A Bayes nets-based prediction/verification scheme for active visual reconstruction

E. Marchand 1 François Chaumette 1
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We propose in this paper an active vision approach for performing the 3-D reconstruction of polyhedral scenes. To perform the reconstruction we use a structure from controlled motion method which allows a robust estimation of primitive parameters. As this method is based on particular camera motions, perceptual strategies able to appropriately perform a succession of such individual primitive reconstructions are proposed in order to recover the complete spatial structure of complex scenes. Two algorithms are proposed to ensure the exploration of the scene. The former is a simple incremental reconstruction algorithm. The latter is based on the use of a prediction/verification scheme managed using decision theory and Bayes Nets. It allows the visual system to get a more complete high level description of the scene. Experiments carried out on a robotic cell have demonstrated the validity of our approach.
Mots-clés : ROBOTIQUE VA
Type de document :
Communication dans un congrès
3rd Asian Conf. on Computer Vision, ACCV'98, LNCS 1351, 1998, Hong Kong, China, Hong Kong SAR China. 1, pp.648-655, 1998
Liste complète des métadonnées

https://hal.inria.fr/inria-00352557
Contributeur : Eric Marchand <>
Soumis le : mardi 13 janvier 2009 - 12:27:51
Dernière modification le : mercredi 16 mai 2018 - 11:23:06
Document(s) archivé(s) le : mardi 8 juin 2010 - 19:52:14

Fichier

1998_accv_marchand.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00352557, version 1

Collections

Citation

E. Marchand, François Chaumette. A Bayes nets-based prediction/verification scheme for active visual reconstruction. 3rd Asian Conf. on Computer Vision, ACCV'98, LNCS 1351, 1998, Hong Kong, China, Hong Kong SAR China. 1, pp.648-655, 1998. 〈inria-00352557〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

64