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Abstract— Classical visual servoing approaches tend to
constrain all degrees of freedom (DOF) of the robot during
the execution of a task. In this article a new approach
is proposed. The key idea is to control the robot with a
very under-constrained task when it is far from the desired
position, and to incrementally constrain the global task
by adding further tasks as the robot moves closer to the
goal. As long as they are sufficient, the remaining DOF
are used to avoid undesirable configurations, such as joint
limits. Closer from the goal, when not enough DOF remain
available for avoidance, an execution controller selects a
task to be temporary removed from the applied tasks.
The released DOF can then be used for the joint limits
avoidance. A complete solution to implement this general
idea is proposed. Experiments that prove the validity of the
approach are also provided.

I. INTRODUCTION

Visual servoing provides very efficient solutions to
control robot motions from an initial position to a precise
goal [10]. It supplies high accuracy for the final pose, and
good robustness to noise in image processing, camera
calibration and other setting parameters. However, if the
initial error is large, such a control may become erratic
[2]. Approaches such as 2-1/2-D[12] or path planning [6],
[15] provide solutions that enlarge the region where the
system converges. But they each constrain all the avail-
able robot DOF from the beginning of the servo. This
imposes an unique trajectory to the robot. Particularly,
if a new problem, such as an obstacle, is encountered
during the task execution, the entire trajectory has to
be modified to take it into account. In this paper, we
propose to sequence uncomplete tasks until the robot
reaches its desired position rather than to use a complete
one [16], [20], [17]. Very low constraints are used when
the robot is far from the goal, in order to enlarge the
trajectories available. Constraints are progressively added
as the robot draws near to the required position [13].
When enough DOF are available, they can be used
to avoid any undesirable situation [14]. Closer from
the required position, when not enough DOF remain
available for avoidance, additional DOF are obtained by
temporary removing a specific constraint when solving
the encountered problem.

A vast number of trajectories are usually available to
reach the goal. However, by constraining all DOF from
the beginning, the classical control schemes choose a
particular trajectory, without knowing if it is valid or not.
In some particular cases, this can lead to singularity or
instability problems. To always obtain an ideal execution,
a first solution is to plan the trajectory, for example by
using the potential field method [6], [15]. The idea is
to choose an optimal trajectory among all the available

0-7803-8914-X/05/$20.00 ©2005 IEEE.

3154

ones. This provides a complete solution, which ensures
optimality, stability and physical feasibility to the goal
when it is reachable. Path planning solves the deficien-
cies of basic approaches, but by applying even stronger
constraints to the trajectory of the robot. This means,
however, that this solution is less reactive to changes of
the goal, of the environment or of the constraints. Rather
than deciding in advance which path should be used to
reach the goal, switched systems use a set of subsystems
along with a discrete switching control [8], [5]. The
robot will then avoid difficult regions by switching from
a first control law (a particular trajectory) to another
one when necessary. This enlarges the stable area to the
union of the stable area of each task used. In [13], we
described a solution to stack elementary tasks one on
top of the others until all degrees of freedom of the
robot are constrained, and the desired position is reached.
When the robot is far from its desired position, only few
DOF are constrained, and the remaining can be used
to vary the trajectory, in order to avoid any problem
encountered during the execution. Therefore this method
does not give satisfactory results when the DOF needed
to avoid the problem are already constrained. This is
really problematic in the neighborhood of the desired
position, when almost all elementary tasks are already
stacked.

The key idea of this work is to separate a complete
servoing task into several elementary tasks, that are added
to a stack when the robot comes closer from the goal. At
each step, the robot moves to achieve an elementary task,
maintaining all the elementary tasks already completed.
At the end, the robot is entirely constrained by the sum
of the constraints of each elementary task. Additional
constraints such as joint limit avoidance can also be
added using the remaining DOF. When these additional
constraints can not be ensured because of the lack of
appropriate DOF, an elementary task already completed
can temporary be released.

In this paper, the structure of the stack of tasks used to
sequence the elementary tasks is first defined. A control
law is computed that maintains the tasks already achieved
when moving the robot according to the last elemen-
tary task. This is done by a stack of tasks, using the
redundancy formalism introduced in [18]. Contrary to the
solution proposed in [13], we rather use the least square
resolution method to extend the redundancy formalism
to several tasks [19]. The stack also guarantees the
continuity of the control law, whatever the manipulation
on the stack. We then describe a first general solution
to use the remaining DOF for additional constraints
such as joint limits avoidance. This method is based on



the Gradient Projection Method [14], [11]. This method
gives satisfactory results when the robot is highly under
constrained (i.e. far from the goal). However the robot
behavior is inadequate when the appropriate DOF are
already constrained, especially when the robot is almost
fully constrained. A method to provide additional DOF
when necessary is then proposed. When the additional
constraints can not be respected using the Gradient
Projection Method, the elementary task that bothers the
execution is detected. It is then temporary removed from
the stack. When the problem is solved, the removed
task can be put back into the stack. Section II presents
the structure of the stack. In Section III, the Gradient
Projection Method is recalled and applied on the control
law obtained in the previous section. A general method
to free additional DOF when needed is exposed in
Section IV. The experimental results are finally set out
in Section V.

II. VISUAL SERVOING USING A STACK OF TASKS

In this section, we expose how to sequence elementary
tasks and to maintain the tasks already achieved. The
control law is computed from the tasks in the stack, in
accordance with two rules:

- any new task added in the stack should not disturb
the tasks already in the stack. Particularly, the tasks
already completed should remain to zero.

- the control law computed should be continuous,
even when a task is added or removed from the
stack. The robot is controlled by the articular ve-
locity 4. A break of continuity means an infinite
acceleration during a short period of time, which
implies that the control will not be correctly applied.

Section II-A presents the redundancy formalism [18].
It has first been used for visual servoing in [7], and
in numerous applications since (e.g. avoiding visual
occultations [14], or human-machine cooperation using
vision control [9]). The idea is to use the DOF left
by a first task having priority, to realize a secondary
task at best without disturbing the first one. Section II-
B sets out the way the redundancy formalism is used
to stack several elementary tasks. In Section II-C, we
briefly recall the method proposed in [13] to ensure the
control law continuity, using a non homogeneous first
order differential equation.

A. Redundancy formalism for two tasks

Let g be the articular vector of the robot. Let e; and
ey be two tasks, J; = %}i (i = 1,2) their jacobian,
defined by: 5

. €j . .
6 = 5-4=J4 (M
q

Since the robot is controlled using its articular velocity q,
(1) has to be inversed. The general solution (with ¢ = 1)
is:

q=J7€1 + Pz @)

where P is the orthogonal projection operator on the
null space of J; and J7 is the pseudoinverse (or least-
squares inverse) of J;. z can be used to apply a sec-
ondary command, that will not disturb the task e; having

priority. Here, z will be used to carry out at best the task
e2. Introducing (2) in (1) (with ¢ = 2):

€y = Jsze'l + JoPqz (3)

By inversing this last equation, and introducing the
computed z in (2), we finally get:

qufél —|—P1(J2P1)+(e'2 —JzJiLe']_) (4)

Since P is Hermitian and idempotent (it is a projection
operator), (4) can be written:

N+N
q:er'l +J2 &2 %)

where 3; = JoP; is the limited jacobian of the task
ez, giving the available range for the secondary task to
be performed without affecting the first task, and é5 =
€3 —JoJ fe'l is the secondary task function, without the
part JoJ 1'61 of the job already accomplished by the first
task. A very good intuitive explanation of this equation
is given in [1].

B. Extending redundancy formalism for several tasks

Let (e1,J1) ... (en, Jn) be n tasks. We want to extend
(5) to these n tasks. Task e; should not disturb task e; if
1 > j. A recursive extension of (5) is proposed in [19]:

G =1+ (TP )T(6 — Tidsi1) (6)

where P# is the projector onto the null-space of the
augmented Jacobian J& = (Jq,...J;). The recursion is
initialized by qg = 0. The robot velocity is q = qy,.

Using directly this recursive equation, a projector has
to be computed on each step of the computation. A
recursive formula for the computation of the projector
is proposed in [1]. We recall this equation here

PA=PA, - T T, (7)

where .i =J iPﬁ 1 1s the limited jacobian of the task s.
The recursion is initialized by P§ = I (identity matrix).

C. Smooth transition

Usually, the control law is obtained from the following
equation that constrains the behavior of the task function:

é = fi(e) =—Xe (8)
Since € = J¢g, we obtain:
g=-\"te )

where J7 is an approximation of the pseudo-inverse of J
and ) is used as a parameter to control the robot speed.
The f; function in (8) is chosen by the programmer to
link & and e. One chooses generally fi(e) = —\e to set
an exponential decoupled decreasing of the error.

The problem of continuity when changing the task e
is due to the lack of constraints on the initial value of
€. Let ep be a global task, used to drive the robot until
time t = 0. At this time, the control law switches to a
second task ep. Since e and ¢ are linearly linked, no
continuity guarantee can be ensured on ¢, at time t=0.

In [13], we have proposed to use a non homogeneous
first order differential equation to ensure the continuity
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and to properly decouple the tuning parameters. The
differential equation is

é = fa(e) = —Xe +p(t) (10)
where the non homogeneous part p(t) is
p(t) = e - (ea(0) + Nes(0)) (11)
D. Computing the control law

Let (e1,...,en) a stack of n tasks. The decreasing
speeds of each task are chosen separately by using
él )\1 0 el
é = =— = —Ae
€n 0 An €n
(12)

Equation (4) can be written g = L€, where the explicit
expression of Ly is left to the reader. Using (10) and
(12), we deduce the complete expression of the control
law computed from a stack of task

G = dic1 + (JiPA )T (—Niei — Jidio1)
q=dn+e 7 (&(r) + Ae(r))

where 7 is the time of the last modification of the stack.

(13)

ITI. SIMPLE AVOIDANCE USING THE GRADIENT
PROJECTION METHOD

In the previous part, a control law based on a stack
of elementary tasks was built, which drives the robot to
realize a complete task, such as positioning. This control
law is only based on the decreasing of a task function
e (composed of visual features errors in our case). To
integrate the servoing into a complex robotic system, the
control law should also make sure that it avoids undesired
configurations (such as joint limits, occlusion, obstacles
or kinematic singularities). A solution very close from
the work presented in Section II is used in [14], based
on the task function approach [18]. It is called Gradient
Projection Method. A cost function is built that reaches
its maximum value at the undesired configurations. This
cost function to be minimized is then embedded in a
secondary task whose only components that do not affect
the primary task are taken into account. This is achieved
by projecting the secondary task onto the free space of
the primary task.

In the following, we refer to the situations to avoid by
the general term obstacles. The experiments presented
in Section V have been realized using a joint limits
avoidance, but the Gradient Projection Method can be
applied to various kinds of obstacles [14], [4]. In this
section, we first recall the general method to compute
a control law as the gradient of a cost function [7].
The complete control law, using a stack of tasks and
additional constraints is then computed. This section will
be concluded by the problems encountered using this
method, which will introduce the last part of this work.

A. General Gradient Projection Method

In this approach, the robot moves according to a
repulsive potential V pushing it away from the obstacles.
Let us consider the problem:

minV(q), qe€RF (14)

where k is the number of robot articulations. The classi-
cal solution is to move the robot according to the gradient
of the potential function, computed in the articular space.

4= -rg(q) = —kVEV (15)

where k is a positive scalar, used as a gain. The secondary
task (15) is then projected onto the null space of the
primary task, using (2).

B. Gradient Projection Method with a stack of tasks

We want to use the gradient of the cost function as
the last task of the stack. The control law (15) has thus
to be projected onto the null space of each task into the
stack. Using the notations of (13), the complete control
law is finally

d=0n+e 7T (&(7) + Ae(r)) — kPAg (16)

Therefore, the avoidance depends on two factors. First
of all, the control law depends on the projector PZ.
When the stack is almost empty, the rank of P2 is high,
and the avoidance control law will not be much modified.
However when the rank decreases near zero (the stack
is almost full), the avoidance control law is highly
disturbed, especially if the favorite vector direction of
the gradient is not one of the range of P2. Of course,
when the stack is full, the projector becomes 0. The
gradient is thus not taken into account any more, and
nothing is done to avoid obstacles. The second factor is
the gain x, which defines a priori the influence of the
avoidance in the global control law. The choice of this
parameter is very important. Indeed, if « is too small, the
gradient force may be too small to avoid the obstacle.
Besides, if « is too high, some overshoot can occur in
the computed velocity. Methods that set this parameter
automatically exist (for example [4] for the joint limits
avoidance). However it is difficult to generalize to an ar-
bitrary number of additional constraints simultaneously.
Moreover, these methods do not provide any solution to
the problem due to the rank of P2,

Instead, the gradient projection method is applied to
stay away from the obstacles when it is possible. When
this method is not sufficient, the solution is to choose
which task of the stack produces the part of the control
law that leads the robot in the obstacle, and to remove
it from the stack. This solution is detailed in the next
section.

IV. USING A STACK CONTROLLER

In this section, a stack controller that removes a task
from the stack when necessary is proposed. We also
explain how this solution solves the problem presented
in the above paragraph.

Two actions are possible on the stack : add a task and
remove a task. A task is added when the velocity sent
to the robot is under a fixed level, that is to say, when
the tasks in the stack are all realized at best, according
to their priority range. The order of the tasks to be
introduced in the stack are a priori decided. We will
focus on a choice inline in future works. On the opposite,
a task has to be removed from the stack when the current
control law drives the robot in one of the configurations
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to be avoided (for example the robot nearly reaches a
joint limit). Two criteria have to be built, the first one
to decide when a task should be removed, the second to
choose which task to remove.

A. When removing a task ?

This criterion consists simply in determining the effect
of the current control law by performing a prediction
step before sending the velocity to the robot. Let q(t) be
the current articular position of the robot. The predicted
position q(t + 1) is given by

q(t+1) =qt) + Atg a7

where q is the control law, computed using (16). A task
has to be removed from the stack if V{q(t +1)) is above
a fixed threshold.

B. Which task to remove ?

The idea is to detect which task induces the most
important conflicts with the current obstacle avoidance
gradient. We propose two criteria to be computed for
each task. The task to remove is the one corresponding
to the maximum (or the minimum, in case of the second
criterion) of the optimal values computed. Using both
criteria simultaneously gives a more reliable choice. In
the following, we propose the criteria, for a task e;,
whose jacobian is J;, and for an avoidance gradient g(q).

1) First criterion: The first criterion compares directly
the direction of the velocity induced by the task, and
the one induced by the avoidance gradient. The task to
remove is the one whose velocity direction corresponds
to the opposite of the gradient direction. This is done
by computing the inner product of the two velocities
projected in the same space. The most logical common
space seems to be the space of articular velocities.
Criterion C; is thus

C1=—<Jfelg > (18)

Another common space can be used, such as the space
of the task, using C1p, =< e;|Jig >. In this case, the
common space depends on each task. The experiments
have shown that the behavior using any of these criteria
is very similar.

This first criterion depends linearly of the task function
e;. If the task is nearly completed (e; is very low), the
criterion will be very low. We have experimentally no-
ticed that, using (18), the task controller always removes
the last task added. We thus use a normalized criterion

1
= _Cl
||ei||

Ci' (19)
Using this last definition, the choice is only based on the
velocity direction, and no more on the velocity norm.
Therefore, when the velocity induced by a task is very
low, the normalization is equivalent to a division by a
nearly zero value. That can produce unstable results. The
next criterion solve this problem.

a

Fig. 1. (a) Initial image (b) Desired image

2) Second criterion: To compute the final control law,
the gradient is projected onto the null space of each task.
The second criterion computes the contribution of each
task to this projection. The idea is to remove the task
whose contribution disrupts the most the avoidance.

C2 = |[Pig]| (20)

where P; =1—-J 1+ J; is the projection operator onto the
null space of the task. Since P; is a projection operator,
for all vector x, ||P;ix|| < ||x]||. The less the gradient is
in the null space of the task, the more it is disturbed, the
smaller the value of the criterion. The task to be removed
is the one corresponding to the minimum of Ca.

3) Another way to compute the second criterion:
Another idea is to check if the gradient vector is in
the null space of the control law due to the task. This
subspace is given by (2) : it is the range of J l+ . Consider
a basis (vy...vy) of the range of J; (where k is the
rank of J 1+) The criterion is the norm of the gradient,
projected in the range of J;"

k
Cab =Y (g vi)vill 1)
i=1

In fact, C2 checks if the gradient is not in the null
space of the jacobian, while Cap, checks if the task is in
the range of the pseudo inverse of the jacobian, which
is equivalent. C is minimal when Cayp, is maximal. The
experiments confirm that the behaviors using the two
criteria are exactly similar. We thus will consider only
criterion Cq in the following.

V. EXPERIMENTS AND RESULTS

We present in this section the experiments realized
to validate the proposed methods. A six DOF eye-in-
hand robot must reach a position with respect to a
visual target (a rectangle composed of four points easily
detectable). The robot should moreover avoid its joint
limits to complete the positioning task. The experiments
have been realized for very large displacements, using
as much articular domain as possible. For such a dis-
placement, classical visual servoing fails while the stack
using avoidance and the controller (17) enables to reach
the desired position. The camera displacement presented
in the following is such that the robot has to move
from one corner of the articular domain to another. The
initial and desired images are presented in Fig. 1. The
target in the desired image is centered but the object
is not paralell to the image plane. The displacement
is (t; = —491lmm, t, = —120mm, ¢, = 340mm,
(uf); = —70dg, (uf), = —35dg, (ud),. = 110dg).

We first present the elementary visual tasks (section V-
A) and the avoidance law (section V-B) used during the
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experiments. Four elementary tasks have been chosen,
using the object center of gravity in the image, the angle
of one diagonal, the second order moments and the third
order moments respectively. The robot has moreover to
avoid its joint limits. The results of an execution using the
stack without avoidance, and with the proposed method
are then provided in part V-C.

A. Four elementary tasks to constraint the six DOF

The task functions e; used in the remainder of the text
are computed from the visual features [7]:

€ =s; —S; (22)

where s; is the current value of the visual features for
task e; and s} their desired value. The interaction matrix
L, related to s; is defined so that s; = Lg, v, where v
is the kinematic camera screw. From (22), it is clear that
the interaction matrix Lg, and the task jacobian J; are
linked by the relation:

J; = Ly MJ, 23)

where the matrix Jq denotes the robot jacobian (*f =
Jq4) and M is the matrix that relates the variation of the
camera velocity v to the variation of the chosen camera
position parametrization r (v = Mr).

In order to have a better and easier control over
the robot trajectory, approximatively decoupled tasks are
chosen. As explained in the previous parts, there is no
need to choose them perfectly independent, thanks to
the redundancy formalism. We have used visual features
derived from the image moments. At each iteration, let
P, = (z;,y;) be the position of the points in the image.
The moment m; ; of the image is defined by

N
mij =Y T (24)
k=1

The first task eg is based on the position of the center
of gravity. The features are based on the first order
moments:

mio MMo1

LgyYg) = 5 25
( g yJ) (moo Moo (25)

The second task ez uses the centered moments of order
2 to control the range between the robot and the target.
The most intuitive solution is to consider the quadrilateral
area, i.e. the first moment of the continuous object.
Since the considered object is discrete, discrete centered
moments of second order are used, as proposed in [21].
The third task e, mainly rotates the camera around the
optical axis, so that the object will be correctly oriented
in the image. It uses a combination of the three moments
of second order to realize a mainly decoupled motion [3].
The last task er uses third order moments to decouple
v, from wy and v, from w,. The reader is invited to
refer to [3] for more details.

B. Joint limits avoidance

The experiments of avoidance using the GPM have
been realized using a joint limits avoidance. The cost
function is defined directly in the articular space. It
reaches its maximal value near its joint limits, and the
gradient is nearly zero far from the limits.

qmlh 0 qmax qmax

q

i
min

Fig. 2. Potential field of the joint limits avoidance for an articulation
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Fig. 3. Articular trajectories using the stack without any avoidance
law. The second articulation (z-motion of the camera) reaches its limit
during the execution of the third task (task ez). (each vertical line
corresponds to the addition of a new task in the stack.)

The robot lower and upper joint limits for each axis ¢
are denoted @', and @',,.. The robot configuration q is
acceptable if, for all i, q; € [q%;,, %), where g%,
qinin + pqls qgrzlax = (_ﬁnax - p(—lz’ (—lz = (_ﬂnax - (_ﬁnin
is the length of the domain of the articulation 4, and
p is a tuning parameter, in [0,1/2] (typically, p = 0.1).
g%, and g%, are activation threshold. In the acceptable
interval, the avoidance force should be zero. The cost

function is thus given by (see Fig. 2) [4]:

1w 62
Viq) = = , 26
(@ =352 Aq (26)
=1
where
qi — (lﬁiinv if q; < (lﬁﬁin
(5i = q; — (ifrllwm if q; > (T'Iﬁ?lax
0, else
C. Results

When the three first tasks are completed, the robot is
in one corner of its available domain, near the joint limit
corresponding to the motion along the optical axis. Using
the four visual tasks presented above into a classical
servo fails because of the too large displacement between
initial and desired position and the closeness of the joint
limits. We present quickly the results obtained with the
stack alone (13), then with the stack using the simple
avoidance law (16). Without any avoidance, the robot
reaches its joint limit quickly, during the third task, while
DOF remain available (see Fig.3). This joint limit is
avoided using the simple GPM. Instead of going back
along the optical-axis, the robot moves along its « and
y axes and completes the task. Therefore, the joint limit
can not be avoided when the stack is full, because no
DOF are available to project the gradient. The execution
failed during the execution of the last elementary task
er (see Fig. 4).

We present now the results obtained with the complete
method (see Fig. 5). During the execution of the last task,
the stack controller detects that the joint limit will be
reached on axis 2. The controller chooses to remove the
task e,, and the task er is completed using the obtained
DOF. The task e, is then put back in the stack, and the
robot reaches the desired position.
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Fig. 4. Articular trajectories using the stack with the GPM but without
stack controller. The limit is avoided during the execution of the third
task (ez) by moving along the axis 1. The robot reaches its joint limit
during the last task, when no DOF are available any more.
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Fig. 5. During the execution of the first task (before event (1)), the
avoidance is activated. Since there are many DOF left, the gradient is
almost unchanged by the projection operator (gradient and projected
gradient are almost equal). The joint limit avoidance is then activated
during the task 3 (after event (2)). The obstacle is avoided using the
DOF available. Not many DOF remain free, so the gradient is strongly
modified by the projection. Therefore, the joint limit is avoided. During
the last task, the obstacle can not be avoided (event (3)). No DOF are
available, the projected gradient is thus null even if the gradient is not
null. The task e is removed from the stack (event (4)). The obstacle
is avoided. The task e is finally put back in the stack (event (5)). At
the end of the execution, the avoidance is activated once more, but no
DOF are available. The projected gradient is null. Therefore, the robot
can complete the task despite the closeness of the joint limit. The stack
controller does not remove any task from the stack.

VI. CONCLUSION

In this paper, we proposed a new method to avoid
undesirable configurations such as obstacles or joint
limits. Far from the desired position, the robot is un-
derconstrained, and the remaining DOF are used for
avoidance. When not enough DOF are available, a stack
controller has been designed to remove the elementary
task from the stack which will free the most appropriate
DOF for the avoidance. This control scheme has been
validated on a 6-DOF robotic platform. The robot had to
reach the desired position from a distant initial position.
The classical servoing scheme drive the robot into its
joint limits, but using the proposed method, the execution
ended properly.

Further work is necessary to validate experimentally
this approach when taking into account several additional
constraints, such as occlusion, obstacle and joint limits
avoidance simultaneously. The stack controller should

also be able to choose automatically which task to put
in the stack without any a priori as supplied here. The
robot will thus be able to choose which elementary task
to use among a very large amount of possible tasks.
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