22)

The articular jacobian of e� is the right-arm end-effector
jacobian with respect to the joints of the support leg, the
chest and the right arm. Its computation is similar to (17)
and is thus left to the reader.

2) Gripper position control: When the task e� is active
and realized, the remaining DOF to grasp the object is
controlled by thedistancebetween thegripper and theobject.
We have chosen to use the task de� ned by:

e3D = p r h and � po (23)

where p r h and and po are computed in the same frame. The
frame F r h and has been chosen as a common frame (the error
is thus e3D = � r h and po). The interaction matrix is thus
simply the identity matrix L 3D =

�
I 3 03

�
, and the articular

jacobian is the same than the articular jacobian of task e� .

The task e3D is thus strongly coupled to the task e� .
However, thanks to the priority order provided by the stack
of tasks, an arti� cial decoupling is imposed that ensures that
the two tasks will not con� ict during the servo. For that, we
simply impose that task e3D has a lower priority than task
e� .

3) Vertical orientation of the gripper: The tasks presented
above only constrain three of the six DOF of the gripper.
To improve the quality of the grasping, another task is
introduced to control the vertical orientation of the gripper
during the grasping. This is a � rst step toward grasping
complex object.

The arm end-effector frame is noted F r han d =
(x r h ; y r h ; zr h) (see Fig. 1). The task regulates the position
of the plane P =

�
x r h ; zr h

�
to the vertical, that is to say

to the reference plane P r ef =
�
xw ; zr h

�
. The regulation of

the plane is equivalent to the regulation of its normal. The
normal of P is y r h . The error could thus be written:

ev er t = y r h � y r ef (24)

where y r ef is the normal to P r ef : y r ef = zr h � xw . The
interaction matrix is given by [9]:

L v er t =
�

03 gy r h
�

(25)

It has three lines, but is always of rank 2. The articular
jacobian of this task is the same than the articular jacobian
of the task e� .

D. Joint limit avoidance

The joint-limit constraint is added at the top of the stack
using (3). The cost function for joint-limit avoidance is
de� ned directly in the articular space. It reaches its maximal
value near the joint limits, and it is nearly constant (so that
the gradient is nearly zero) far from the limits.

The robot lower and upper joint limits for each axis
i are denoted �qmin

i and �qmax
i . The robot con� guration q

is said acceptable if, for all i , q i 2 [�qmin
` i ; �qmax

` i], where
�qmin
` i = �qmin

i + � �qi , �qmax
` i = �qmax

i � � �qi , �qi = �qmax
i � �qmin

i
is the length of the domain of the articulation i , and � is a
tuning parameter, in [0; 1=2] (typically, � = 0:1). �qmin

` i and
�qmax
` i are activation thresholds. In the acceptable interval, the

avoidanceforceshould be zero. The cost function V j l is thus
given by [1]:

V j l (q) =
1
2

nX

i = 1

� i
2

� �qi
(26)

where

� i =

8
<

:

q i � �qmin
` i ;

q i � �qmax
` i ;

0;

if q i < �qmin
` i

if q i > �qmax
` i

else

E. Two high-level rules

Finally, the high-level controller is added to ensure a
goodexecution of the complex required behavior. Two rules
are applied to drive the high-level controller. The � rst one
ensures that the joint-limit constraint is preserved during the
execution. The second one ensures that the robot really tries
to grasp the object only when it is close enough.

1) Balance versus joint limits avoidance: As explained
upper, we have chosen not to control explicitly the balanceof
the robot due to the upper body motions. Indeed, the lower-
body controller has been experimentally proved to be robust
enoughto ensure the robot balance under the constraint that
the chest joints are used as littl e as possible. However, these
joints are necessary to bring some redundancy to the upper-
body tasks. In particular, the chest joints are necessary to
enlarge the neck joint domain, that is very short by itself.
We thus de� ne a last task ech est that constrains the chest
joints to stay at its zero position. By introducing this task in
the lower part of the stack, we ensure that none of the upper-
body tasks will use the chest joints in the general case.

The high-level controller recalled in II-D is then used to
ensure the neck-joint-limit avoidance, and the visibilit y task
execution. When the neck joints are going to colli de their
limits, the task ech est is automatically removed from the
stack. This gives the necessary redundancy for joint-limit
avoidance and task execution. When nocolli sion is detected,
the task ech est is pushed back, which ensures that the chest
joints are used as littl e as possible.

This task ech est is a very ad hoc (but very ef� cient) way
to ensure the robot balance. In the near future, we plan to
generalizethis solution byimplementing a real CoM control,
as done for example in [20].

2) Grasping only when close enough: This second rule
is added to limit the time where the arm is fully extended.
Indeed, this position is better to be avoided, because of the
singular arm con� guration, and also because of the distur-
bance caused to the robot balance. Let do be the distance
from the shoulder to the object (do = jj r sM cam po jj , where
r sM cam is thehomogeneousmatrix passing from the camera
frame to the right shoulder frame. When the object is too far
(do > dm ax , where dm ax is the length of the arm), then the
task e3D is removed from the stack. To avoid any oscill ation
when do is close to dm ax , the task e3D is pushed back
when do is below 80% dm ax . This simple rule enables the
robot to prepare the grasping when it is far from the object,
by regulating the task e� to 0, without penalizing the arm
manipulabilit y or the robot balance.

IV. EXPERIMENTS AND RESULTS

The robot used for the experiments is a HRP-2 humanoid
robot. The control loopruns at 200H z. The camera feedback
runs at 30H z. A Kalman � lter is used to synchronize the
two process loops. The presented experiment is a typical
execution of the complete application. An object is placed in
the workspace, and is moved randomly. The robot is walking
along a planned trajectory that passes close to the object.
While walking, the robot has to grasp the object.

The experiment is summed up in Fig. 2 to 7. The robot
starts walking at iteration 2300. It arrives close enough
from the object at Event (1) (see Fig. 2). The task e3D

is then added in the stack, and is quickly completed. At
iteration 3800, the object is in the hand, and the robot closes
its griper. All the tasks are � nally removed from the stack
to � nish the execution, as soon as the torque sensors detects

