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Équipes-Projets Estime

Rapport de recherche n° 6789 — Décembre 2008 — 33 pages
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Sur le schéma aux mobilités amont pour les

écoulements diphasiques

en milieu poreux

Résumé : En négligeant la capillarité, un écoulement diphasique incompres-
sible est modélisé par une loi de conservation scalaire hyperbolique non-linéaire.
Un changement dans le type de roche entrâıne un changement de la fonction
flux. En discrétisant en dimension un avec une méthode de volumes finis nous
étudions deux flux numériques, une extension du flux de Godunov et le flux des
mobiltés amont, ce dernier étant largement utilisé en hydrologie et en ingéniérie
pétrolière. Dans le cas d’un changement de type de roche on peut alors donner
des exemples où le flux des mobiltés amont ne donne pas une solution correcte.

Mots-clés : Ecoulement diphasique en milieu poreux, mobilités amont, lois de
conservation hyperboliques, condition d’entropie, méthode de différences finies,
méthode de volumes finis.



On the upstream mobility scheme 3

1 Introduction

Under the assumptions that capillary effects are neglected, two-phase flow in
a porous medium is modeled by a nonlinear hyperbolic equation. In many
applications, the porous medium is not homogenous. The flow domain has
to be divided into several subdomains corresponding to different types of rock
separated by lines or surfaces along which, not only the porosity and the absolute
permeability of the rock type change but the relative permeabilities also differ.
This situation is modeled by a single conservation law with a flux function
discontinuous in the space variable. Numerical methods designed to simulate
the flow have to be devised to take into account the discontinuities in the flux
function.

In this paper, we compare different numerical schemes of the finite difference
or finite volume type that are used to simulate two-phase flow in porous media
with changing rock types. We restrict ourselves to the one dimensional case. In
the multidimensional case, most numerical methods still use the one dimensional
flux calculation in the direction normal to the boundaries of the discretization
cells. We also focus on the numerical flux calculation.

Conservation laws with discontinuous coefficients arise in several other sit-
uations in Physics and Engineering like in modeling continuous sedimentation
in clarifier thickener units used in waste water treatment plants (See [12], [13],
[8]), in traffic flow on highways with changing surface conditions (see [23]) and
in ion etching used in the semiconductor industry (see [24]). A detailed account
of the above applications can be found in [26]. Consequently, equations of this
type have been studied extensively from both a theoritical as well as a numerical
point of view.

In particular, for equations governing two-phase flow in porous media, the
numerical scheme that is commonly used by the petroleum engineers is the up-
stream mobility flux scheme (see [7, 25, 9, 20]). An alternative finite difference
(volume) method of the Godunov type based on exact solutions of the Riemann
problem was presented in Adimurthi, Jaffre and Gowda ([2]). The above paper
also addressed the problem of prescribing correct entropy conditions at the in-
terface between rock types and showing the uniqueness of the entropy solution.
The solutions computed by the Godunov type scheme was shown to converge
to the entropy solution. The numerical flux developed in [2] is similar to that
used by Kaasschieter in [21] although written in a more compact form.

It is natural to ask whether the solution computed by the upstream mobility
flux scheme also converges to the entropy solution and compare its numerical
performance with other schemes like the one in [2] and that of Towers ([29],
[30]). The goal of this paper is to address these questions.

In this paper, we will give an explicit representation of the upstream mobil-
ity flux scheme for a medium consisting of two rock types and show that the
numerical flux is monotone. This will help us to obtain estimates in L∞. We
will then use a suitable modification of the singular mapping technique to show
that the approximate solution converges to a weak solution of the continuous
problem. . The key point of this paper is to address whether this weak solution
is a entropy solution or not. We show by various numerical experiments that
the solutions computed by the upstream mobility flux scheme are not consistent
with the interface entropy condition of [2]. Furthermore, we construct numerical
experiments for the case where only the absolute permeability changes. In this
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4 Siddhartha Mishra and Jérôme Jaffré

case, the solutions given by the scheme do not converge to the entropy solution
pointwise and differ qualitatively from the entropy solution. The lack of entropy
consistency leads us to suggest that the upstream mobility flux scheme may not
be the correct numerical method to simulate two-phase flow in porous media
with changing rock types and should be replaced by the Godunov type scheme
develop in [2].

This paper is organised as follows, In section 2, we describe the equations
governing two phase flow in porous media with heterogenities. In section 3, we
summarise the mathematical theory for single conservation laws with discontin-
uous flux developed in [1], [2] and mention the well posedness results. Section 4
is devoted to describing finite difference schemes of the Godunov type as well as
the upstream mobility flux scheme. The convergence analysis for the upstream
mobility flux scheme is carried out in section 5. We give explicit representation
formula for the flux, show that it is monotone and use a variation of the sin-
gular mapping technique to show convergence to a weak solution. The core of
this paper is in section 6 where we address the question of entropy consistency.
First, we consider numerical experiments for the case where only the absolute
permeability changes and discuss the entropy behaviour of the solutions. Next,
we construct examples of the case where the relative permeability also changes
and show that the scheme is not consistent with the interface entropy condition
of [2]. We derive some conclusions from this paper in section 7.

2 Two-phase flow equations

Capillary-free two-phase incompressible flow is modeled by the following scalar
nonlinear hyperbolic equation

φ
∂S

∂t
+
∂f

∂x
= 0

where φ is the porosity of the rock, S = S1 is the saturation of phase 1 which
lies in a bounded interval [0, 1]. The flux function f is the Darcy velocity ϕ1 of
phase 1 and has the form

f = ϕ1 =
λ1

λ1 + λ2
[q + (g1 − g2)λ2].

Here q = ϕ1 + ϕ2 denotes the total Darcy velocity where ϕℓ, ℓ = 1, 2, denotes
the Darcy velocity of phase ℓ with, for the second phase,

ϕ2 =
λ2

λ1 + λ2
[q + (g2 − g1)λ1].

Since the flow is assumed to be incompressible, the total Darcy velocity q is
independent of the space variable x.

The quantities λℓ, ℓ = 1, 2 may be called effective mobilities. These are
products of the absolute permeability K by the mobilities kℓ :

λℓ = Kkℓ, ℓ = 1, 2.

The absolute permeability K may depend on x and the quantities kℓ and λℓ are
functions of S which satisfy the following properties :

k1 andλ1 are increasing functions ofS, k1(0) = λ1(0) = 0,
k2 andλ2 are decreasing functions ofS, k2(1) = λ2(1) = 0.

INRIA



On the upstream mobility scheme 5

We also shall assume that these functions are smooth functions of the saturation
S and so is the flux function f .

The gravity constants gℓ, ℓ = 1, 2 of the phases are

gℓ = gρℓ
dx

dz
, ℓ = 1, 2 ,

with g the acceleration due to gravity, ρℓ the density of phase ℓ and z is the
vertical position of the point of abscissa x.

Observe that with the above hypothesis, f is a smooth (say Lipschitz) func-
tion with at most one local maxi with f(0) = 0 and f(1) = q respectively.

In many practical situations, the porous medium is heterogenous. For ex-
ample the medium may consist of two rock types separated at the interface
(x = 0). In this case, the porosity, the absolute permeability and the relative
permeability change across the interface and the flow is modeled by the following
equations:

(H(x)φ+ + (1 −H(x))φ−)St + (H(x)f+(S) + (1 −H(x))f−(S))x = 0,
S(0, x) = S0(x)

(2.1)
where H is the Heaviside function and the indices - and + refer to to the left
and the right of the interface respectively. The flux functions are given by the
following,

f± =
λ±1

λ±1 + λ±2
[q + (g2 − g1)λ

±
2 ], λ±i = K±k±i . (2.2)

See Figure 2.1 for notations and the shapes of the flux functions when q <
0, g2 > g1. Note that the flux functions may also intersect as we will see in the
numerical experiments of Section 6.

Rock type I

φ−, K−, k−1 , k
−
2

0 ≤ S ≤ 1
f ≡ f−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Rock type II

φ+, K+, k+
1 , k

+
2

0 ≤ S ≤ 1
f ≡ f+ f−

f+

q

0
θ+θ−

Figure 2.1: Constants, mobilities and fluxes for two rock types

Equations (2.1) with flux functions (2.2) are a special case for the more
general single conservation law with flux function discontinuous in the space
variable considered in [2]. Flux functions f− and f+ satisfy the following hy-
pothesis,

H1.f
−, f+ are smooth (say Lipschitz) on [0, 1].

H2.f
−(0) = f+(0) = 0, f−(1) = f+(1) = q.

H3.f
−, f+ have exactly one local maximum in [0, 1] with θ− = argmax (f−)
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6 Siddhartha Mishra and Jérôme Jaffré

and θ+ = argmax (f+).

Note that these are precisely the hypotheses for the fluxes assumed in [2].

3 The continuous problem

As presented in the previous section, a change of rock types leads to a single
conservation law with a flux function discontinuous in the space variable. An
entropy theory has been developed for equations of the form (2.1) with the fluxes
satisfying the hypothesis H1, H2, H3. We summarize some of the results for the
benefit of the reader.

Even in the case where the flux is continuous, it is well known that solutions
of equations of the above type develop discontinuities in finite time even for
smooth initial data. Hence as in the continuous case, weak solutions S of (2.1)
are sought and defined as satisfying

∫

R

∫

R+

Sϕtdxdt +

∫

R

∫

R+

(H(x)f+(S) + (1 −H(x)f−(S))ϕxdxdt

+

∫

R

S0(x)φ(0, x)dx = 0, ∀ϕ ∈ C∞
0 (R × R+). (3.1)

It is easy to check that S is a weak solution of (2.1) iff it satisfies in the weak
sense,

St + (f−(S))x = 0, x < 0, t > 0,
St + (f+(S))x = 0, x > 0, t > 0,
S(0, x) = S0(x), ∀ x ∈ R,

and the following interface Rankine Hugoniot condition,

f+(S+(t)) = f−(S−(t)) for almost all t,

where

S+(t) = lim
x→0+

S(x, t), S−(t) = lim
x→0−

S(x, t).

It is well known that weak solutions for a single conservation law are not
necessarily unique. Additional admissibility criteria termed as entropy condi-
tions need to be imposed for uniqueness. For equations of the form (2.1), it
is natural to impose the standard Kruzkhov entropy conditions away from the
interface x = 0. These can be stated in terms of the entropy flux pairs which
are defined as
Entropy pairs: {ϕi, ψi}i=1,2 is said to be an entropy pair for (2.1) if ϕi is
convex in [0, 1] and ψ′

1(θ) = φ′1(θ)f
+′(θ), ψ′

2(θ) = φ′2(θ)f
−′(θ) for θ ∈ [0, 1].

Let S0 ∈ L∞(R) be the initial data with 0 ≤ S0(x) ≤ 1, ∀x ∈ R, and let S
be a weak solution of (3.1) with 0 ≤ S(x, t) ≤ 1, ∀(x, t) ∈ R × R+.
Interior entropy condition: With S0 and S as above, S is said to satisfy an
interior entropy condition if for any entropy pairs (ϕi, ψi)i=1,2, S satisfies in the
sense of distributions

∂ϕ1(S)

∂t
+

∂ψ1(S)

∂x
≤ 0, ∀x > 0, t > 0.

∂ϕ2(S)

∂t
+

∂ψ2(S)

∂x
≤ 0, ∀x < 0, t > 0

(3.2)

INRIA



On the upstream mobility scheme 7

But for equation (2.1), interior entropy conditions like the one above are not
sufficient to guarantee uniqueness and we need to impose an additional entropy
condition at the interface. The central issue in the analysis of conservation laws
with discontinuous flux is the choice of this interface entropy condition. In [2],
the following interface entropy condition was used.
Interface entropy condition: With S0 and S as above, assume that S+(t) =
lim

x→0+
S(x, t) and S−(t) = lim

x→0−

S(x, t) exist for almost all t > 0 and define,

L = {t > 0; S−(t) ∈ (θ−, 1], S+(t) ∈ [0, θ+)} ,
U = {t ∈ L; S+(t) = S−(t) = 1} ∪ {t ∈ L; S−(t) = S+(t) = 0} .

Then S is said to satisfy the interface entropy condition if

meas {L \ U} = 0 . (3.3)

This means that the characteristics must connect back to the x-axis on at least
one side of the jump in the flux i.e., undercompressive waves are not allowed.
Undercompressive waves i.e., (f+′(S+) > 0, f−′(S−) < 0) are unrealistic
physically as information is not taken from the initial line.

S is defined to be an entropy solution of (2.1) if it is a weak solution and it
satisfies both the interior as well as the interface entropy condition. With this
concept of entropy solution, the following wellposedness result was obtained in
[2], under the following hypotheses on the initial data:

IN1. S0 is such that 0 ≤ S0(x) ≤ 1, ∀ x ∈ R,
IN2. N(f−, f+, S0) ≤ C < +∞,

where N(f−, f+, S0) is an estimator of the total variation of the flux function
evaluated at S0. This estimator will be defined precisely below in Section 4.

We also need the following definition,
Regular solution. S is said to be a regular solution of (2.1) if the discontinu-
ities of S form a discrete set of Lipschitz curves.

The well posedness result is given by

THEOREM 3.1 Let S0 satisfy hypotheses IN1, IN2 and f−, f+ satisfy hy-
potheses H1, H2, H3. Then there exists a weak solution S ∈ L∞(R × R+) of
(2.1) satisfying the following,
(1) For almost all t > 0 and x ∈ R, S(x−, t), S(x+, t) exist.
(2) S satisfies the interior entropy condition (3.2).
(3) If S is a regular solution, then S satisfies the interface entropy condition
(3.3) and it is unique.

Uniqueness is proved by using a Kruzkhov type doubling of variables argu-
ment. For details, see [2]. Existence was shown by showing that a Godunov
type finite difference scheme converges to a weak solution and is consistent with
the entropy conditions.

We would also like to mention that more recently hypotheses on the fluxes
have been relaxed considerably to include fluxes of the concave-convex type as
in [27, 4] , and with finitely many extrema as in [5]. Similarly schemes of the
Enquist-Osher (EO) type have been considered in [1, 27]. It is to be observed
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8 Siddhartha Mishra and Jérôme Jaffré

that equations of the type (2.1) are special cases of the more general single
conservation law with discontinuous coefficient of the form,

ut + (f(k(x), u))x = 0, u(0, x) = u0(x)

The wellposedness and numerical methods for this problem are addressed in
a forthcoming paper [6]. We must also mention that an entropy theory for
equations of the above type (including a degenerate parabolic term) has been
developed by Karlsen, Risebro and Towers in [18]. In [29, 30], the author de-
veloped staggered mesh algorithms of the Godunov and Enquist Osher type for
the multiplicative case i.e. f(k, u) = k(x)f(u). The case with a degenerate
parabolic term was handled in [18] and the time dependent case in [10]. The
entropy condition of [19] agrees with that of [2] in many cases but differs in
certain cases. See Section 6 for a discussion of different entropy conditions for
equation (2.1). For the rest of this paper, we will use the entropy framework
developed in [2].

4 Finite Difference Schemes

In this section, we present finite difference schemes using for numerical flux
either the extended Godunov flux [2] or the upstream mobility flux used in the
petroleum industry for the simulation of two-phase flow in porous media.

Let f be a Lipschitz continuous function. Then the Godunov flux corre-
sponding to f is given by

Fg(a, b) =







min
θ∈[a,b]

f(θ) if a < b,

max
θ∈[b,a]

f(θ) if a ≥ b,
(4.1)

The subscript g stands here for Godunov in order to differentiate this flux from
the upstream mobility flux that we will introduce later. This flux was first
proposed in [17] and is very popular in the numerical analysis of conservation
laws. It is based on exact solutions of the Riemann problem. Let F−

g and F+
g

be the Godunov fluxes corresponding to the fluxes f− and f+ respectively.
In the case of two-phase flow, the flux functions f−, f+ satisfy hypotheses

H1,H2,H3 and the formula (4.1) can be simplified as follows,

F−
g (a, b) = min{f−(min(a, θ−), f−(max(θ−, b)},

F+
g (a, b) = min{f+(min(a, θ+), f+(max(θ+, b)}.

These formulas were introduced in [2] and are simpler to implement than the
general formula (4.1).

Also, following [2], they extend easily to define the interface Godunov flux
F g based on the exact solution of the Riemann problem for (2.1):

F g(a, b) = min{f−(min(a, θ−), f+(max(θ+, b)} (4.2)

We remark that the above interface flux coincides with the interface flux ob-
tained in [21] for which expression (4.2) represents a compact form, very easy
to use for computational purposes. It is also easy to check that the interface

INRIA



On the upstream mobility scheme 9

flux F g is Lipschitz is both variables, nondecreasing in the first variable and
nonincreasing in the second variable. Note that the interface flux satisfies

F g(0, 0) = f−(0, 0) = f+(0, 0) = 0, F g(1, 1) = f−(1, 1) = f+(1, 1) = q,

but is not consistent.
Equipped with the definition of the numerical fluxes, we proceed to describe

the mesh. Let h > 0 and define the space grid points as follows:

x−1/2 = x1/2 = 0, xj+1/2 = j h for j ≥ 0, xj−1/2 = jh for j ≤ 0.

We will also use the midpoints of the intervals:

xj =

(

2j − 1

2

)

h for j ≥ 1, xj =

(

2j + 1

2

)

h for j ≤ −1.

For time discretization the time step is ∆t > 0, and let tn = n∆t, λ = ∆t
h .

For an initial data S0 ∈ L∞(R) we define

S0
j+1 =

1

h

∫ xj+3/2

xj+1/2

S0(x)dx if j ≥ 0, S0
j−1 =

1

h

∫ xj−1/2

xj−3/2

S0(x)dx if j ≤ 0.

Now we can define the Godunov type finite difference scheme {Sn
j } induc-

tively as follows:

Sn+1
1 = Sn

1 − λ(F+
g (Sn

1 , S
n
2 ) − F g(S

n
−1, S

n
1 )),

Sn+1
j = Sn

j − λ(F+
g (Sn

j , S
n
j+1) − F+

g (Sn
j−1, S

n
j )) if j > 1,

Sn+1
−1 = Sn

−1 − λ(F g(S
n
−1, S

n
1 ) − F−

g (Sn
−2, S

n
−1)),

Sn+1
j = Sn

j − λ(F−
g (Sn

j , S
n
j+1) − F−

g (Sn
j−1, S

n
j )) if j < −1.

(4.3)

Observe that this is the standard Godunov scheme for j 6= ±1, that is, away
from x = 0,

For S0 ∈ L∞(R) and grid length h and ∆t with λ = ∆t
h fixed, define the

piecewise constant function Sh ∈ L∞(R × R+) associated with {Sn
j } calculated

by the scheme (4.3):

Sh(x, t) = Sn
j for (x, t) ∈ [xj−1/2, xj+1/2) × [n∆t, (n+ 1)∆t), j 6= 0. (4.4)

The above Godunov type scheme was analysed in [2]. For this analysis we
need to introduce

Ng
h(f−, f+, S0) =

∑

j<−1

|F−
g (S0

j , S
0
j+1) − F−

g (S0
j−1, S

0
j )|

+
∑

j>1

|F+
g (S0

j , S
0
j+1) − F+

g (S0
j−1, S

0
j )|

+|F g(S
0
−1, S

0
1) − F−

g (S0
−2, S

0
−1)|

+|F+
g (S0

1 , S
0
2) − F g(S

0
−1, S

0
1)|,

Ng(f
−, f+, S0) = sup

h>0
Ng

h(f−, f+, S0).

It is easy to see that if S0 ∈ BV (R), then Ng(f
−, f+, S0) ≤ C||S0||BV , where

C is a constant depending only on the Lipschitz constants of f− and f+.
The following convergence theorem was proved, Let M = maxLip{f−, f+},

RR n° 6789



10 Siddhartha Mishra and Jérôme Jaffré

THEOREM 4.1 Assume that λ,M satisfies the CFL condition λM ≤ 1. Let
S0 ∈ L∞(R) such that 0 ≤ S0(x) ≤ 1 for all x ∈ R and Ng(f

−, f+, S0) < ∞.
For h > 0, let λ = ∆t

h and Sh be the corresponding calculated solution given by
(4.3), (4.4). Then there exists a subsequence hk → 0 such that Shk

converges
almost everywhere to a weak solution S of (2.1) satisfying the interior entropy
condition. Suppose the discontinuities of every limit function S of {Sh} form
a discrete set of Lipschitz curves, then Sh → S in L∞

loc(R+, L
1
loc(R)) as h → 0,

and S satisfies the interface entropy condition.

The convergence of the scheme was proved by using the singular mapping
technique which we will also use in section 5 albeit with modifications. The
limit solution obtained was shown to be consistent with the interior as well as
the interface entropy condition. The key point in the proof of consistency with
the interface entropy condition was the use of a contradiction argument using s
test function. The reader is referred to [2] for details. We will use similar ideas
in the next section. Some numerical experiments involving this Godunov type
scheme are shown in section 6.

As mentioned earlier, staggered mesh schemes were proposed in [29], [30]
and [18] for general single conservation laws with discontinuous flux. In the
simplified case of a single discontinuity in the flux, the staggered mesh scheme
of the Godunov type can also be written in the form (4.3) by replacing the
interface Godunov flux F g with the averaged interface flux F τ (a, b) which is
the Godunov flux corresponding to the function τ = 1/2(f− + f+). This finite
difference scheme is analyzed in [29] and is shown to converge for a large class
of fluxes. Numerical experiments comparing this scheme with a Godunov type
scheme was reported in [27]. We will also compare this scheme in the numerical
experiments in Section 6.

The main objective of this paper is to analyse the upstream mobility flux.
It is an adhoc flux for two phase flow in porous media, invented by petroleum
engineers from simple physical considerations, and it corresponds to an approx-
imate solution of the Riemann problem. The standard upstream mobility flux
for f− is given by the following formula:

F−(a, b) =
λ−∗

1

λ−∗
1 + λ−∗

2

[q + (g1 − g2)λ
−∗
2 ],

λ−∗
ℓ =

{

λ−ℓ (a) if q + (gℓ − gi)λ
−∗
i > 0, i = 1, 2, i 6= ℓ,

λ−ℓ (b) if q + (gℓ − gi)λ
−∗
i ≤ 0, i = 1, 2, i 6= ℓ,

ℓ = 1, 2,

(4.5)

Similarly, the standard upstream mobility flux corresponding to f+ can be
defined by the following formula,

F+(a, b) =
λ+∗

1

λ+∗
1 + λ+∗

2

[q + (g1 − g2)λ
+∗
2 ],

λ+∗
ℓ =

{

λ+
ℓ (a) if q + (gℓ − gi)λ

+∗
i > 0, i = 1, 2, i 6= ℓ,

λ+
ℓ (b) if q + (gℓ − gi)λ

+∗
i ≤ 0, i = 1, 2, i 6= ℓ,

ℓ = 1, 2,

(4.6)

These formulas just say that the mobility λℓ must be calculated using the value
of the saturation which is upstream with respect to the flow of the phase ℓ since
the sign of the quantity q + (g1 − g2)λ

∗
2 determines the direction of the flow of

phase 1 and the sign of q + (g2 − g1)λ
∗
1 determines that of phase 2.
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On the upstream mobility scheme 11

Note that the above formulae are implicit and have been made explicit in
[9]. The flux is shown to be Lipschitz, monotone and consistent in the same
reference.

As for the Godunov scheme, an interface upstream mobility scheme needs
to be defined to take into account the changing rock types. Formulas (4.5),(4.6)
can be easily extended to obtain the interface flux F (a, b):

F (a, b) =
λ∗1

λ∗1 + λ∗2
[q + (g1 − g2)λ

∗
2],

λ∗ℓ =

{

λ−ℓ (a) if q + (gℓ − gi)λ
∗
i > 0, i = 1, 2, i 6= ℓ,

λ+
ℓ (b) if q + (gℓ − gi)λ

∗
i ≤ 0, i = 1, 2, i 6= ℓ,

ℓ = 1, 2,
(4.7)

This interface flux preserves the idea of calculating the flux using the phase
mobilities which are upstream with respect to the flow of the corresponding
phases.

Now we define the upstream mobility flux scheme for a medium with chang-
ing rock types as follows,

Sn+1
1 = Sn

1 − λ(F+(Sn
1 , S

n
2 ) − F (Sn

−1, S
n
1 )),

Sn+1
j = Sn

j − λ(F+(Sn
j , S

n
j+1) − F+(Sn

j−1, S
n
j )) if j > 1,

Sn+1
−1 = Sn

−1 − λ(F (Sn
−1, S

n
1 ) − F−(Sn

−2, S
n
−1)),

Sn+1
j = Sn

j − λ(F−(Sn
j , S

n
j+1) − F−(Sn

j−1, S
n
j )) if j < −1.

(4.8)

For S0 ∈ L∞(R) and grid length h and ∆t with λ = ∆t
h fixed, define the

function Sh ∈ L∞(R×R+) associated with {Sn
j } calculated by the scheme (4.8):

Sh(x, t) = Sn
j for (x, t) ∈ [xj−1/2, xj+1/2) × [n∆t, (n+ 1)∆t), j 6= 0. (4.9)

We will analyse the scheme (4.8) in the next section. As for the Godunov
case we will need a BV type norm which we define as

Nh(f−, f+, S0) =
∑

j<−1

|F−(S0
j , S

0
j+1) − F−(S0

j−1, S
0
j )| +

∑

j>1

|F+(S0
j , S

0
j+1) − F+(S0

j−1, S
0
j )|

+|F (S0
−1, S

0
1) − F−(S0

−2, S
0
−1)| + |F+(S0

1 , S
0
2) − F (S0

−1, S
0
1)|,

N(f−, f+, S0) = sup
h>0

Nh(f−, f+, S0).

5 Convergence Analysis

In this section, we show that the solutions defined by (4.8),(4.9) converge to
a weak solution of (2.1) along a subsequence as h → 0. We closely follow the
analysis of [2] and will refer to the above paper for details. We first observe that
the formulae (4.5), (4.6), (4.7) are implicit. The first step is to make them ex-
plicit. For the interior fluxes, this has been done in [9]. We will give an explicit
representation of the interface flux. Depending on the ordering of the gravity
constants, we have to distinguish the following two cases.

Case 1: g1 ≤ g2
Following [9], we define the auxillary quantities for calculating the explicit fluxes

θ1 = q + (g1 − g2)λ
−
2 (a), δ1 = q + (g1 − g2)λ

∗
2,

θ2 = q + (g2 − g1)λ
+
1 (b), δ2 = q + (g2 − g1)λ

∗
1.
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12 Siddhartha Mishra and Jérôme Jaffré

Clearly we have θ1 ≤ θ2 and δ1 ≤ δ2. We have the following lemma for the
explicit formulae of the fluxes,

LEMMA 5.1 We can have only the following three cases:

1. 0 ≤ θ1 = δ1 ≤ θ2 ⇔ λ∗1 = λ−1 (a), λ∗2 = λ−2 (a)
2. θ1 = δ1 ≤ 0 ≤ θ2 = δ2 ⇔ λ∗1 = λ+

1 (b), λ∗2 = λ−2 (a)
3. θ1 ≤ θ2 = δ2 ≤ 0 ⇔ λ∗1 = λ+

1 (b), λ∗2 = λ+
2 (b)

The proof is simple and similar to the case of the interior flux F . Details can
be found in [26]. This lemma says that just calculating θ1 and θ2 is sufficient
to determine the upstream side of the flow of each phase.

The other case works in the same way.

Case 2: g2 ≤ g1
We define the auxillary quantities

θ1 = q + (g1 − g2)λ
+
2 (b), θ2 = q + (g2 − g1)λ

−
1 (a)

and δ1 and δ2 are as in case 1. Now we have θ1 ≥ θ2 and δ1 ≥ δ2 and the
following lemma.

LEMMA 5.2 We can have only the following three cases

1. θ1 ≥ θ2 = δ2 ≥ 0 ⇔ λ∗1 = λ−1 (a), λ∗2 = λ−2 (a)
2. θ1 = δ1 ≥ 0 ≥ θ2 = δ2 ⇔ λ∗1 = λ−1 (a), λ∗2 = λ+

2 (b)
3. 0 ≥ θ1 = δ1 ≥ θ2 ⇔ λ∗1 = λ+

1 (b), λ∗2 = λ+
2 (b)

Again calculating θ1 and θ2 gives the direction of the flow of each phase and
the way to calculate the upstream mobilities. This is easy to implement in a
code.

Our goal is to show that the sequence of approximate saturations converges
to a weak solution of (2.1). We begin by stating some of the properties of the
interface flux.

LEMMA 5.3 The interface flux F as defined in (4.7) is Lipschitz in both its
arguments, non decreasing in the first and nonincreasing in the second argument.
Furthermore the following also holds

F (0, 0) = f−(0) = f+(0) = 0, F (1, 1) = f−(1) = f+(1) = q.

Proof: The proof that the flux is Lipschitz is similar to that for the interior
fluxes in [9] and we omit the details. Also the evaluation of F (0, 0) and F (1, 1)
is easy to check. So let us have a quick pass at the monotonicity properties. We
consider for example case 1 i.e. g1 ≤ g2.

If 0 ≤ θ1 = δ1 ≤ θ2 we have

λ∗1 = λ−1 (a), λ∗2 = λ−2 (a), 0 ≤ δ1 = q + (g1 − g2)λ
−
2 (a) ≤ δ2 = q + (g2 − g1)λ

−
1 (a),

F (a, b) =
λ−1 (a)

λ−1 (a) + λ−2 (a)
δ1,

∂F

∂a
(a, b) =

(λ−1 )′(a)λ−2 (a)δ1 + λ−1 (a)(λ−2 )′(a)(−δ2)

(λ−1 (a) + λ−2 (a))2
.

Since λ−1 , λ
−
2 are both positive functions, λ−1 is nondecreasing and λ−2 is non-

increasing, and 0 ≤ δ1 ≤ δ2, we conclude that
∂F

∂a
(a, b) ≥ 0 and F (a, b) is

INRIA



On the upstream mobility scheme 13

nondecreasing with respect to a. Obviously F (a, b) does not depend on b so it
is nonincreasing with respect to b.

If θ1 = δ1 ≤ 0 ≤ θ2 = δ2 we have

λ∗1 = λ+
1 (b), λ∗2 = λ−2 (a), δ1 = q + (g1 − g2)λ

−
2 (a) ≤ 0 ≤ δ2 = q + (g2 − g1)λ

+
1 (b),

F (a, b) =
λ+

1 (b)

λ+
1 (b) + λ−2 (a)

δ1,
∂F

∂a
(a, b) =

λ+
1 (b)(λ−2 )′(a)(−δ2)

(λ+
1 (b) + λ−2 (a))2

,
∂F

∂b
(a, b) =

λ−2 (a)(λ+
1 )′(b)δ1

(λ+
1 (b) + λ−2 (a))2

.

Again it is easy to check that
∂F

∂a
(a, b) ≥ 0 and

∂F

∂b
(a, b) ≤ 0. Therefore F (a, b)

is nondecreasing with respect to a and nonincreasing with respect to b.
If θ1 = δ1 ≤ θ2 = δ2 ≤ 0 we have

λ∗1 = λ+
1 (b), λ∗2 = λ+

2 (b), δ1 = q + (g1 − g2)λ
+
2 (b) ≤ δ2 = q + (g2 − g1)λ

+
1 (b) ≤ 0,

F (a, b) =
λ+

1 (b)

λ+
1 (b) + λ+

2 (b)
δ1,

∂F

∂b
(a, b) =

(λ+
1 )′(b)λ+

2 (b)δ1 + λ+
1 (b)(λ+

2 )′(b)(−δ2)

(λ+
1 (b) + λ+

2 (b))2
.

Again it is easy to check that
∂F

∂a
(a, b) = 0 and

∂F

∂b
(a, b) ≤ 0 and F (a, b) is

nondecreasing with respect to a and nonincreasing with respect to b.

Similar statements for the interior fluxes can be found in [9].
Next, we state the CFL condition for stability of the scheme as the following,

λM ≤ 1,

M = max { max
|j|>1,n

{
∂Fn

j+1/2

∂a
(Sj , Sj+1) −

∂Fn
j−1/2

∂b
(Sj−1, Sj)},

∂Fn
3/2

∂a
(S1, S2) −

∂F
n

∂b
(S−1, S1),

∂F
n

∂a
(S−1, S1) −

∂Fn
−3/2

∂b
(S−2, S−1)

}

.

(5.1)
This type of a condition was explicitly written out in [25] for the case of one

rock type and a slight modification of it gives the result in our case. Then we
can prove in a straightforward manner

LEMMA 5.4 Under the CFL condition (5.1), the upstream mobility scheme
defined by (4.8) is monotone.

We remark that scheme (4.8) is in conservative form, is monotone, but it
is not consistent because of the interface flux (some examples are discussed in
section 6). Hence, the classical theory (see [11, 22, 14]) does not apply and we
have to adopt the analysis presented in [2]. The monotonicity of the scheme
leads to the following discrete L1 contractivity result:

LEMMA 5.5 Let S0,∈ L∞(R, [0, 1]) be the initial data, and let {Sn
j } be the

corresponding solution calculated by the upstream mobility flux scheme (4.8).
then,

∑

j 6=0

|Sn+1
j − Sn

j | ≤
∑

j 6=0

|Sn
j − Sn−1

j |. (5.2)
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14 Siddhartha Mishra and Jérôme Jaffré

Proof: As the scheme (4.8) is monotone and conservative, this estimate follows
by applying the Crandall-Tartar lemma (see [14]).

The next step is to obtain estimates in L∞ for the approximate solutions. For
Monotone, Consistent and Conservative schemes , such estimates follow from a
discrete maximum principle. But for the scheme (4.8), the lack of consistency
implies that the discrete maximim principle is no longer true. Instead, as in [2],
we can use the consistency of the interface flux at the points 0 and 1 to obtain
that [0, 1] is an invariant region for the scheme and obtain the following lemma,

LEMMA 5.6 Let S0 ∈ L∞(R, [0, 1]) be the initial data, and let {Sn
j } be the

corresponding solution calculated by the finite volume scheme (4.8). The follow-
ing holds,

0 ≤ Sn
j ≤ 1 ∀j, n. (5.3)

Proof. Since 0 ≤ S0 ≤ 1, hence for all j, 0 ≤ S0
j ≤ 1. By induction, assume that

(5.3) holds for n. Then from Lemma 5.3 we have

0 = H−1(0, 0, 0) ≤ H−1(S
n
j−1, S

n
j , S

n
j+1) = Sn+1

1 ≤ H−1(1, 1, 1) = 1 if j ≤ −2,

0 = H1(0, 0, 0) ≤ H1(S
n
j−1, S

n
j , S

n
j+1) = Sn+1

j ≤ H1(1, 1, 1) = 1 if j ≥ 2,

0 = H−2(0, 0, 0) ≤ H−2(S
n
−2, S

n
−1, S

n
1 ) = Sn+1

−1 ≤ H−2(1, 1, 1) = 1,
0 = H2(0, 0, 0) ≤ H2(S

n
−1, S

n
1 , S

n
2 ) = Sn+1

1 ≤ H2(1, 1, 1) = 1.

This proves (5.3).

As pointed out earlier, the key difficulty in the convergence analysis is to
obtain BV type estimates on the approximations. For a monotone, consistent
and conservative scheme, such estimates following from the discrete L1 contrac-
tivity and the translation invariance (see [14]). But in this case, the scheme is
not consistent and we cannot expect the approximate solutions to be uniformly
bounded in BV . Rather, the difficulty is circumvented by using the singular
mapping technique first introduced by Temple in [28] and adapted for schemes
for single conservation laws by Towers in [29]. The singular mapping was also
adopted in the convergence proof in [2]. More recently, several modifications of
the singular mapping have been suggested in [27], [3] etc.

The central idea in using the singular mapping technique is to estimate the
total variation of the approximate solutions under the singular mapping by the
variation of the fluxes in neighboring cells and use the discrete L1 contractivity.
This method works well for upwind schemes like Godunov and Enquist Osher
but it does not work for other types of numerical fluxes like the Lax-Friedricks
flux. The same is true for the upstream mobility flux and we have to adapt the
technique to work in this case. We do so by using the idea of chain estimates
like in [4] . We start by defining the singular mappings. ,we use the following
standard notation a ∈ R, then a+ = max{a, 0}, a− = min{a, 0}, a = a+ +
a−, |a| = a+ − a−.
The singular mappings are given by,

ψ1(θ) =

∫ θ

α

|f−′(ξ)|dξ, ψ2(θ) =

∫ θ

α

|f+′(ξ)|dξ (5.4)
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On the upstream mobility scheme 15

where α ∈ [0, 1] is some number. Note that we use the same form of singular
mappings as in [2] expect that there are centerered at an arbitrary point as in
[27]. Now we are in a position to define the transformed schemes for the discrete
values of the solution. We define them as

zn
j =

{

ψ1(S
n
j ) if j ≤ −1

ψ1(S
n
−1) if j ≥ −1

, wn
j =

{

ψ2(S
n
1 ) if j ≤ 1

ψ2(S
n
j ) if j ≥ 1

.

Like in [27], we define two sets of transformed variables which enables us to
simplify the proof to some extent as compared to [2]. Our goal is to estimate
the variation of the transformed scheme at each time level. For simplicity, let
us suppres the subscript n as we are dealing with the same time level. Then

TV (zj) =
∑

j 6=0

|zj − zj+1| = 2
∑

j 6=0

(zj − zj+1)+

In [2],[27], this variation was controlled individually in each cell by the flux vari-
ation across the neighboring cells. For details see lemma (5.4) in [27]. But such
an estimate relied on the upwind nature of the Godunov flux and is not neces-
sarily true for the upstream mobility flux as the upstream mobility flux gives
different answers from the Godunov and Enquist-Osher fluxes when the phases
are flowing in different directions. Rather, nonlocal variation estimates hold in
this case as will be explained below. For this, we observe from the definition
of the singular mapping (5.4) that (zj − zj+1)+ > 0 if and only if Sj > Sj+1.
Same observation also applies to wj ’s. We use this ordering of the neighboring
cell values to define the following,
Define J = {j ≤ −2} and we define some subsets of this set as follows,
Definition: I ⊂ J = {i ∈ J : Si < Si+1} is the set of admissble indices.
Note that this implies that for each i ∈ I, there exists a unique k(i) such that
the following holds,
1. Si ≤ Si−1 ≤ . . . ≤ Si−k(i)

2. Si−k(i)−1 < Si−k(i)

We denote the following,
1.k(i) = 0 if Si−1 < Si and
2.k(i) = ∞ if ∀j < i, Sj ≥ Sj+1

So there can be atmost one i ∈ I such that k(i) = ∞. Let i0 be such that
i0 = min

I
i. Note that i0 is not necessarily equal to −2. Now we can define a

chain as J i = {j : k(i) ≤ j ≤ i}. With the above definitions, it easy to check
that J = ∪i∈IJ i.

Similarly denote, J = {j ≥ 1} and we define some subsets of this set as
follows,
Definition: I ⊂ J = {i ∈ J : Si < Si+1} is the set of admissble indices.
Note that this implies that for each i ∈ I, there exists a unique k(i) such that
the following holds,
1. Si ≥ Si+1 ≥ . . . ≥ Si+k(i)

2. Si+k(i)+1 > Si+k(i)

We denote the following,
1.k(i) = 0 if Si+1 > Si and
2.k(i) = ∞ if ∀j > i, Sj ≥ Sj+1

So there can be atmost one i ∈ I such that k(i) = ∞. We denote the minimum
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16 Siddhartha Mishra and Jérôme Jaffré

value in I to be i0. Now we can define a chain as J i = {j : i ≤ j ≤ k(i)}. With
the above definitions, it easy to check that J = ∪i∈IJ i.
Equipped the definitions above, we are in a position to state the main lemma
of this section in the following,

LEMMA 5.7 ∀i ∈ I, the following estimates hold, if i < −2 and k(i) 6= ∞
then,

∑

j∈Ji

(zj − zj+1)+ ≤
∑

j∈Ji

{|F−(Sj , Sj+1) − F−(Sj−1, Sj)|

+ |F−(Sj+1, Sj+2) − F−(Sj , Sj+1)|} (5.5)

for i0 as defined above, and such that i0 = −2, we have the following estimate,
∑

j∈Ji0

(zj − zj+1)+ ≤ 2M (5.6)

In case, i happens to be the only index such that k(i) = ∞, then

∑

j∈Ji

(zj − zj+1)+ ≤ 2M (5.7)

Similarly, if i ∈ I and k(i) 6= −∞, then the following estimate holds

∑

j∈Ji

(wj − wj+1)+ ≤
∑

j∈Ji

{|F+(Sj , Sj+1) − F+(Sj−1, Sj)|

+ |F+(Sj+1, Sj+2) − F+(Sj , Sj+1)|} (5.8)

for i0 as defined above, and such that i0 = 1, we have the following estimate,
∑

j∈Ji0

(zj − zj+1)+ ≤ 2M (5.9)

And in case i is such that k(i) = ∞, then we have that

∑

j∈Ji

(wj − wj+1)+ ≤ 2M (5.10)

Proof: We will only provide proofs for the estimates (5.5) and (5.7). The other
inequalities follow in the same manner. We have to consider three separate cases
to check the estimate namely,
Case 1: 0 ≤ Sk(i) ≤ θ−.
In this case, it follows from the L∞ bounds and the definitions that 0 ≤ Si ≤
. . . ≤ Sk(i) ≤ θ−. Hence, one can check that

∑

j∈Ji

(zj − zj+1)+ = f−(Sk(i)) − f−(Si) (5.11)

From the definition of I, we get that Si ≤ Si+1 and Sk(i)+1 ≤ Sk(i). Therefore,
using the monotonicity and consistency of the interior upstream mobility flux
scheme,we get that

F−(Si, Si+1) ≤ F−(Si, Si) = f−(Si) (5.12)
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On the upstream mobility scheme 17

and

F−(Sk(i), Sk(i)+1) ≥ F−(Sk(i), Sk(i)) = f−(Sk(i)) (5.13)

Therefore by combining the above estimates, we get that

f−(Sk(i)) − f−(Si) = f−(Sk(i)) − F−(Sk(i)+1, Sk(i)+2|

+ F−(Sk(i)+1, Sk(i)+2) − . . .

+ . . .− F−(Si−1, Si)

+ F−(Si−1, Si) − f−(Si)

Now by using (5.12) and (5.13), we get that ,

∑

j∈Ji

(zj − zj+1)+ ≤
∑

j∈Ji

|F−(Sj , Sj+1) − F−(Sj−1, Sj)|

thus proving (5.5). Next we consider,
Case 2: θ− ≤ Si ≤ 1.
In this case, it follows from the L∞ bounds and the definitions that θ− ≤ Si ≤
. . . ≤ Sk(i) ≤ 1. Hence, one can check that

∑

j∈Ji

(zj − zj+1)+ = f−(Si) − f−(Sk(i)) (5.14)

From the definition of I, we get that Si ≤ Si−1 and Sk(i)−1 ≤ Sk(i). Therefore,
using the monotoniticity and consistency of the interior upstream mobility flux
scheme,we obtain

F−(Si−1, Si) ≥ F−(Si, Si) = f−(Si) (5.15)

and

F−(Sk(i)−1, Sk(i)) ≤ F−(Sk(i), Sk(i)) = f−(Sk(i)). (5.16)

Therefore by combining the above estimates, we have

f−(Sk(i)) − f−(Si) = f−(Sk(i)) − F−(Sk(i)+1, Sk(i)+2)|

+ F−(Sk(i)+1, Sk(i)+2) − . . .

+ . . .− F−(Si−1, Si)

+ F−(Si−1, Si) − f−(Si)

Now by using (5.15) and (5.16), we get

∑

j∈Ji

(zj − zj+1)+ ≤
∑

j∈Ji

{|F−(Sj , Sj+1) − F−(Sj−1, Sj)|

thus proving (5.5).
Case 3:Si ≤ θ− ≤ Sk(i)

In this case, ∃ l(i) ∈ J i such that Si ≤ . . . ≤ Sl(i) ≤ θ− ≤ Sl(i)−1 ≤ . . . ≤ Sk(i).
We get that

∑

j∈Ji

(zj − zj+1)+ = f−(θ−) − f−(Sk(i)) + f−(θ−) − f−(Si) (5.17)
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18 Siddhartha Mishra and Jérôme Jaffré

Again by the monotonicity and consistency of the interior fluxes, we have the
following estimate,

F−(Sl(i)−1, Sl(i)) ≥ F−(θ−, θ−) = f−(θ−) (5.18)

Therefore, from the estimates (5.17), (5.18), (5.12) and (5.16), we have

f−(θ−) − f−(Si) = f−(θ−) − F−(Sl(i), Sl(i)+1

+ F−(Sl(i), Sl(i)+1) − . . .

+ . . .− F−(Si−1, Si)

+ F−(Si−1, Si) − f−(Si)

and

f−(θ−) − f−(Sk(i)) = f−(θ−) − F−(Sl(i)−2, Sl(i)−1)

+ F−(Sl(i)−2, Sl(i)−1) − . . .

+ . . .− F−(Sk(i), Sk(i)+1)

+ F−(Sk(i), Sk(i)+1) − f−(Sk(i))

Combining the above 2 estimates, we get the desired inequality and prove (5.5)
in all the 3 cases. Next, we prove (5.7). In case of i being the unique element
of I such that k(i) = ∞. It is easy to from the L∞ and Lipschitz bounds that

i
∑

−∞

(zj − zj+1)+ ≤ f(θ−) − f−(ui)

+ f−(θ−) − f−(1)

≤ M(|θ− − 1| + θ−) = M

Thus we have the estimate (5.7). The other estimates can be proved similarly.

We use the above inequalities to show the following variation bound on the
singular mapping,

LEMMA 5.8 The transformed sequences are of bounded total variation and
the following estimate holds,

max{TV (zn
j ), TV (wn

j )} ≤
4

λ
N(f−, f+, S0) + 2M (5.19)

Proof: We provide a proof for the sequence {zn
j }, the other bound follows in a

similar way.We

TV (zn
j ) = 2(

∑

j∈Z

(zn
j − zn

j+1)+)

=
∑

j∈J

(zn
j − zn

j+1)+

=
∑

i∈I

∑

j∈Ji

(zn
j − zn

j+1)+ + 2M

(5.20)
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By adding the chain inequalities (5.5), 5.6 and 5.7), we get that

∑

(zn
j − zn

j+1)+ = 2(
∑

j≤−2

|G(un
j , u

n
j+1) −G(un

j−1, u
n
j )| + |G(un

−2, u
n
−1 − F (un

−1, u
j
1)|

+ |F (un
−1, u

j
1) − F (un

1 , u
n
2 )| +

∑

j≥2

|F (un
j , u

n
j+1) − F (un

j−1, u
n
j )| + 2M

=
2

λ

∑

j 6=0

|un+1
j − un

j | + 4M (5.21)

Now by using the discrete L1 contractivity, we get the desired estimate. In a
similar way, we can get the total variation bound for {wn

j } and complete the

proof of the lemma.

In order to show convergence of solutions generated by the scheme, we need
to define the following piecewise constant functions,Let zh, wh be defined as
zh(x, t) = zn

j , w
h(x, t) = wn

j , ∀ (x, t) ∈ In
j . We translate the bounds on the

discrete values in terms of the above functions in the following lemmas which
we state without proof (for a proof see [27]).

LEMMA 5.9 With the functions defined as above and ∀t ∈ R+,we have,

max{TV (zh), TV (wh)} ≤
4

λ
Nh(f−, f+, u0) + 4M (5.22)

LEMMA 5.10 Let S0 ∈ L∞(R, [0, 1]) such that N(f−, f+, S0) < ∞ be initial
data and let Sh be the co rresponding solutions obtained by the scheme (2.1),then

0 ≤ Sh(x, t) ≤ 1 ∀ (x, t) ∈ R × R+ (5.23)

∫

R

|Sh(x, t) − Sh(x, τ)|dx ≤ Nh(f−, f+, S0)(2∆t+ |t− τ |) (5.24)

We are in a position to state our main convergence theorem. The key step was
to prove the total variation bounds on the singular mappings and the fact that
the singular mapping is monotone and hence invertible. We have that

THEOREM 5.1 Assume that the CFL condition is satisfied and the initial
data S0 satisfies the hypothesis IN1 and IN2, Let Sh be approximate solutions
defined above,then there exists a subsequence (still denoted by h) such that Sh

converge almost everywhere to a weak solution S of (2.1).In fact Sh → S in
L∞

loc(R+, L
1
loc(R)) as h goes to 0. Furthermore, the limit solution satisfies the

interior entropy condition (3.2).

Proof:This is the main convergence theorem for the upstream mobility flux
scheme (4.8). The proof follows by the classical arguments of the Lax-Wendroff
theorem (See [14]) and the modifications introduced in [2]. We omit the details
and refer to the above quoted paper for them.

For any fixed t > 0,we have the BV bounds from the Lemma (5.9) and by
using the standard Rellich compactness theorem that upto subsequences (still
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denoted by h),we get that zh(., t), wh(., t) converge in L1 and for almost all x to
z(., t) and w(., t) respectively.

For fixed t and for almost all x < 0, then from the convergence we have that
ψ(Sh) → z. Note that ψ is monotone for x < 0 and we get that Sh(x, t) →
ψ−1(z(x, t)) = S(x, t). Thus for all x < 0,we get that Sh(., t) converges to S(., t)
for almost all x < 0.Similarly,for x > 0,we define S(x, t) = ψ−1

2 (zh(x, t) and get
the a.e convergence.Now we use the standard density argument along with the
time continuity estimate (5.10),to get that

Sh → S ∈ L∞
loc((0, T ), L1

loc(R)) (5.25)

Once we have the above convergence, we can use the standard arguments of
the Lax-Wendroff type in order to show that Sh converges to a weak solution of
(2.1).The proof follows exactly as in [27] and we refer the reader to this reference
for details. Similarly, the consistency of the scheme with the interior entropy
condition is shown by using the numerical entropy fluxes of Crandall-Majda (see
[14]). Check [2] for the details.

6 Entropy consistency of the scheme

In the previous sections, we have shown that the upstream mobility flux scheme
is well defined for two-phase flow in an heterogenous medium with two rock
types and that it generates solutions which converge to weak solutions of the
conservation law (2.1) and satisfy interior Kruzkhov type entropy condition.
But, for the solutions of the scheme to be admissible, we have to show that
they also satisfy the interface entropy condition (3.3). As pointed out earlier,
we remark that this entropy condition is pointwise and essentially amounts to
the exclusion of undercompressive waves at the interface (x = 0). In ([2]), it
was shown that the Godunov type scheme (4.3) satifies the interface entropy
condition by means of a contradiction argument. In this section, we investigate
the question of whether the limit solution generated by the upstream mobility
flux scheme also satisfies this interface entropy condition or not.

It will be shown by means of various numerical experiments that the limit
solution generated by scheme (4.8) which uses the upstream mobility flux need
not satisfy the interface entropy condition and counterexamples are given. In
other cases that we report, it is far from clear whether the interface entropy
condition is actually satisfied. In fact, the numerical evidence suggests that
this condition is not satisfied in the pointwise sense as required in the entropy
theory of ([2]) on account of certain boundary layer phenomena at the interface
although the entropy condition may be satisfied in a weaker integral sense.

It is worth mentioning that there are several entropy theories for equations
of the type (2.1) like those presented in [2] and in [19]. It will be shown that
in some cases, the solutions generated by the scheme (4.8) satisfy the entropy
conditions of [19] and in some other cases, the conditions of [2].

We will now present the five numerical experiments illustrating five different
situations.

Experiment 1
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In this example, we consider the flux functions given by,

λ+
1 (S) = 1.1S λ+

2 (S) = 1.1(1 − S)
λ−1 (S) = S λ−2 (S) = 1 − S
g1 = 2 g2 = 1
φ = 1 q = 0

As is clear from the above, we are considering that the porosity and the relative
permeabilities dont change across the rock types and the absolute permeabilities
only change with K+ = 1.1 and K− = 1. The shape of the corresponding fluxes
f− and f+ are shown in Fig. 6.
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Figure 6.1: Flux functions in experiment 1

We consider for initial data, S0(x) =

{

0.65 if x < 0
0.35 if x > 0.

In this case, since

the flux functions do not intersect in the interior of the interval (0.1), the entropy
solution in this case coincides for the entropy theories of [2] and [19] and consists
of a rarefaction fan joining 0.65 and 0.5 on the left and a steady discontinuity
at the interface with 0.5 as the left trace and 0.35 as the right trace. Note that
the entropy solution does not admit underconmpressive waves at the interface
as f−′(0.5) ≡ 0.

We present the solutions obtained by the Godunov type finite difference
scheme which we term as the Exact Riemann Solver (ERS) and the Upstream
Mobility scheme which we term as UM. Also, we compute solutions with the
staggered mesh version of the Godunov scheme developed by Towers in [29] and
[30]. We term this scheme as AV. The computed solutions are shown at two
different times and for two different mesh sizes in Fig. 6.2 and Fig. 6.3.
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Figure 6.2: Solutions in experiment 1 with h = 0.1 at times t=0.5 and t=1.5
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Figure 6.3: Solutions in experiment 1 with h = 0.01 at t=0.5 and t=1.5

In Figure 6.2, we show the numerical results obtained with the mesh size
h = 0.1 and the CFL constant λ = 1

8 . As expected at this rather large mesh
size, the resolution is not high although the ERS is already giving very good
results with the interface discontinuity being resolved perfectly. On the other
hand, both UM and AV do not resolve the interface discontinuity well. In
fact, as seen in Fig. 6.2, the left trace of the solution as computed by UM is
approximately 0.4 which is less than the expected trace of 0.5. This is indicative
of the development of a boundary layer at the interface x = 0. Another anomaly
is the existence of a travelling wave in both UM and AV that is clearly unphysical
as the solution is constant 0.35 in x > 0. The amplitude of this spurious wave
is higher for UM than for AV. Both these phenomena indicate that we cannot
prove that the limit solution generated by UM and AV are consistent with the
interface entropy condition (3.3) in a pointwise sense.

In order to confirm the above proposition, we reduce the mesh size to
h = 0.01 and show the solution in Fig. 6.3. Again, we see that ERS re-
solves both the rarefaction and the interface discontinuity very well with little
numerical diffusion whereas both UM and AV do not match the solution. Even
with a very small mesh size, the left trace at the interface of the solution com-
puted with UM is around 0.4 and is well below the required value of 0.5. Also,
the spurious travelling wave seen before is still present although its magnitude
has decreased. As stated earlier, the existence of both a boundary layer and a
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travelling wave forces us to believe that the solution computed with UM is not
consistent with the interface entropy condition. The same holds true for the
solutions computed by AV.

The first numerical experiment that we have presented represents the sim-
plest type of discontinuity at the interface involving only a change in the absolute
permeability across the interface. Even in this simple situation, the UM flux
scheme does not perform as well as ERS and the limit solution obtained by
it doesnot seem to satisfy the interface entropy condition of [2]. Hence, more
interesting and complicated behaviour is expected when we consider changes
in relative permeabilities across the interface. As will be shown in the coming
numerical experiments, the limit solution computed by UM will converge to the
entropy solution of [2] in some cases and the entropy solution of [19] in some
other cases.

We start with an example where the solution given by UM seems to converge
to the entropy solution of [2] in the following numerical experiment,
Experiment 2

In this experiment, we consider the following flux functions and parameters,

λ+
1 (S) = S λ+

2 (S) = 2(1 − S)
λ−1 (S) = 2S λ−2 (S) = 1 − S
g1 = 2 g2 = 1
φ = 1 q = 0

In this case, we are changing the relative permeability functions across the
interface. The flux functions are shown in Fig. 6.
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Figure 6.4: Flux functions in experiment 2

Observe that in this case, the flux functions intersect at the point 0.5 in the
interior of the domain and the point of intersection is undercompressive i.e
f+′(0.5) > 0 and f−′(0.5) < 0. The initial data are S0(x) = 0.5 ∀ x ∈ R, so
we start with a state where the light and heavy phases are fully mixed. In this
case, the entropy solution of [2] is given by the constant state 0.5 connected to
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the left trace 0.42 by a rarefaction fan on the left and the constant state 0.5
connected to the right trace 0.58 on the right. Observe that this solution satisfies
the interface entropy condition (3.3) as f−′(0.42) = 0 and f+′(0.58) = 0.

As the flux functions satisfy the “crossing” condition of [19], we can apply
the Kruzkhov type condition of [19] to get that their entropy solution in this
case is given by S ≡ 0.5. This implies that there is no flow in the medium
which is unnatural as noticed in [21]. This is one situation where the above
entropy theories differ and the entropy theory of [2] captures the physically
relevant solution. We have computed the solutions using all the three schemes
to obtain the results as shown in Figures 6.5 and 6.6. Fig. 6.5) shows the
solutions obtained by schemes ERS, UM and AV with h = 0.1 and the CFL
parameter λ = 0.125. We show the computed solutions at times t = 1.5 and
t = 3 respectively. As can be observed in Fig. 6.5, the solution obtained by
AV is the constant state 0.5 in accordance with the entropy theory of [19]. The
solution computed by ERS converges towards the entropy solution as discussed
above with a good resolution of the interface discontinuity and some numerical
diffusion at the rarefactions. The solution obtained by UM shows the same
qualitative behaviour as that calculated by ERS although the left trace is 0.35
which is well below the left trace of the solution i.e 0.42. Similarly the right
trace of the UM solution is 0.65 which is above the required right trace of 0.58.
This is again indicating the evidence for UM of a numerical boundary layer at
the interface which was noticed in experiment 1.

In order to get a better estimate of the boundary layer, we shrink the mesh
size to h = 0.01 and present the results in Fig. 6.6.
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Figure 6.5: Solutions in experiment 2 with h=0.1 at t=1.5 and t=3
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Figure 6.6: Solutions in experiment 2 with h = 0.01 at t=1.5 and t=3

Again, the solution obtained by AV is the constant state 0.5. As expected
given the convergence results presented before, the solution obtained by ERS is
almost exact. Notice that the left and right traces at x = 0 are exactly 0.42 and
0.58 as in the exact solution of this Riemann problem showing the high resolu-
tion of the scheme. The qualitative behaviour of the solution obtained by UM
is again similar to that of ERS. But the boundary layer at the interface remains
as the left trace is still below 0.35 (well below 0.42) and the right trace is still
above 0.65 well above the required right trace of 0.58. This suggests to us that
the boundary layer remains intact as h → 0 and the traces at the interface are
different from the expected traces, although, the width of this boundary layer
shrinks with a reduction in the mesh size. This suggests that the limit solu-
tion obtained by UM converges to the entropy solution of [2] in an integral sense.

In experiment 2, we considered flux functions where the solutions obtained
by UM converged to the entropy solution of [2] in an integral sense. The crucial
point of the previous experiment was that the fluxes intersect in the interior of
the interval (0,1) and the point of intersection was undercompressive. Next, we
consider a situation of the similar type where solutions computed by UM seem
to behave very differently.
Experiment 3 In this experiment we consider the flux functions and parame-
ters given by,

λ+
1 (S) = S λ+

2 (S) = (1 − S2)
g1 = 2 g2 = 1
φ = 1 q = 0

λ−1 (S) = 1.75S if S ≤ 0.25
= 0.25S + 0.375 if S ≥ 0.25

λ−2 = 1 − S2

The flux functions are schown in Fig. 6. Notice that in this case, f− and f+

intersect at 0.5 and the intersection is undercompressive. This is a situation
which looks similar to that of the previous numerical experiment.
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0     0.5     1
0

 

0.1

 

0.2

 

0.3

 

f+ :

f− :

Figure 6.7: Flux functions in experiment 3

Again we start with the constant initial data given by S0(x) = 0.5 ∀ x ∈
R.

As in experiment 2, the entropy solution of [2] consists of the constant state
0.5 connected to the left trace 0.45 by a rarefaction on the left, a steady discon-
tinuity at x = 0 connecting the left trace 0.45 to the right trace 0.54,and the
constant state 0.54 being connected by another rarefaction to the constant state
0.5 on the right. As the “crossing condition” is satisfied, the entropy solution
of [19] is just the constant S ≡ 0.5. We show in figure (6.8) the results obtained
by all three schemes with h = 0.1 and the CFL λ = 0.125.
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Figure 6.8: Solutions in experiment 3 with h = 0.1 at t=2.5 and t=3.75

As noticed in Fig. 6.8, the solution computed by ERS approximates the
entropy solution of [2] while the solution computed by AV is the constant 0.5.
But what is really surprising is that the solution computed by UM is also the
constant 0.5. In fact, this example has been constructed in such a way that
λ−1 (0.5) = λ+

1 (0.5) and λ−2 (0.5) = λ+
2 (0.5). Hence from the very definition of

the upstream mobility flux, it is easy to check that the solution computed by
UM remains the constant 0.5 at all time steps.
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Thus so far we have shown two experiments involving fluxes with an un-
dercompressive intersection in which the entropy solutions of [2] and [19] differ.
In experiment 2, the solutions computed by UM flux seems to converge to the
entropy solution of [2] in an integral sense, though not pointwise whereas, in ex-
periment 3, the UM flux gives the constant solution which has been considered
in literature as unphysical (see [21]) and converges to the entropy solution of
[19]. Despite similar flux geometry, this inconsistent behaviour of the UM flux
indicates the difficulties of characterizing the limit solutions computed by the
scheme.

The above numerical experiments clearly show that the inconsistent be-
haviour of the UM flux when the fluxes intersect in the interior of the interval
(0,1) and the point of intersection is undercompressive. We now investigate an-
other type of flux geometry in which the flux functions intersect and the point
of intersection is overcompressive. In this case, the limit solution obtained with
the UM flux also shows an inconsistent entropy behaviour.
Experiment 4 In this experiment, we consider the following flux functions and
parameters,

λ+
1 (S) = 2S λ+

2 (S) = (1 − S)
λ−1 (S) = S λ−2 (S) = 2(1 − S)
g1 = 2 g2 = 1
φ = 1 q = 0
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Figure 6.9: Flux functions in experiment 4
.eps

The flux functions are shown in Fig. 6. Observe that f− and f+ intersect at
0.5 and that the intersection is overcompressive i.e f−′(0.5) > 0 and f+′(0.5) <

0. We consider the initial data S0(x) =

{

2/3 if x < 0
1/3 if x > 0.

The entropy solution of [2] in this case consists of the constant state 0.66
connected by a rarefaction to the left trace 0.58 on the left , a steady disconti-
nuity at the interface between the left trace 0.58 and the right trace 0.42 and
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the constant state 0.66 connected to the right trace 0.42 on the right. Note that
the solution is not undercompressive as f−′(0.58) = f+′(0.42) ≡ 0. We remark
that the above fluxes f− and f+ do not satisfy the “crossing condition” of [19]
and the entropy theory developed in the above reference does not apply to this
situation. But we can still compute the solutions given by AV as the scheme is
well defined. We present the solutions in figure (6.10). We consider the mesh
size h = 0.1 and the CFL parameter is λ = 0.125.
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Figure 6.10: Solutions in experiment 4 with h = 0.1 at t=1.5 and t=3

As shown in Fig. 6.10), the solution obtained with ERS approximates the
entropy solution of [2]. Note that the left and right traces are very close to the
expected values of 0.58 and 0.42. On the other hand, the solution computed
by both UM and AV is the steady state 2/3 on the left and 1/3 on the right
which is very different from that of the solution given by ERS. Observe that this
solution is undercompressive i.e f−′(2/3) < 0 and f+′(1/3) > 0. The entropy
theory of [2] avoids solutions of this type. Also this solution differs from the
solution of the Riemann problem constructed by Diehl in [12] which in this case
is identical to the solution computed by ERS. We believe that this undercom-
pressive solution is unphysical and the right solution is computed by ERS.

It is easy to show by using that λ+
1 (2/3) = λ−1 (1/3) and λ+

2 (1/3) = λ−1 (2/3)
and the explicit definition of UM that the solution computed by UM for all h
in this case is the steady state with 2/3 on the left and 1/3 on the right. The
natural question that arises is whether the solutions computed by UM agree with
that of AV in the case where the flux functions intersect in an overcompressive
manner. The answer to this question is contained in the next experiment.
Experiment 5 In this experiment, we consider the following flux functions and
parameters,

λ+
1 (S) = 50S2 λ+

2 (S) = 5(1 − S)2

λ−1 (S) = 10S2 λ−2 (S) = 20(1 − S)2

g1 = 2 g2 = 1
φ = 1 q = 0

The flux functions are shown in Fig. 6. Notice that in this case, the flux func-
tions intersect in the interior of the domain at 0.46 and the point of intersection
is overcompressive.
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Figure 6.11: Flux functions in experiment 5

We consider the following initial data S0(x) =

{

0.8 if x < 0
0.2 if x > 0.

In this case, the entropy solution of [2] consists of a rarefaction joining the
constant state of 0.8 with the left trace of 0.6, followed by a constant state of
0.6, a steady discontinuity joining the left trace of 0.6 and the right trace 0.32
and a rarefaction joining the right trace to that of the constant state of 0.2.
Check that this solution is not undercompressive. The solutions obtained by
all the three schemes with h = 0.1 and λ = 1/32 are shown in Fig. 6.12. The
solution given by the ERS flux approximates well the entropy solution, even
with a large mesh size. The solution given by thg AV flux is quite different
in this case and note that the traces (0.7, 0.22) are undercompressive. On the
other hand, the solutions obtained by the UM flux are very close to those of the
ERS flux besides a boundary layer on the right. A further reduction in mesh
size to h = 0.01 shows that the boundary layer on the right remains and the
traces given by the AV flux are undercompressive as shown in Fig. (6.13).
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Figure 6.12: Solutions in experiment 5 with h = 0.1 at t=0.25 and t=0.5
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−4 −3 −2 −1 0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ERS:
UM  :
AV   :

−4 −3 −2 −1 0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ERS:
UM  :
AV   :

Figure 6.13: Solutions in experiment 5 with h = 0.01 at t=0.25 and t=0.5

To sum up about these experiments we observed the following behaviour
across the interface:

1. In some experiments (experiments 1,2,5) the upstream mobility flux may
produce unphysical boundary layers and travelling waves. The traveling
wave and the width of the boundary layer vanishes when h→ 0, while the
heigth of the boundary layer may remain significant. Despite of these nu-
merical artefacts the solution given by the upstream mobility flux remain
close to that given by the ERS flux. This suggests that in these experi-
ments, the solution calculated with the UM flux, even though it does not
satisfy the pointwise entropy condition (3.3), may satisfy some integral
form of it. For the average flux, depending on the experiment, it behaves
like the UM flux (experiments 1, 5) or it misses the interface discontinuity
(experiment 2).

2. In other experiments (experiment 3, 4) the UM flux as well as the AV flux
produces unphysical undercompressive solutions (experiment 4) and even
misses the interface discontinuity (experiment 3).

7 Conclusion

In this paper we analyzed the upstream mobility numerical flux for a finite
difference scheme when a two-phase flow crosses the interface between two rock
types. This results in a discontinuity in the flux function with respect to the
space variable. We were able to prove convergence to a weak solution but
numerical experiments show that it does not satisfy the entropy condition of
[2].

Most often the solution given by the upstream mobility flux is close to that
given by the extended Godunov flux but numerical artefacts like boundary layers
or traveling waves perturb the solution. There are even cases when the upstream
mobility flux misses the discontinuity at the interface. The solution given by
the averaged flux is not doing any better.
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