Data-driven neighborhood selection of a Gaussian field

Nicolas Verzelen 1, 2
2 SELECT - Model selection in statistical learning
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We study the nonparametric covariance estimation of a stationary Gaussian field X observed on a lattice. To tackle this issue, a neighborhood selection procedure has been recently introduced. This procedure amounts to selecting a neighborhood m by a penalization method and estimating the covariance of X in the space of Gaussian Markov random fields (GMRFs) with neighborhood m. Such a strategy is shown to satisfy oracle inequalities as well as minimax adaptive properties. However, it suffers several drawbacks which make the method difficult to apply in practice. On the one hand, the penalty depends on some unknown quantities. On the other hand, the procedure is only defined for toroidal lattices. The present contribution is threefold. A data-driven algorithm is proposed for tuning the penalty function. Moreover, the procedure is extended to non-toroidal lattices. Finally, numerical study illustrate the performances of the method on simulated examples. These simulations suggest that Gaussian Markov random field selection is often a good alternative to variogram estimation.
Type de document :
[Research Report] RR-6798, INRIA. 2009, pp.27
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger
Contributeur : Nicolas Verzelen <>
Soumis le : mardi 1 septembre 2009 - 22:58:39
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 13:18:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00353260, version 2
  • ARXIV : 0901.2213



Nicolas Verzelen. Data-driven neighborhood selection of a Gaussian field. [Research Report] RR-6798, INRIA. 2009, pp.27. 〈inria-00353260v2〉



Consultations de la notice


Téléchargements de fichiers