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Abstract

This paper is concerned with the detection and track-
ing of obstacles from a camera mounted on a vehicle with
a view to driver assistance. To achieve this goal, we have
designed a technique entirely based on image motion analy-
sis. We perform the robust estimation of the dominant image
motion assumed to be due to the camera motion. Then by
considering the outliers to the estimated dominant motion,
we can straightforwardly detect obstacles in order to assist
car driving. We have added to the detection step a tracking
module that also relies on a motion consistency criterion.
Time-to-collision is then computed for each validated ob-
stacle. We have thus developed an application-oriented so-
lution which has proven accurate, reliable and efficient as
demonstrated by experiments on numerous real situations.

1. Introduction
This paper is concerned with the detection and tracking

of obstacles from a camera mounted on a vehicle with a
view to driver assistance. This work is part of the Carsense
European project [3]. The goal of this project is to develop a
sensor system to deliver information on the car environment
at low speed to assist low-speed driving. The combination
of several sensors should improve object detection. Indeed
various sensors are considered in the Carsense project: short
and long range radar, laser sensor, and video cameras. Each
sensor is nevertheless supposed to be independent. Extract-
ed information from the different sensors will be fused at a
further step in order to reduce false alarm rate and to handle
possible missing data.

We are concerned with the image-based obstacle detec-
tion task. The aim is to detect obstacles located at less than
50 meters in front of the cat. Such an obstacle could be a
vehicle (car, truck), a motor-bike, a bicycle or a pedestrian
crossing the car trajectory. The goal is to develop fast and
efficient vision algorithms to detect obstacles on the road
and to reconstruct their trajectories wrt. the camera, for all
static or moving detected obstacle. To achieve this goal, we
have designed a technique based on motion analysis as pro-

posed in [1, 2, 7, 4]. We first compute the dominant image
motion assumed to be due to the car motion [4, 6]. It is rep-
resented by a 2D quadratic motion model which correspond
to the projection of the rigid motion of a planar surface
(here, the road). It is estimated by a robust multi-resolution
technique [6]. Detection of obstacles can then be performed
by considering that their apparent image motion is not con-
forming the computed dominant motion. Once detected the
objects (or obstacles) are tracked using a motion-based pro-
cess. The trajectories and the time-to-collision associated
to each obstacle are then be computed and are supplied as
input of the data-fusion module. In, e.g., [2] the expect-
ed image motion was computed using the vehicle odometry
and was not estimated using image information. The main
advantage of the presented algorithm is that it does not con-
sider any information but the images acquired by the camera
and that it allows fast computation on standard hardware.

The reminder of the paper is organized as follows. In
Section 2 we outline the dominant image motion estima-
tion method. Section 3 then describes the detection and
tracking of the obstacles and the computation of the time-
to-collision. In Section 4, we report experimental results
related to our application.

2. Dominant motion estimation

The estimation of the 2D parametric motion model ac-
counting the dominant image motion is achieved with a ro-
bust, multi-resolution, and incremental estimation method
exploiting only the spatio-temporal derivatives of the inten-
sity function [6].

Quadratic motion models. Since the near car environ-
ment free of obstacles is formed by the road which can be
considered as a planar surface, the image dominant mo-
tion due to the car motion can be exactly represented by
a 2D quadratic motion model involving eight free parame-
ters. Let us denote Θ = (a0, a1, a2, a3, a4, a5, a6, a7), the
velocity vector WΘ(P ) at pixel P = (u, v) corresponding
to the quadratic motion is given by:
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]

(1)

Dominant image motion estimation To estimate the
dominant image motion between two successive images It

and It+1, we use the gradient-based multiresolution robust
estimation method described in [6]. To ensure robustness
to the presence of independent motion, we minimize a M-
estimator criterion with a hard-redescending function. The
constraint is given by the usual assumption of brightness
constancy of a projected surface element over its 2D trajec-
tory. Thus, the motion model estimation is defined as:

Θ̂ = argmin
Θ

E(Θ) = argmin
Θ

∑

P∈R(t)

ρ (DFDΘ(P )) (2)

with DFDΘ(P ) = It+1(P + WΘ(P )) − It(P ) . (3)

ρ(x) is the Tukey’s biweight function. The estimation sup-
port R(t) can be the whole image. In practice, it will be
restricted to a specific area of the image. The minimiza-
tion is embedded in a multi-resolution framework and fol-
lows an incremental scheme. At each incremental step k,
we can write: Θ = Θ̂k + ∆Θk, where Θ̂k is the curren-
t estimate of the parameter vector Θ. A linearization of
DFDΘ(P ) around Θ̂k is performed, leading to a residual
quantity r∆Θk

(P ) linear with respect to ∆Θk:

r∆Θk
(P ) = ∇It(P + W

Θ̂k

(P )).W∆Θk
(P )

+It+1(P + W
Θ̂k

(P )) − It(P )

where ∇It(P ) denotes the spatial gradient of the intensity
function. Then, we consider the minimization of the expres-
sion given by

Ea(∆Θk) =
∑

P

ρ (r∆Θk
(P )) . (4)

This function is minimized using an Iterative-Reweighted-
Least-Squares procedure. It means that the expression (4)
is replaced by:

Ea(∆Θk) =
1

2

∑

P

ω(P )r∆Θk
(P )2, (5)

and that we alternatively estimates ∆Θk and update the
weights ω(P ) (whose initial value are 1).

This method allows us to get a robust and accurate es-
timation of the dominant image motion (i.e., background
apparent motion) between two images.

3. Obstacles detection and tracking
3.1. Obstacles detection

The previous step supplies two sets of information:

• the motion parameters Θ̂ corresponding to the domi-
nant motion;

• the map Iω of the weights ω(P ) used in (5) which ac-
count for the fact that pixel P is conforming or not to
the computed dominant motion.

The maps Iw will be used to detect the obstacles from the
image sequences. Let us recall that the considered quadrat-
ic motion model is supposed to correspond to the apparent
motion of the road surface. Therefore, each pixel that is not
conform to this estimated motion can be considered as be-
longing to an obstacle, either static or moving (or to another
part of the scene, if it does not lie on the road).

The outliers map Iω is thresholded and mathematical
morphology operators are applied in order to suppress
noise. Pixels are then merged into group of pixels accord-
ing to various criteria (distance or motion-based criterion).
Concerning the distance criterion, two pixels or regions
(group of pixels) are merged if they are connex or if the
distance between these two groups is below a given thresh-
old. Concerning the motion similarity criterion, two regions
Ri and Rj are merged in a single region Rf if the motion
within region Ri is consistent with the motion in Rf and if
the motion in Rj is consistent with the motion in Rf . It is
defined as:

C = Cif + Cjf (6)

where Ckf reflects the motion similarity between regions
Rk|k=i,j and Rf :

Ckf =
1

Card (Rk)

∑

P∈Rk

∣∣∣du

Θ̂k

− du

Θ̂f

∣∣∣+
∣∣∣dv

Θ̂k

− dv

Θ̂f

∣∣∣ (7)

where dΘ = (du
Θ, dv

Θ) denotes the displacement of pixel
P = (u, v) according to the motion model Θ, and Θ̂k des-
ignates the parameters of the motion model estimated with-
in region Rk using the same method as the one described in
Section 2. Card(R) is the number of pixels in region R.

3.2. Obstacle tracking

We then obtain for each obstacle (or, more precisely, for
each area in the image that is not conforming to the domi-
nant motion) a bounding area. In order to improve the ef-
ficiency of this approach and to limit the number of false
alarms, these areas are tracked over successive frames.

A comparison between obstacle areas detected in two
successive images is then necessary. Two tests both based
on motion similarity have been investigated. The first one
exploits the criterion defined in (6). The second, which as-
sumes that the two regions overlap, and evaluates the mo-
tion consistency in the intersection of the two regions. It
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Figure 1. Obstacle detection from a motionless vehicle. The first and third rows display the outliers maps, the second and

fourth rows contains the detected obstacles (see text for details)

can be expressed as follows:

Cij =
1

Card (Ri ∩ Rj)
·

∑

P∈Ri∩Rj

∣∣∣du

Θ̂j

− du

Θ̂i

∣∣∣+
∣∣∣dv

Θ̂j

− dv

Θ̂i

∣∣∣

(8)
This short term temporal tracking allow us to suppress false
detections that could arise in a one-frame analysis. At this
step we have a set of obstacle areas validated in the current
frame and specified by their bounding rectangular boxes,
and their position in the previous frame.

3.3. Time-To-Collision
For each detected obstacle, we can now compute the

time-to-collision with the camera using the motion model
computed in the bounding area. The time-to-collision is
given by: τc(u, v) = −

Z
TZ

, where Z is the depth of the
obstacle and TZ the relative object velocity along the cam-
era view axis. Assuming a planar object surface (at least a
“shallow” object), we can write Z = Z0 + γ1X + γ2Y and
τc can be rewritten as:

τc(u, v) = −
Z0

TZ

1

(1 − γ1x − γ2y)
(9)

x and y are obtained assuming the knowledge of the camera
intrinsic parameters: x = (u−u0)/px and y = (v−v0)/py

((u0, v0) are the coordinates of the camera principal point
while px and py reflects the pixel size). γ1, γ2 and Z0/TZ

can be computed from the affine parameters of the motion
model [a1, a2, a3, a4, a5, a6] defined in (1) computed with-
in the bounding area for each obstacle at each instant. the
relation have been derived in [5].

4. Results
The proposed method has been implemented on a PC

running Linux. Each frame is processed in 0.4 s for

512×512 images and in 0.1 s for 256×256 images. We have
tested our approach on numerous image sequences acquired
in different contexts. We only report here four representa-
tive experiments.

In the first sequence, the car with the camera is motion-
less. Several vehicles are crossing the road in front of the
camera (see Figure 1). Although this example is simple s-
ince it involves a static camera, it allows to validate the ob-
stacles detection and tracking modules. The obstacles are
successfully detected and tracked over the image sequence.
In the fourth image of Figure 1 although the van and the
car are close to each another they are correctly considered
as two different vehicles since their motions are not homo-
geneous (according to the criterion of relation (6)). After
they cross each other, they are again recovered (see the last
image of Figure 1). In the same image the black car closely
following the van is detected as a part of the same object.
Indeed, it has the same motion features as the van.

In the second experiment, we consider a mobile camera
following a van in an urban environment (see Figure 2). The
van and the other vehicle (last image) are correctly detected
and tracked over the image sequence. The time-to-collision
was computed as described in Sub-section 3.3. Let us stress
that the time-to-collision values plotted in Figure 2 have not
been filtered over time (which could be easily implement-
ed and could smooth the obtained plot). It proves that the
time-to-collision computation is consistent. In experiments
reported in Figure 3 and Figure 4 the car is moving within
a more complex environment: a highway and a road. For
efficiency concern, the dominant motion is not estimated in
the whole image but only in an area delineated on the first
image of Figure 3 (i.e., between the two dashed lines). Ob-
stacles are again correctly detected and tracked even if a few
false alarms may appear in some frames. Let us point out
that objects lying close to the road as well as some road-
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Figure 4. Detection of multiple (moving and static) obstacles in a road environment.
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Figure 2. Obstacle detection and tracking in a urban en-

vironment. Plot corresponding to the computed time-to-

collision values over time for the detected obstacle (white

van).

Figure 3. Obstacle detection and tracking in a highway

environment

signs are correctly detected.

5. Conclusion
We have presented an accurate and efficient method

based on the robust estimation of the dominant image mo-
tion to detect obstacles in order to assist car driving. We
have added to the detection step a tracking module that also
relies on a motion consistency criterion. Time-to-collision
is then computed for each validated obstacle. Our goal was
to proposed an algorithm that does not consider any other
input but the images acquired by the camera. Furthermore
we seek fast and robust computation on low-cost standard
hardware. With respect to the considered application that is
assistance at low-speed driving, quite satisfactory results on
various real image sequences have validated our approach.
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