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Abstract— This paper presents our contribution to vision based observed by the camera. In [14], the object recognition and
I’ObOt!C assistance for peopl_e with disabilities. The rehab_ilitative pose estimation is performed by compariagr T descriptors
robotic arms currently available on the market are directly [17] and color histograms with the database. Object tracking

controlled by adaptive devices, which lead to increasing strain . . .
on the user's disability. To reduce the need for user's actions, methods like [15, 5] suppose that an object model is known

we propose here several vision-based solutions to automatize the(respectively a sparsgD model and a structured one).
grasping of unknown objects. Neither appearance data bases Instead of requiring the knowledge of all possible objects
nor object models are considered. All the needed information several methods propose to infer the object characteristics or
is computed on Ilng. This paper focuses on the positioning of the shape in order to get a set of object categories that are then
camera and the gripper approach. For each of those two steps, . . .
two alternative solutions are provided. All the methods have been used to guide the robot toward the grasping p_o_SItlon. In [20],
tested and validated on robotics cells. Some have already beend set of rendere8D models are used as a training database.
integrated into our mobile robot SAM. A supervised learning stage enables an object to be associated
with one of the ve obtained categories, and from there selects
the best grasping position. TheoVvAID project [22] uses a
This work relates to robotic assistance for disable peoplmixed fuzzy logic/neural network module to select the best
where autonomous robotic systems are designed to compgrasping position.
sate for a human motor disability. We propose solutions for Naturally, the user expects to be able to grasp any object in
the grasping of any object within a domestic environment sutiis environment. Nevertheless, no machine learning or object
as an apartment. Providing a robust, generic and easy-to-tseognition technique can succeed in handling every kind of
solution to improve the user's interaction with their personalbject. It is thus necessary to provide solutions to deal with
environment would largely increase their autonomy. unknown objects, at least as a complement to these methods.
Contrary to an industrial environment [19], the domestiln this context, several approaches propose to infer the object
environment is highly unstructured. Thus, the robotic systecharacteristics from its observed shape. Pk structure of
needs exterioceptive sensors to adapt its behavior to the curtéetobject can be used to determine the grasping position, such
situation. Vision sensors are almost always used: this senaerits skeleton [11] or it8D moments [19]. Some approaches
is quite cheap, the acquired information is very rich, and tiely on implicit 3D functions to model the object3D shape,
can even be directly used as feedback for the user. using active vision to re ne the estimated parameters [25, 10].
In most of the robotic systems, the camera is embedded onto
A. State of the art the arm gripper dye-in-handcon guration) and the object is
Before starting a grasping procedure, a robotic system rstupposed to be directly within the camera eld of vierof).
needs to extract information on the object from the visualevertheless, the perception of the environment around the
input. In order to handle any object shape and appearancearih is strongly restricted, and there is little chance that the
is necessary to make some assumptions on the situationsdheve requirement is met, especially when the arm is mounted
robot can handle. on a mobile unit. Few methods address this problem. It is
Some approaches propose to constrain the possible locatiossally solved by using an external additional camexge{
for the object. For example, [11] assumes that the scenetashand con guration). In [12] an initialization step ensures
known and uses a simple image difference with the knowhat a moving object detected by the eye-to-hand camera falls
background to localize the object. The projeeRIEND Il within the embedded cameraisov. [14] adds a wideFov
reduces the grasping area to a tactile tray xed on an instrstereo rig to orientate an eye-in-hand stereo rig toward the
mented wheelchair [24]. object direction.
Since the user would like to operate anywhere in his home, .
it is dif cult to constrain the grasping place ; assumptions mu& Our system philosophy
then be made on the objects themselves. Some solutions rel@ur robotic system has been designed to observe the fol-
on a data base of objects which is used to recognize the sclaweing constraints: (i) no assumption is made on the scene

I. INTRODUCTION



structure surrounding the object to grasp, (ii) mopriori
information on the object appearance @i® model, no image
database) is used (iii) the user's actions are reduced to a
minimum.

In this paper, we propose two alternate solutions to address
situations where the object is not directly inside the embedded
cameraFov (sectionll). We then investigate the automatic
positioning of the arm in front of the object (sectidn).

Since there is not a unigue solution to perform vision-
based grasping, it is possible to provide several concurrent
methods, with different physical architectures and algorithmic
assumptions. The best solution can then be selected depending
on the user's situation, and his personal preferences.

The current design of our robaam [18] is a result of
discussions with end users, especially from BRPROCHE
group. One of their main concerns was to avoid creatingiise ¥ ~
bulky wheelchair: some users were indeed complaining ab(Sg-$ | /

G

Fig. 1. sAam: a Manus arm mounted onto the MPM470 mobile platform.

the increased size of a wheelchair with an embedded a
preventing them from moving freely in their apartment [8].
SAM (see Fig.1) is made of a mobile platform (MPM47p

amera
. 4o < optical axis
%

Robot first axis
solutions for self-localization and navigation (thus we suppo Al L
in this paper that the desired object is reachable by t b
arm). TheMANUS arm is the most widespread arm within (@) (b)
the rehabilitation eld [1]. The user interacts with the roboE _ - o
. L , . ig. 2. Panoramic-based arm positioning: (a) the omnidirectional camera
through a remoteimi designed to minimize the user's actioNmoynted onto thevianus rst axis, (b) the panoramic-embedded camera's
relation when the second one is correctly aligned.

I[l. ARM ORIENTATION TOWARD THE OBJECT DIRECTION

The very rst step to start any vision-based grasping is to
get the object within the embedded camev. We propose  The eye-in-hand camera’s optical axis is to be aligned with
to use an eye-to-hand camera to get a global view of tHee axis passing the optical centers of the two cameras, so that
environment. A single click on this view givesam enough the embedded camera acts as if it was rigidly linked to a virtual
information to move its eye-in-hand camera so thatfgsy ~ axis centered on the base frame. As soon as this alignment is
holds the object. Two alternative solutions are described, usiaghieved, the motion to perform to see the direction indicated
respectively a catadioptric sensor and a pinhole camera. by the user with the embedded camera is:

A. Arm positioning with a catadioptric sensor ® = ®t g (& )
.y . . . - 2 c -
The appeal of an omnidirectional camera is that a single = 20+ 5 x arctan Je |

acquisition gives 860 view of the environment. The mirror

in our sensor has been worked out to get a vertical wide

enough to see an object from the oor up 180 m high [4].
The omnidirectional camera is mounted on theNus

shoulder (see Fig2(@)), i.e. its rst joint. The direction of Figures3 and 4 illustrate this method. The left image of

the rst axis remains constant within the panoramic view.. . N . .
Furthermore, there is a direct mapping between an imag(\a,\figg' 3 is the initial embedded camerav. The desired object

coordinatexq, and the corresponding rst joint anglg. Let (a coffee box) is not visible. Figd is the panoramic view

Xg be the constant rst joint projection onto the panoramig ir\?vr!dgd ttr? thenl:srer. Lh? trr;ght pIiCttiU:ﬁnof '??H's t?ﬁ] V'ﬁ\tN th
view. Then the motion to perform, such that this joint pointg en by the camera after the positioning of the arm onto the

L P object.
toward the selected direction, is: . . .
This method has been assessed and veried during one

2 Xq, Xg | (1) month within four French medical centérby 24 valid and 20
XM ° tetraplegic people. Even though the user feedback was globally
wherexy denotes the horizontal length of the panoramic viewositive, some constraints were considered as drawbacks by
some people. The rst complaint was that the image resolution
lassociation promoting the use of robotics platform by disabled people

2designed by Neobotixhttp://www.neobotix.de 4crRF Coubert, cHU Reims, Center Cabs at Berck sur Mer, anadHU
3designed bu ExactDynamichttp://www.exactdynamics.nl/ Raymond Poinca@r at Garches

)

where(Xc;Yc) are the embedded camera frame center coordi-
nates expressed in the base frame. This method ensures that the
vertical 3D line going through the indicated point is centered

in the eye-in-hand view.

q:


http://www.neobotix.de
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eye-in-hand
camera

Fig. 3. Panoramic-based arm positioning: images acquired by the embedded
camera before and after the motion.

Fig. 5. Experimental setup, with a cluttered scene. The red line, de ned by
the user click, is the epipolar line that is covered by the embedded camera.

value s . This minimization is performed by moving the
camera with a velocity deduced from [3]:

¢ = L:es; 4)

Fig. 4. Panoramic view provided to the user before the arm positioning.

Red crosses: positions that can not reach the rst joint. White line: rst axiwhere is a positive scalar, anlls is the interaction matrix

position. Blue line: initialFov of the camera (left picture of Fig). Green Iinking the variation of the feature position to the motion of

line: desired camera direction, given by the user with one click. After the ar .

positioning, the embedded camera gives the right picture of3Fig the camera. In order to scan the line, we use a redundant
control law involving two tasks. The rst taslke;, controls the
orientation of the camera.¢. the arm) so that the epipolar line

is not sharp enough, especially on the lower part of thetays horizontal and centered in the embedded view, while the

image-corresponding to the central area of the acquired viesgcond taske,, handles the camera motion along this line.

described by fewer pixels. Another complaint was that thiehe control law is [3]:

solution does not control the gripper's height, and may need B + +
additional user action to adjust the gripper vertically to see the ¢ 161 e 2PEy € ®)
object. The redundancy framework ensures that the epipolar line

B. Arm positioning with an eye-to-hand pinhole camera cente_ring (primary task) remains satis ed by requiring the line
. . . L . (foverlng task to operate onto the null spacd.ef
In this section, the eye-to-hand imaging is done by a pinhole )y gayesian object detectiorfhe visual appearance of the
camera. Given the user's click on this view and the Ca"brat'cifbject is de ned by the region around the user's click in the
of the system, the object coordinates along #handy axes oy 1o hand view. The object's location is thus obtained by

within the eye-to-hand camera frame_are directly obtaine mparing this description with the ones acquired by the eye-

However, the depth of the object remains unknown, and thHﬁhand camera during the line scanning.

we get a set of candidate positions within the eye-in-handrpg reference and all the candidate zones are characterized
camera frame corresponding to an epipolar line. The methgd ¢+ gescriptors [17], and each couple reference-candidate
proposed here consists of scanning this line with the eye-{fja,y js searched for matches. Each match gives a con dence
hand camera and detecting the location of the object by image,a underlying object depth. Finally the depth having the

processing [7]. _ _ _ highest score is associated with the object. The object is nally
1) Surng on the epipole:The geometrical relations de'brought back to the eye-in-hand cameav.

scribing a scene observed by two cameras can be summarlzeg) Experimental resultsThis method has been applied ex-

by the essential matriXE: perimentally and validated on a robotic cell (the experimental
2p”2E,p = 0; (3) setup is displayed on @5). Figure 6 presents views before,
during and after the arm navigation. The object is always
which indicates that the point corresponding to the clickeghrrectly brought inside the camerav.
pointp belongs to a line in the eye-in-hand view, tyapolar
line 2E;'p. The essential matrix is directly de ned by the Ill. GRASPING UNKNOWN OBJECTS
relative position of the two cameras. Thus, if the de ned line Both of the previous stages ensure that the camera position-
is scanned by the second camera, the corresponding 3inting requirement (de ned at the end of SdeA) is met. This
will necessarily be observed. section proposes two different solutions for the autonomous
The epipolar line is scanned using visual servoing. Visuabject grasping. The rst one (sectiohl-A), based on a
servoing aims to reduce the differeneg= s s between a stereo virtual visual servoing, can handle textured objects. The
visual feature values observed by a camera, and its desiregrasping strategy consists in servoing the translational degrees



@) (b)

Fig. 7. Stereo rig used to bring the gripper just in front of the object. When
the cameras are too close to the object, a blind forward motion is performed
so that the object enters the gripper. This is detected by an optical barrier (b).
The gripper is then closed, applying a pressure controlled by load cells (c).

(© (d)

Fig. 6. Method illustration : (a) eye-to-hand view, with the user click (b)
initial eye-in-hand view, with the current epipolar line in green and its desired
position in red, (c) view during line scanning, (d) nabv of the camera.

Fig. 8. Cup tracking. Only the right image is shown. The rst view is the
of the arm to bring the gripper in front of the object. Thénitial one where the box has been de ned.
second one, based on an active estimation of the object shape
(sectionlll-B) leads to a more accurate grasping position, but
needs an additional exploration step.

A. Stereovision-based object grasping

This rst solution compensates for the lack of information gy o
on the object to grasp by embedding a stereo rig on the gripper
(see Fig.7). It relies on a tracking method estimating at each
iteration the object pose within the camera frame, in order to3) Experiments:Figure 8 illustrates the tracker behavior
guide the arm just in front of the object. This pose estimatiasn a classical object. The box de ned by the user is correctly
uses the virtual visual servoing framework that reuses th@cked even when the object undergoes rotations.
principle of visual servoing (see edl)). The description made  This technique has been integrated istmv, and intensively
in [5] uses contours as visual information ; in our case, wested during clinical evaluations and several demonstrations.
consider Harris points. Figure9 shows a variety of textured objects that have been cor-

1) Sparse Object Model estimationThe virtual visual rectly tracked and grasped. Figut® illustrates the position-
servoing needs an object model to realize the estimation fsed control of the arm. It shows the classical exponential
the object pose ; information that we do not have. Thus, @ecrease of the error.
estimation of this model has to be performed on-line. The This method presents two main advantages: (i) it is very
advantage of a stereo rig is tf&id information can be directly easy to launch: only two user clicks are needed to de ne the
extracted without moving the arm. box (ii) no 3D a priori information is required, since all the

The input of the process is a box surrounding the objesteded data is automatically extracted from the visual input.
de ned by the user on a remote display-which can be done furthermore, the initialization step is not time consuming:
only two image clicks. First, Harris points are extracted fromnce the user has dened the box, the sparse model is
the region of interest, and their relatives are searched withistimated in around 100 ms, and the arm guidance toward
the second view ; we use the differential trackam [21]. the object starts almost directly.

Thanks to the stereo rig calibration, a spa3Be model of the However, this grasping strategy fails when the grasping
object can then be built. position should be associated to the object's shape and pose,

2) Vision-based arm positioningDuring the motion, the e g. an object lying on a table or with special features (tea cup
points are tracked in each optical ow witkLT. The pose with an handle).
estimation is done with a stereo implementation of the virtual |n order to obtain a more suited strategy, it is then necessary

visual servoing, as in [5]. to extract more information on the object.
The grasping strategy consists of controlling the transla-

tional velocities of the arm to move toward the object whil8- Rough 3D shape estimation by active vision

centering the box's centroid. Its desired position is about 200The de nition of a better grasping position implies to
mm from the gripper framd,e. about 5 cm from the gripper's estimate the object shape on-line. We suggest that the objective
ngers. here is not to get an accurate object reconstruction, but rather

Example of objects correctly grasped (cards, can, book, bottle).



appearance or to aa priori known model.

As an input, the active contour algorithm needs an initial
box almost surrounding the object. This information can be
provided by the method used to get the object inside the
embedded camemov (see previous section). Note that one
click is even suf cient. Indeed, if the click is almost at the
center of the object, the scale of the box can be automatically
obtained by studying the object intrinsic scale [16].

In each view, the active contours extraction gives a set of

Fig. 10. Visual servoing on the card box (see Fj.object center position 2D image point = (x;y; 1) (in gr?en in g.11) that belong
error (in mm) vs iteration. to the apparent contour of the object.

2) Conic parameters estimationThe points extracted by
the active edge detector are then used to estimate the corre-
spondingC3 3 conic parameters such that [26]:

g(x;c) = x> Cx; (6)

This computation is performed for each considered view, and
the obtainedC; conic parameters are stored along with the
corresponding camera positions.

3) Quadric representationThis step consists of estimating
the quadric parameters whose projection best ts the data
stored in the previous step.

The equation of a quadric expressed in the Cartesian refer-
ence frameR,,, is such that:

hW(Wx;W ): Wx>W WX, (7)

Fig. 11. Quadric tting scheme. Within each view, the real object shap‘é’here: X = (Xws Yws Zw; 1) are the hqmogeneou@p
projection (in yellow) is approximated by a conic (in green). The projection afoordinates of a contour point expressed%m ,andV is

the estimated quadric is in red. The optimization process consists in reducjpgs symmetric positive matrix associated with the quadric
the difference between the quadric projections and the measured conics. . ) . . ’
Given an estimation of the quadric parametérs and the

camera calibration (extrinsic and intrinsic parameters), we can

to gather enough informationg. the pose and the rough siz compute the corresponding projectiaisin every view taken

. ; . .~ by the eye-in-hand camera. Thus, the quadric parametriza-
of the object, to allow a manipulator to grasp it by alignin . :
. o . : . . . jon that best ts the observed object shape is the one that
the gripper with its minor axis while being perpendicular to

) . . minimizes the error between the measured coficand the
its major axis.

ojected one< . This quadric is obtained by minimizing the
This approach is based on contour analysis and on implifi J < d y g

3D reconstruction methods [6BD shapes are represente tIIowmg cost function:
by quadrics. They have the nice property of projecting on an
image plane in conics, which provide compact representations
that are easy to extract. The reconstruction scheme is the
following: get several views of the object at different camera wherei 2 [0; 5] is the index of thé™ conic parameter and
locations, track the conics in the acquired views, and upe [0;N] the index of thg ™ view.
the parameters of the conics to estimate by minimization theAs in [25], we can solve this problem using non-linear
parameters of the corresponding quadric (see Eiy. The minimization techniques. In order to cope with potential noise
quality of the reconstruction obviously relies on the locatioria the edge points extraction, we propose to us a robust
of each acquired views. Hence we also propose to use activenberg-Marquartd minimization algorithm [23].
vision in order to determine the next best view. 4) Active vision to cope with ambiguitieSthe quality of

1) Contour extraction:Active contours are used to extracthe estimation of the quadric parameters strongly depends on
the points of the object's edge [13]. We use a parametiie different views used to describe the object. For instance,
formulation of the active contour [2] which is more robust thamiews taken too closely to eachother will provide a bad
the classical formulation based directly on point motion. Thestimation of the quadric.
use of such techniques adds two assumptions: (i) the object ig\ctive vision is used to de ne the best camera position to
entirely seen in every view (it is ensured by the active visioescribe the object. [25] proposed to use the uncertainty of
step, sedll-B.4), (i) the object can be segmented from thé¢he parameter estimation to control the camera displacement.
scene without resorting to either prior knowledge about ifEhey highlight the link between the uncertainty and the

X , .
= G o) ©
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involving a mobile unit. The methods validated on robotic
cells are currently integrated anm, and will be soon tested
by the envisioned end-users.
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