R. Agrawal, T. Imielinsky, and A. Swami, Mining association rules between sets of items in large databases, Proceedings of the ACM SIGMOD'93, pp.207-216, 1993.

J. Benzécribenz´benzécri, Analyse des Donnés, 1973.

F. Brucker and J. Barthélemybarth´barthélemy, Eléments de classification, Hermes, 2007.

R. Gras, F. Guillet, F. Spagnolo, and E. Suzuki, Statistical Implicative Analysis, Studies in Computational Intelligence, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00421518

R. Gras and P. Kuntz, Discovering R-rules with a directed hierarchy, Soft Computing, vol.10, issue.5, pp.453-460, 2005.
DOI : 10.1007/s00500-005-0506-8

URL : https://hal.archives-ouvertes.fr/hal-00421317

R. Gras and P. Kuntz, An overview of the Statistical Implicative Analysis (SIA) development, Statistical Implicative Analysis, Studies in Computational Intelligence, 2008.
DOI : 10.1007/978-3-540-78983-3_1

R. Gras, P. Kuntz, and J. Egnier, Significativité des niveaux d'une hiérarchie orientée en analyse statistique implicative, 2004.

F. Guillet and H. J. Hamilton, Quality measures in data mining, Studies in Computational Intelligence, vol.43, 2007.
DOI : 10.1007/978-3-540-44918-8

URL : https://hal.archives-ouvertes.fr/hal-00445178

S. C. Johnson, Hierarchical clustering schemes, Psychometrika, vol.58, issue.4, pp.241-254, 1967.
DOI : 10.1007/BF02289588

M. Klementtinen, H. Manilla, P. Ronkainen, H. Toivonen, and A. I. Verkamo, Finding interesting rules from large sets of discovered association rules, Proceedings of the 3rd International Conference on Information and Knowledge Management, pp.401-407

P. Kuntz and I. Lerman, Directed binary hierarchies and directed ultrametrics First joint meeting of the Société Francophone de Classification and the Classification and Data Analysis group of the Italian Statistical Society, pp.337-340, 2008.

B. Lent, A. N. Swami, and J. Widow, Clustering association rules, Proceedings 13th International Conference on Data Engineering, pp.220-231
DOI : 10.1109/ICDE.1997.581756

I. Lerman, Analyse logique, combinatoire et statistique de la construction d'une hiérarchie binaire implicative; niveaux et noeuds significatifs Publication Interne, a revised version is accepted for publication in, Mathématiques et Sciences Humaines, vol.1827, 2006.

I. Lerman, Sur les différentes expressions formelles d'une hiérarchie binaire symétrique ou implicative, Rencontres de la Société Francophone de Classification, pp.139-142, 2007.

I. C. Lerman, Les bases de la classification automatique, 1970.

I. C. Lerman, R. Gras, and H. Rostam, ´ Elaboration etévaluationetévaluation d'un indice d'implication pour des données binaires i et ii, Mathématique et Sciences Humaines, pp.74-755, 1981.

J. Loevinger, A systematic approach to the construction and evaluation of tests of ability., Psychological Monographs, vol.61, issue.4, pp.1-49, 1947.
DOI : 10.1037/h0093565

W. S. Robinson, A model for chronological ordering of archeological deposits, American antiquity, issue.16, pp.295-301, 1951.

A. Takeuchi, T. Saito, and H. Yadohisa, Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations, Journal of Classification, vol.24, issue.1, pp.123-143, 2007.
DOI : 10.1007/s00357-007-0002-1

H. Toivonen, M. Klmenttinen, P. Ronkairen, K. Hatonen, and H. Manila, Pruning and grouping discovered association rules, Workshop notes of the ECML Workshop on Statistics, Machine Learning and Knowledge Discovering in Databases, pp.47-52, 1995.

H. Yadohisa, Formulation of asymmetric agglomerative hierarchical clustering and graphical representation of its results, Bulletin of the Computational Statistics of Japan, issue.15, pp.309-316, 2002.

B. Zielman and W. J. Heiser, Models for asymmetric proximities, British Journal of Mathematical and Statistical Psychology, vol.49, issue.1, pp.127-146, 1996.
DOI : 10.1111/j.2044-8317.1996.tb01078.x