R. Coulom, Reinforcement Learning Using Neural Networks with Applications to Motor Control, 2002.
URL : https://hal.archives-ouvertes.fr/tel-00003985

S. E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, Advances in NIPS, pp.524-532, 1990.

S. Girgin and P. Preux, Basis Expansion in Natural Actor Critic Methods, Proc. of the 8 th European Workshop on Reinforcement Learning, 2008.
DOI : 10.1007/978-3-540-89722-4_9

URL : https://hal.archives-ouvertes.fr/hal-00826055

S. Girgin and P. Preux, Feature Discovery in Reinforcement Learning Using Genetic Programming, Proc. of Euro-GP, pp.218-229, 2008.
DOI : 10.1007/978-3-540-78671-9_19

URL : https://hal.archives-ouvertes.fr/hal-00826056

J. Johns and S. Mahadevan, Constructing basis functions from directed graphs for value function approximation, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.385-392, 2007.
DOI : 10.1145/1273496.1273545

P. W. Keller, S. Mannor, and D. Precup, Automatic basis function construction for approximate dynamic programming and reinforcement learning, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.449-456, 2006.
DOI : 10.1145/1143844.1143901

M. G. Lagoudakis and R. Parr, Least-squares policy iteration, J. of Machine Learning Research, vol.4, pp.1107-1149, 2003.

M. Loth, M. Davy, and P. Preux, Sparse Temporal Difference Learning Using LASSO, 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, 2007.
DOI : 10.1109/ADPRL.2007.368210

URL : https://hal.archives-ouvertes.fr/inria-00117075

S. Mahadevan and M. Maggioni, Proto-value functions, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.2169-2231, 2007.
DOI : 10.1145/1102351.1102421

I. Menache, S. Mannor, and N. Shimkin, Basis Function Adaptation in Temporal Difference Reinforcement Learning, Annals of Operations Research, vol.34, issue.1/2/3, pp.215-238, 2005.
DOI : 10.1007/s10479-005-5732-z

R. Parr, C. Painter-wakefield, L. Li, and M. Littman, Analyzing feature generation for value-function approximation, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.737-744, 2007.
DOI : 10.1145/1273496.1273589

M. Puterman, Markov Decision Processes ? Discrete Stochastic Dynamic Programming. Probability and mathematical statistics, 1994.

M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, IEEE International Conference on Neural Networks, pp.586-591, 1993.
DOI : 10.1109/ICNN.1993.298623

F. Rivest and D. Precup, Combining td-learning with cascade-correlation networks, pp.632-639, 2003.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192