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Numerical approximation of
Backward Stochastic Differential

Equations with Jumps

Antoine Lejay∗ Mordecki† Soledad Torres‡

Abstract. In this note we propose a numerical method to approximate the
solution of a Backward Stochastic Differential Equations with Jumps (BS-
DEJ). This method is based on the construction of a discrete BSDEJ driven
by a complete system of three orthogonal discrete time-space martingales,
the first a random walk converging to a Brownian motion; the second, an-
other random walk, independent of the first one, converging to a Poisson
process. The solution of this discrete BSDEJ is shown to weakly converge
to the solution of the continuous time BSDEJ. An application to partial
integro-differential equations is given.
Keywords: Backward SDEs with jumps, Skorokhod topology, Poisson Pro-
cess, Monte Carlo method.
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1 Introduction

Consider a stochastic process {Yt, Zt, Ut : 0 ≤ t ≤ T} that is the solution of
a Backward Stochastic Differential Equation with Jumps (in short BSDEJ)
of the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdBs −
∫

(t,T ]×R
Us(x)Ñ(ds, dx),

0 ≤ t ≤ T. (1.1)

Here {Bt : 0 ≤ t ≤ T} is a one dimensional standard Brownian motion;
Ñ(dt, dx) = N(dt, dx)− ν(dt, dx) is a compensated Poisson random measure
defined in [0, T ]× (R \ {0}). Both processes are defined on a stochastic basis
B = (Ω,FT ,F = {Ft}0≤t≤T ,P), and, as usual in this framework, we assume
that they are independent. The terminal condition ξ is a FT -measurable ran-
dom variable in Lq(P), q > 2 (see condition (B) in Section 2); the coefficient
f is a non-anticipative (w.r.t. (Ft)t≥0), continuous, bounded and Lipschitz
function f : Ω× [0, T ]×R3 → R (see condition (A) in Section 2). The prob-
lem of solving a BSDEJ given the terminal condition ξ, the coefficient f , and
the driving processes B and Ñ , defined on a stochastic basis B, is to find
three adapted processes {Yt, Zt, Ut : 0 ≤ t ≤ T} such that (1.1) holds.

In this note — once the existence and uniqueness of the solution of a
BSDEJ as described above is known — we propose a numerical method that
approximates the solution of the equation (1.1) in the case when Ñ is a
compensated Poisson process.

Nonlinear backward stochastic differential equations of the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T,

were first introduced by E. Pardoux and S. Peng [15] in 1990. Under some
Lipschitz conditions on the generator f , the authors stated the first existence
and uniqueness result. Later on, the same authors in 1992 developed the
BSDE theory relaxing the hypotheses that ensure the existence and unique-
ness on this type of equations in [16]. Many subsequent efforts have been
made in order to relax further the assumptions on the coefficient f(s, y, z),
and many applications in mathematical finance have been proposed.

The backward stochastic differential equations with jumps theory begins
with an existence result obtained by S. Tang and X. Li [12]. The authors
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stated such a theorem when the generator satisfies some Lipschitz condition.
Another relevant contribution on BSDEJ is the paper by R. Situ [21]. In [2],
G. Barles, R. Buckdahn and E. Pardoux consider a BSDEJ when the driving
noises are a Brownian motion and an independent Poisson random measure.
They show the existence and uniqueness of the solution, and in addition, they
establish a link with a partial integro-differential equation (in short PIDE).

A relevant problem in the theory of BSDEs is to propose implementable
numerical methods to approximate the solution of such equations. Several ef-
forts have been made in this direction as well. For example, in the Markovian
case, J. Douglas, J. Ma and P. Protter [9] proposed a numerical method for
a class of forward-backward SDEs, based on a four step scheme developed by
J. Ma, P. Protter and J. Yong [14]. On the other hand, D. Chevance [6] pro-
posed a numerical method for BSDEs. In [23], J. Zhang proposed a numerical
scheme for a class of backward stochastic differential equations with possible
path-dependent terminal values. See also [4, 11], among others, where nu-
merical methods for decoupled forward-backward differential equations are
proposed, and [1, 3, 13] for backward differential equations.

In the present work we propose to approximate the solution of a BSDEJ
driven by a Brownian Motion and an independent compensated Poisson pro-
cess, through the solution of a discrete backward equation, following the
approach proposed for BSDE by P. Briand, B. Delyon and J. Mémin in [5].
The algorithm to compute this approximation is simple.

In the case without jumps, numerical examples of implementations of this
scheme may be found in [17] for example. Note that whatever the method,
the computation of a conditional expectation is numerically costly.

However, the rate of convergence is difficult to establish. The difficulty
comes from the representation theorem. Not surprisingly, studying closely
this term requires sophisticated tools such as Mallavian calculus, on which the
work of B. Bouchard and R. Élie relies [3]. Here, we prefer to use relatively
simple tools at the price of not studying the rate of convergence.

The rest of the note is organized as follows. In section 2 we present the
problem, propose an approximation process and a simple algorithm to com-
pute it, and present the main convergence result of the note. Section 3 is
devoted to the proof of the previous main result, in the adequate topology.
In section 4 we present an application of the main result to a decoupled
system of a stochastic differential equation and a backward stochastic differ-
ential equation, resulting in a numerical approximation of the solution of an
associated partial integro-differential equation.
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2 Main result

In order to propose an implementable numerical scheme we consider that
the Poisson random measure is simply generated by the jumps of a Poisson
process For the sake of simplicity of notation we work in the time interval
[0, 1]. We then consider a Poisson process {Nt : 0 ≤ t ≤ 1} with intensity λ
and jump epochs {τk : k = 0, 1, . . . }. The random measure is then

Ñ(dt, dx) =

N1∑
k=1

δ(τk,1)(dt, dx)− λdtδ1(dx),

where δa denotes the Dirac delta at the point a. We also denote Ñt = Nt−λt.
As a consequence, the unknown function Ut(x) that in principle depends on
the jump magnitude x becomes Ut = Ut(1), and our BSDEJ in (1.1) becomes

Yt = ξ +

∫ 1

t

f(s, Ys, Zs, Us)ds−
∫ 1

t

ZsdBs −
N1∑

i=Nt+1

UTi + λ

∫ 1

t

Usds,

= ξ +

∫ 1

t

f(s, Ys, Zs, Us)ds−
∫ 1

t

ZsdBs −
∫

(t,1]

UsdÑs, (2.2)

for 0 ≤ t ≤ 1. Here, we restrict ourselves without loss of generalities to a time
horizon T = 1. In order to ensure existence and uniqueness of the solution
of this equation we consider the following conditions on the coefficient:

(A) The function f : Ω × [0, 1] × R3 → R is non-anticipative with respect
to (Ft)t≥0 and there exists K ≥ 0 and a bounded, non-decreasing con-
tinuous function Λ with Λ(0) = 0 such that

|f(ω, s1, y1, z1, u1)− f(ω, s2, y2, z2, u2)|
≤ Λ(s2 − s1) +K

(
|y1 − y2|+ |z1 − z2|+ |u1 − u2|

)
, a.s. (2.3)

In what respects the terminal condition, we assume:

(B) The random variable ξ is F1-measurable and E[|ξ|q] < ∞ for some
q > 2.
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2.1 Discrete time BSDE with jumps

We propose to approximate the solution of the BSDEJ in (2.2) by the so-
lution of a discrete backward stochastic differential equation with jumps in
a discrete stochastic basis with a filtration generated by two independent,
centered random walks. In order to obtain the representation property a
third martingale is considered. The convergence of this approximation relies
on the fact that the first random walk converges to the driving Brownian
motion, and the second to the driving compensated Poisson process. Let us
define these two random walks.

For n ∈ N we introduce the first random walk {W n
k : k = 0, . . . , n} by

W n
0 = 0, W n

k =
1√
n

k∑
i=1

εni (k = 1, . . . , n), (2.4)

where εn1 , . . . , ε
n
n are independent symmetric Bernoulli random variables:

P
(
εnk = 1

)
= P

(
εnk = −1

)
= 1/2, (k = 1, . . . , n).

The second random walk {Ñn
k : k = 0, . . . , n} is non symmetric, and given

by

Ñn
0 = 0, Ñn

k =
k∑
i=1

ηni (k = 1, . . . , n), (2.5)

where ηn1 , . . . , η
n
n are independent and identically distributed random vari-

ables with probabilities, for each k, given by

P(ηnk = κn − 1) = 1− P(ηnk = κn) = κn (k = 1, . . . , n), (2.6)

where κn = e−λ/n. We assume that both sequences εn1 , . . . , ε
n
n and ηn1 , . . . , η

n
n

are defined on the original probability space (Ω,F ,P) (that can be enlarged if
necessary), and that they are mutually independent. The (discrete) filtration
in the probability space is Fn = {Fnk : k = 0, . . . , n} with Fn0 = {Ω, ∅} and
Fnk = σ{εn1 , . . . , εnk , ηn1 , . . . , ηnk} for k = 1, . . . , n.

In this discrete stochastic basis, given an Fnk+1-measurable random vari-
able yk+1, to represent the martingale difference mk+1 := yk+1−E

(
yk+1 | Fnk

)
we need a set of three strongly orthogonal martingales. This is a motiva-
tion to introduce a third martingale increments sequence {µnk = εnkη

n
k : k =
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0, . . . , n}. In this context there exist unique Fnk -measurable random variables
zk, uk, vk such that

mk+1 = yk+1 − E
(
yk+1 | Fnk

)
=

1√
n
zkε

n
k+1 + ukη

n
k+1 + vkµ

n
k+1, (2.7)

that can be computed as

zk = E
(√

nyk+1ε
n
k+1 | Fnk

)
=
√
n E
(
yk+1ε

n
k+1 | Fnk

)
, (2.8)

uk =
E
(
yk+1η

n
k+1 | Fnk

)
E
(
(ηnk+1)2 | Fnk

) =
1

κn(1− κn)
E
(
yk+1η

n
k+1 | Fnk

)
, (2.9)

vk =
E
(
yk+1µ

n
k+1 | Fnk

)
E
(
(µnk+1)2 | Fnk

) =
1

κn(1− κn)
E
(
yk+1µ

n
k+1 | Fnk

)
.

(Observe that the martingales are orthogonal but not orthonormal, hence the
normalization.) With this information we proceed to formulate the discrete
BSDEJ.

Let us introduce a supplementary condition on f :

(A’) There exists a sequence of functions fn : Ω × [0, T ] × R3 → R non-
anticipative w.r.t. (Fnk )k=0,...,n, satisfying (2.3) and such that fn(ω, ·, ·, ·)
converges uniformly to f(ω, ·, ·, ·) almost surely.

Remark 1. The prototypal example of such a sequence fn is when there is
an underlying stochastic process X driven by B and N and f(ω, s, y, z) =
g(Xs(ω), s, y, z). If g is uniformly continuous with respect to its first variable
and for k = 0, . . . , n, Xn

k is an approximation of Xk/n constructed from
{εni }i=0,...,k and {ηni }i=0,...,k, then set fn(ω, s, y, z) = g(Xn

k (ω), k/n, y, z) for
s ∈ [k/n, (k + 1)/n). This allows one to consider a system of decoupled
Forward-Backward Stochastic Differential Equations (See Section 4).

From now, we drop the reference to the randomness ω in f and fn.
Consider then a square integrable and Fnn -measurable terminal condi-

tion ξn and denote h = 1/n. Consider the discrete time backward stochas-
tic differential equation with terminal condition ynn := yntnn = ξn, and for
k = n− 1, . . . , 0 given by

ynk = ξn+
n−1∑
i=k

hfn(tni , y
n
i , z

n
i , u

n
i )−

n−1∑
i=k

(√
hzni ε

n
i+1 + uni η

n
i+1 + vni µ

n
i+1

)
, (2.10)
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where yni := yntni , and tni = i/n (i = 0, . . . , n). A solution to (2.10) is an

Fn-adapted sequence {ynk , znk , unk , vnk : k = 0, . . . , n} such that ynn = ξn and
(2.10) holds.

Equation (2.10) is equivalent to a backward recursive system, beginning
by ynn = ξn, followed by

ynk = ynk+1 + hfn(tnk , y
n
k , z

n
k , u

n
k)−

√
hznk ε

n
k+1 − unkηnk+1 − vnkµnk+1 (2.11)

= ynk+1 + hfn(tnk , y
n
k , z

n
k , u

n
k)−mn

k+1,

for k = n − 1, . . . , 0. In view of the representation property (2.7), this last
equation (2.11) is equivalent to

ynk = E(ynk+1 | Fnk ) + hfn(tnk , y
n
k , z

n
k , u

n
k). (2.12)

The solution can be computed by the following simple algorithm:

(I) Set (ynn, z
n
n , u

n
n, v

n
n) = (ξn, 0, 0, 0).

(II) For k from n − 1 down to 0, compute E(ynk+1 | Fnk ). Compute znk and
unk as in (2.8) and (2.9) and solve (2.12) to find ynk , using a fixed point
principle.

This algorithm shows the existence and uniqueness of the solution of the
discrete BSDEJ defined in (2.10), as it is always possible to solve it using the
fixed point principle for n large enough, such that Kh = K/n < 1. Bounds
on the solution are given below in Section 3.1.

Remark 2 (Computing conditional expectations). Our scheme is very simple
to implement. As for any scheme that solves BSDEs numerically, it requires
to compute conditional expectations. Various methods have then been pro-
posed: trees [5], quantization [1], regression [11]. Any method faces the
explosion of its computational cost as the dimension increases.

In our case, for a function Φ: R2k+2 → R we use the formula

E[Φ(εn1 , . . . , ε
n
k+1, η

n
1 , . . . , η

n
k+1) | Fnk ]

=
κn
2

Φ(εn1 , . . . , ε
n
k , 1, η

n
1 , . . . , η

n
k , κn − 1)

+
κn
2

Φ(εn1 , . . . , ε
n
k ,−1, ηn1 , . . . , η

n
k , κn − 1)

+
1− κn

2
Φ(εn1 , . . . , ε

n
k , 1, η

n
1 , . . . , η

n
k , κn)

+
1− κn

2
Φ(εn1 , . . . , ε

n
k ,−1, ηn1 , . . . , η

n
k , κn). (2.13)
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Remark 3. The simplicity of this method is also is drawback. Theoretically,
this work for Brownian motion in space dimension and any Poisson process
of the form Π(dz) =

∑
i=1,...,` πiµxi(dz).

However, in the path-dependant cases, we should consider computing
some values for all the possible outcomes of the {εnk}nk=0 and the {ηnk}nk=0 for
each of the Brownian component and each of the Poisson measure µxi . This
leads to a very high computational cost as soon as the dimension increases.

In the case where f does not depend on a forward part, or only on the
Brownian motion, and ξ depends only on the terminal value of W and N ,
then the computational cost may be reduced since one need only to compute
some values at the node of a multi-dimensional tree representing the possibles

values of the martingales
{∑k

i=0 ε
n
i

}n
k=0

and
{∑k

i=0 η
n
i

}n
k=0

. Anyway, the

computation cost remains high as soon as the Poisson random measures
involves more that one Dirac mass or the Brownian motion have several
dimensions.

2.2 The main convergence result

Consider the continuous time version {Y n
t , Z

n
t , U

n
t , V

n
t : 0 ≤ t ≤ 1} of the

solution {yni , zni , uni , vni : i = 0, . . . , n} of the discrete equation (2.11) defined
by

Y n
t = ynbtnc, Zn

t = znbtnc, Un
t = unbtnc, V n

t = vnbtnc, (2.14)

for t ∈ [0, 1]. Note that Y n
t , Zn

t , Un
t and V n

t are measurable w.r.t. the
σ-algebra Fnbntc when t ∈ [0, 1]. The discrete BSDEJ in (2.10), denoting

cn(t) = bntc/n (0 ≤ t ≤ 1), can be written as Y n
1 = ξn (the square integrable

and Fnn -measurable terminal condition), and

Y n
t = ξn +

∫
(t,1]

fn(cn(s), Y n
s−, Z

n
s−, U

n
s−)dcn(s)−

∫
(t,1]

Zn
s−dW

n
s

−
∫

(t,1]

Un
s−dÑ

n
s −

∫
(t,1]

V n
s−dM̃

n
s

for t ∈ [0, 1], and M̃n
s = W n

s × Ñn
s . With our notations (2.11) becomes

Y n
tni

= Y n
tni+1

+
1

n
f
(
tni , Y

n
tni
, Zn

tni
, Un

tni

)
− 1√

n
Zn
tni
εni+1 − Un

tni
ηni+1 − V n

tni
µni+1. (2.15)

In Section 2.1 and Remark 2, we gave a numerical scheme to compute the
solution {Y n

tni
, Zn

tni
, Un

tni
: 0 ≤ t ≤ 1}.
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We finally state the convergence assumption on the terminal conditions
of the approximating equations:

(B’) For some q > 2, supn∈N E[|ξn|q]+E[|ξ|q] < +∞ and E[|ξn−ξ|2] −−−→
n→∞

0.

Theorem 1. Under the assumptions (A), (A’), (B) and (B’), the set of
processes (ξn, Y n,

∫ ·
0
Zn
s ds,

∫ ·
0
Un
s ds) converges in the J1-Skorokhod topology,

and in probability, towards the solution (ξ, Y,
∫ ·

0
Zsds,

∫ ·
0
Usds) of the BS-

DEJ (1.1).

3 Proofs

Our theorem is inspired in the main result of [5]. The proof follows, when
possible, the main steps of the proof of this result. The main difference
appears due to the fact that the underlying representation theorem for the
simple symmetric Bernoulli random walk does not take place in our case,
being necessary to consider a complete system of orthogonal martingales in
order to have this representation property, as we have seen in equation (2.11).
The idea is then to consider for both the discrete and the continuous time
equations the approximations provided by the Picard’s method.

In the continuous case denote Y ∞,0 = Z∞,0 = U∞,0 = 0 and define
{Y ∞,p+1, Z∞,p+1, U∞,p+1 : 0 ≤ t ≤ 1} inductively as the solution of the back-
ward differential equation

Y ∞,p+1
t = ξ+

∫ 1

t

f(s, Y ∞,ps , Z∞,ps , U∞,ps )ds−
∫ 1

t

Z∞,p+1
s dBs−

∫
(t,1]

U∞,p+1
s dÑs.

In the discrete case, given n denote yn,0k = zn,0k = un,0k = vn,0k = 0 for k =
0, . . . , n and define {yn,p+1

k , zn,p+1
k , un,p+1

k , vn,p+1
k : k = 0, . . . , n} inductively

as the solution of the backward difference equation with terminal condition
yn,p+1
n = ξn and backwards recursion defined by

yn,p+1
k = yn,p+1

k+1 + hfn(tnk , y
n,p
k , zn,pk , un,pk )−

√
hzn,p+1

k εnk+1 − u
n,p+1
k ηnk+1

− vn,p+1
k µnk+1

= yn,p+1
k+1 + hfn(tnk , y

n,p
k , zn,pk , un,pk )−mn,p+1

k+1 . (3.16)

9



If we consider the continuous time versions of the discrete Picard approxima-
tions as defined in (2.14), our method of proof relies on the decompositions

Y n − Y = (Y n − Y n,p) + (Y n,p − Y ∞,p) + (Y ∞,p − Y ),

Zn − Z = (Zn − Zn,p) + (Zn,p − Z∞,p) + (Z∞,p − Z),

Un − U = (Un − Un,p) + (Un,p − U∞,p) + (U∞,p − U),

where (Y n, Zn, Un) (resp. (Y n,p, Zn,p, Un,p)) are the càdlàg processes on [0, 1]
associated to (yn, zn, un) (resp. (yn,p, zn,p, un,p)) as in (2.14).

We prove the convergence of the discrete solution as n→∞ to the solu-
tion of (1.1), by proving the uniform convergence in the the Picard iteration
principle, as well as the convergence of the approximation of this solution
given by this iteration principle at each step when the time step is refined.

3.1 Convergence of the Picard’s iteration procedure in
the discrete case

With standard computations, we have that

sup
p>0

E

[
sup
t∈[0,1]

|Y ∞,pt |2 +

∫ 1

0

|Z∞,ps |2ds+ λ

∫ 1

0

|U∞,ps |2ds

]
< +∞ (3.17)

and

E

[
sup
t∈[0,1]

|Y ∞,pt − Yt|2 +

∫ 1

0

|Z∞,ps − Zs|2ds+ λ

∫ 1

0

|U∞,ps − Us|2ds

]
−−−→
p→∞

0.

We now present similar results for the discrete approximations.
The next lemma evaluates the convergence rate of the Picard approxima-

tion sequence (yn,p, zn,p, un,p) to (yn, zn, un) in the discrete scheme, and shows
this rate is uniform in the time step 1/n. It also provides the convergence of
the discrete auxiliary sequence (vn,pk ) to zero.

We denote (y, z, u) = {(yk, zk, uk) : k = 0, . . . , n} (with or without super-
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script n) and, for γ > 1 introduce the norms

‖(yn, zn, un)‖2
γ := E

(
sup

0≤k≤n
γk/n |ynk |

2

)
+

1

n
E

(
n−1∑
k=0

γk/n |znk |
2

)

+ E

(
κn(1− κn)

n−1∑
k=0

γk/n |unk |
2

)
,

‖vn‖2
γ := E

(
κn(1− κn)

n−1∑
k=0

γk/n |vnk |
2

)
.

Lemma 1. There exists γ > 1 and n0 ∈ N such that for all n ≥ n0 and
p ∈ N∗,∥∥(yn,p+1 − yn,p, zn,p+1 − zn,p, un,p+1 − un,p

)∥∥2

γ
+
∥∥vn,p+1 − vnp

∥∥2

γ

≤ 1

4

∥∥(yn,p − yn,p−1, zn,p − zn,p−1, un,p − un,p−1
)∥∥2

γ
.

Proof. We introduce some notations. As n remains fixed during the main
part of the proof, it will be omitted in the notations whenever possible. We
denote

δxp+1
k := xn,p+1

k − xn,pk
for a quantity x = y, z, u, v,m. With this notation observe that

δyp+1
k = δyp+1

k+1 +
1

n
δf pk − δm

p+1
k+1, (3.18)

where m is given in (2.11). We set

δf pk = fn(tnk , y
n,p
k , zn,pk , un,pk )− fn(tnk , y

n,p−1
k , zn,p−1

k , un,p−1
k ).

Now, for some β > 1 we develop the quantity

βn(δyp+1
n )2 − βk(δyp+1

k )2 = −βk(δyp+1
k )2

11



through a discrete (time dependent) Itô Formula (compare with [20, VII §9]):

−βk(δyp+1
k )2 =

n−1∑
i=k

(
βi+1(δyp+1

i+1 )2 − βi(δyp+1
i )2

)
= (β − 1)

n−1∑
i=k

βi(δyp+1
i )2 +

n−1∑
i=k

βi+1
(
(δyp+1

i+1 )2 − (δyp+1
i )2

)
= (β − 1)

n−1∑
i=k

βi(δyp+1
i )2 + 2β

n−1∑
i=k

βiδyp+1
i (δyp+1

i+1 − δy
p+1
i )

+ β
n−1∑
i=k

βi(δyp+1
i+1 − δy

p+1
i )2. (3.19)

From (3.18) follows, that

(δyp+1
i+1 − δy

p+1
i )2 ≥ 1

2

(
δmp+1

i+1

)2 − 1

n2
(δfpi )2 .

Changing signs, using the previous inequality and (3.18) again, from (3.19)
we obtain

βk(δyp+1
k )2 +

β

2

n−1∑
i=k

βi
(
δmp+1

i+1

)2

≤ (1− β)
n−1∑
i=k

βi(δyp+1
i )2 + 2β

n−1∑
i=k

βiδyp+1
i

(
1

n
δf pi+1 − δm

p+1
i+1

)

+
β

n2

n−1∑
i=k

βi
(
δf pi+1

)2
. (3.20)

We now use the inequality, for λ > 0,

(
δyp+1

i

)(2β

n
δfpi+1

)
≤ λ

(
δyp+1

i

)2
+

2β2

λn2

(
δf pi+1

)2

12



in the second term of (3.20) to obtain

βk(δyp+1
k )2 +

β

2

n−1∑
i=k

βi
(
δmp+1

i+1

)2

≤ (1 + λ− β)
n−1∑
i=k

βi(δyp+1
i )2 +

β + 4λ−1β2

n2

n−1∑
i=k

βi
(
δfpi+1

)2

− 2β
n−1∑
i=k

βiδyp+1
i δmp+1

i+1 .

We now assume that 1 + λ− β < 0 and denote B := β + 4λ−1β2 to obtain

βk(δyp+1
k )2 +

β

2

n−1∑
i=k

βi
(
δmp+1

i+1

)2

≤ B

n2

n−1∑
i=k

βi
(
δf pi+1

)2 − 2β
n−1∑
i=k

βiδyp+1
i δmp+1

i+1 . (3.21)

Formula (3.21) is our first main inequality. From it we obtain the following
two results. First, as the last summand is a martingale, taking expectations
with k = 0, we obtain

β

2
E
n−1∑
i=k

βi
(
δmp+1

i+1

)2 ≤ B

n2
E
n−1∑
i=k

βi
(
δf pi+1

)2
. (3.22)

Second, taking supremum over k = 0, . . . , n we have

sup
0≤k≤n

βk(δyp+1
k )2 ≤ B

n2

n−1∑
i=0

βi
(
δf pi+1

)2
+ 4β sup

0≤k≤n

∣∣∣∣∣
k∑
i=0

βiδyp+1
i δmp+1

i+1

∣∣∣∣∣ . (3.23)

To obtain a convenient bound in the last term of (3.22), we use Davis (see [20,
VII §3]) and afterwards Hölder inequalities. With F an universal constant,

13



we obtain

4βE sup
0≤k≤n

∣∣∣∣∣
k∑
i=0

βiδyp+1
i δmp+1

i+1

∣∣∣∣∣ ≤ F E

√√√√ n∑
i=0

β2i
(
δyp+1

i

)2 (
δmp+1

i+1

)2

≤ 4βF E

√√√√ sup
0≤k≤n

βk(δyp+1
k )2

n∑
i=0

βi
(
δmp+1

i+1

)2

≤ β

2
E sup

0≤k≤n
βk(δyp+1

k )2 + 32βF 2E
n∑
i=0

βi
(
δmp+1

i+1

)2
.

Taking expectation in (3.23), using the previous result, and finally (3.22), we
obtain that

(1− β/2)E sup
0≤k≤n

βk(δyp+1
k )2 ≤ B

n2

(
1 + 64βF 2

) n−1∑
i=0

βi
(
δf pi+1

)2
. (3.24)

Combining (3.22) and (3.24) we arrive to

E sup
0≤k≤n

βk(δyp+1
k )2 + E

n−1∑
i=k

βi
(
δmp+1

i+1

)2 ≤ C

n2
E
n−1∑
i=k

βi
(
δf pi+1

)2
, (3.25)

with C = 2B(1 + 1/β + 64βF 2)/(1− β/2).
Using now the Lipschitz property (A) we see that there exists a con-

stant K̃ such that

|δf pi |2 ≤ K̃
(
(δypi )

2 + (δzpi )
2 + nκn(1− κn)(δupi )

2
)
. (3.26)

Equations (3.25) and (3.26) give

E sup
0≤k≤n

βk(δyp+1
k )2 + E

n−1∑
i=k

βi
(
δmp+1

i+1

)2

≤ CK̃

n

(
E sup

0≤k≤n
βk(δypk)

2 +
1

n
E
n−1∑
k=0

βk (δzpk)
2

+ κn(1− κn)E
n−1∑
k=0

βk (δupk)
2

)
.

14



It remains to choose properly β and λ as a function of n. For some γ > 1,
set β = γ1/n and λ = β/n. The condition 1 + λ < β is then equivalent to
γ > (1 − 1/n)−n. Thus, if γ > e, for n large enough this choice is suitable
with our assumptions on β and λ, and C/n remains bounded as n→∞.

Computing E
(
δmp+1

i+1

)2
, we conclude the proof.

Just like in the continuous case, we can use the Cauchy criterion and the
preceding lemma to get the following result.

Proposition 1. Following the notations of (2.15) and (3.16),

E
(

sup
0≤t≤1

∣∣Y n,p
t − Y n

t

∣∣2 +

∫ 1

0

∣∣Zn,p
t − Zn

t

∣∣2dt+ λ

∫ 1

0

∣∣Un,p
t − Un

t

∣∣2dt)
converges to 0 uniformly in n as p→∞.

We may now state a global bound which will be used to prove L2(P)
convergence in Lemma 4 below.

Lemma 2. Under Hypotheses (A), (A’), (B) and (B’),

sup
n∈N

sup
p∈N

E

[∣∣∣∣∣ 1n
n−1∑
k=0

fn(tnk , y
n,p
k , zn,pk , un,pk )

∣∣∣∣∣
q]
< +∞.

In addition,

sup
p∈N

E
[∣∣∣∣∫ 1

0

f(s, Y ∞,ps , Z∞,ps , U∞,ps )ds

∣∣∣∣q] < +∞.

Proof. Here, we deal only with the discrete case, which is rather similar to
the continuous case whose proof is a variation of the one given in [3, 10].

Again, we drop the superscript n. Here, we assume in a first time that
the time horizon is T and h = T/n.

We set

‖(zp, up)‖ :=
T

n

n∑
k=1

(
|zpk|

2 + |upk|
2
)
.

Since nη2
k is bounded in n and k, we get from the Burkholder-Davies-

Gundy inequality that for some constants C1 and C2,

E[‖(zp, up)‖q/2] ≤ C1E

( n∑
k=1

|mp
k|

2

)q/2
 ≤ C2E

[
sup

k=1,...,n
|mp

k|
q

]
.
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On the other hand,

E
[

sup
`=1,...,n

|mp+1
` |

q

]
≤ E

[
sup

`=1,...,n

∣∣∣∣∣E
[
ξ +

T

n

n−1∑
k=0

fn(tk, y
p
k, z

p
k, u

p
k) F

n
`

]∣∣∣∣∣
q]
.

With Hypothesis (A), for some constant C3 depending only on Λ(T ) and K,∣∣∣∣∣Tn
n−1∑
k=0

fn(tk, y
p
k, z

p
k, u

p
k)

∣∣∣∣∣ ≤ T√
n

(
n−1∑
k=0

fn(tk, y
p
k, z

p
k, u

p
k)

2

)1/2

≤ C3
T√
n

(
n+

n−1∑
k=0

(|ypk|
2 + |zpk|

2 + |upk|
2)

)1/2

≤ C3T + C3T sup
k=0,...,n−1

|ypk|+ C3

√
T‖(zp, up)‖1/2.

With the Jensen inequality for the conditional expectation and the Doob
inequality,

E
[

sup
k=1,...,n

|mp+1
k |

q

]
≤ C4E[|ξ|q] + C4T

q‖yp‖q,? + C4T + C4T
qE[‖(zp, up)‖q/2]

with

‖yp‖q,? := E
[

sup
k=0,...,n−1

|ypk|
q

]
.

On the other hand, we have with similar computations, for some con-
stant C4 depending only on C3 and q,

‖yp+1‖? ≤ E

[
sup

`=0,...,n−1

∣∣∣∣∣E
[
ξ +

T

n

n−1∑
k=`

fn(tk, y
p
k, z

p
k, u

p
k) F

n
`

]∣∣∣∣∣
q]

≤ C4E[|ξ|q] + C4T + C4T
q‖yp‖q,? + C4T

qE[‖(zp, up)‖q/2].

This proves that for C5 = 2C4,

‖yp+1‖q,? + E[‖(zp+1, up+1)‖q/2]

≤ C5E[|ξ|q] + C5T + C5T
q
(
||yp‖q,? + E[‖(zp, up)‖q/2]

)
.

If T is small enough so that C5T < 1, then this proves that

‖yp‖q,? + E[‖(zp, up)‖q/2] ≤ 1

1− C5T
(1 + C5E[|ξ|q]).
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Here, we have obtained a bound when T is small enough. Now, in order
to consider the Picard scheme on the time interval [0, 1], we may find for
each n a time Tn such that C5Tn ≤ k < 1 and Tn = `(n)/n for some `
for some fixed k, and solve recursively the Picard scheme on [T − Tn, T ],
[T − 2Tn, T − Tn], ... using the terminal condition ξn and then yn,p`(n), ...

We then obtain the desired bound.

3.2 Approximation of Brownian motion and Poisson
process

In order to establish convergence in probability, we consider that all the
processes are defined on the same probability space.

Lemma 3. (I) Let N be a Poisson process of intensity λ and set Ñt = Nt−λt.
Then there exists a family of independent random variables (ηnk )k=1,...,n whose

distribution is given by (2.6) and the process defined by Ñn
t =

∑bt/hc−1
k=1 ηnk , is a

martingale which converges in probability to Ñ in the J1-Skorokhod topology.
(II) Let W be a Brownian motion. Then there exists a family of realiza-

tions independent random variables εnk such that P(εnk = 1) = P(εnk = −1) =

1/2 and the process defined by W n
t = h

∑bt/hc−1
i=1 εni converges uniformly in

probability to W .
(III) The couple (W n, Ñn) converges in the J1-Skorokhod topology in prob-

ability to (W, Ñ).

Proof. (I) Let (Ω,F ,P) be the probability space on which N is defined. De-
note by {τi}i=1,...,`−1 the time jumps de N . To simplify the notations, we set
τ0 = 0 and τ` = T . Let An the the event

An =

{
there is at most one jump of N

on any interval [kh, h(k + 1)) for k = 0, . . . , n

}
.

We denote by A
n

the complementary event of An. We set ηnk = κn − 1 with
κn = e−λ/n if one jumps occurs on [kh, h(k+ 1)) and ηnk = κn otherwise. The
distribution of ηnk is given by (2.6).

Let φn(t, ω) be the random piecewise linear function defined so that for
i = 0, . . . , `, φn(τi) = cn(τi) on An and by φn(t) = t on A

n
. It is easily

checked that 0 ≤ t− φn(t) ≤ h for t ∈ [0, 1].
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Then for t ∈ [τi, τi+1],

Ñn
φn(t) − Ñn

cn(τi)
= (e−λ/n − 1)(cn(φn(t))− cn(τi)).

On the other hand, Ñt−Ñτi = λ(t−τi) and then there exists some constant K
such that

|Ñn
φn(t) − Ñn

cn(τi)
− Ñt + Ñτi | ≤ Kh (3.27)

for t ∈ [τi, τi+1]. Besides, on An, for h small enough,

|Ñn
cn(τi)

− Ñn
cn(τi)− − Ñτi − Ñτi−| = e−λ/n − 1 ≤ 2λh. (3.28)

Combining (3.27) and (3.28), one gets that on An,

sup
t∈[0,1]

|Ñn
φn(t) − Ñt| ≤ (2 +K)`h.

In addition, E[`] < +∞ so that

E

[
sup
t∈[0,1]

|Ñn
φn(t) − Ñt|;An

]
−−−→
n→∞

0.

On A
n
, then φn(t) = t and then

Ñih − Ñn
ih = −λih− h(κ− 1)i+

i−1∑
j=0

(N(j+1)h −Nj − 1)1{N(j+1)h−Nj≥2}.

From the very definition of An and since N(i+1)h − Nih has the distribution
of a Poisson random variable with intensity λh,

P
[
A
n] ≤ n−1∑

i=0

P
[
|N(i+1)h −Nih| ≥ 2

]
≤ n(1− e−λh − λhe−λh) ≤ λ2T 2

n
.

For any C > 0,

P

[
sup
t∈[0,1]

|Ñt − Ñn
φn(t)| > C

]
≤ P

[
A
n]

+
1

C
E

[
sup
t∈[0,1]

|Ñt − Ñn
φn(t)|;An

]
and this quantity converges to 0 as n → ∞. Thus there exists a family
(φn)n∈N of one-to-one random time changes from [0, 1] to [0, 1] such that

18



supt∈[0,1] |φn(t) − t| −−−→
n→∞

0 almost surely and supt∈[0,1] |Ñt − Ñn
φn(t)| −−−→n→∞

0

in probability, which means that Ñn converge in the J1-Skorokhod topology
to N .

Point (II) follows from the Donsker theorem, when one uses for example
the Skorokhod embedding theorem to construct the εk’s from the Brownian
path [18] and (III) holds since W is continuous so that the 2-dimensional

path (W n, Ñn) converges in the J1-topology to (W, Ñ).

3.3 Convergence of martingales

Let H = (W,N) be such that W is a Brownian motion and N is an inde-

pendent Poisson process of intensity λ. Let W n and Ñn be the one defined
in Lemma 3 and set Hn = (W n, Ñn). Let (Ft)t∈[0,1] (resp. (Fnt )t∈[0,1]) be the
filtration generated by H (resp. Hn).

Let X (resp. Xn) be a of F1 (resp. Fn1 )-measurable random variable such
that

(H) E[X2] + supn∈N E[(Xn)2] < +∞ and E[|Xn −X|] −−−→
n→∞

0.

Let M (resp. Mn) be the cdlg martingales

Mn
t = E

(
Xn
∣∣Fnt ) and Mt = E

(
X
∣∣Ft) . (3.29)

We denote by [Mn,Mn] (resp. [M,M ]) the quadratic variation ofMn (resp.M)

and by [Mn,W n], [Mn, Ñn] (resp. [M,W ], [M, Ñ ]) the cross variation of Mn

and W n (resp. Ñn).
The following proposition is an adaptation of Theorem 3.1 in [5], and [7]

for the convergence of filtrations. Hypothesis (H) ensures the uniform square
integrability of Mn and then the convergence of the brackets.

Proposition 2. Under the above conditions,

(Hn,Mn, [Mn,Mn], [Mn,W n], [Mn, Ñn]) −−−→
n→∞

(H,M, [M,M ], [M,W ], [M, Ñ ])

in probability for the J1-Skorokhod topology.

Corollary 1. Set M̃n =
∑bt/hc−1

k=1 ηnk ε
n
k , which is a martingale orthogonal to

W n and Ñn. Assume in addition to (H) that
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(H’) E[|Xn −X|2] −−−→
n→∞

0.

Then there exist three sequences (Zn
t )0≤t≤1, (V n

t )0≤t≤1 and (Un
t )0≤t≤1 of Fn. -

predictable processes, and two independent (Zt)0≤t≤1 and (Ut)0≤t≤1 F.-predictable
processes such that

∀t ∈ [0, 1],


Mn

t = E[Xn] +

∫ t

0

Zn
s−dW

n
s +

∫ t

0

Un
s−dÑ

n
s +

∫ t

0

V n
s−dM̃

n
s

Mt = E[X] +

∫ t

0

Zs−dWs +

∫ t

0

Us−dÑs

with

E
[∫ 1

0

(Zn
t − Zt)2dt+ λ

∫ 1

0

(Un
t − Ut)2dt

]
−−−→
n→∞

0.

Proof. The first part is related to the predictable representation of Fn-
martingales in terms of stochastic integrals with respect to three independent
random walks, W n, Ñn and M̃n. The increments of M̃n may take up to four
different values, which means that we need three orthogonal martingales to
represent it [8]. It is then easily obtained that M̃n is a martingale which is

orthogonal to both Ñn and W n. This is why we introduce it. The predictable
representation of M with respect to W and Ñ is classical.

From the Doob inequality,

E[[Mn,Mn]1] ≤ E[|Mn
1 |2] ≤ 2E[|Xn|2].

With (H),

sup
n∈N

E

[
1

n

∫ 1

0

(Zn
s−)2dcn(s) +

∫ 1

0

(ηncn(s))
2(Un

s−)2dcn(s)

+
1

n

∫ 1

0

(ηncn(s))
2(V n

s−)2dcn(s)

]
< +∞. (3.30)

Since E[n(ηnk )2] ∼n→∞ λ and Un is predictable with respect to Fn, one easily
get that

lim sup
n→∞

E
[∫ 1

0

(Zn
s )2ds+

∫ 1

0

λ(Un
s )2ds

]
< +∞. (3.31)

20



Let (FWt )t≥0 be the filtration generated by the Brownian motion. Since W
and N are independent, for X = X − E[X],

E[X | FW1 ] =

∫ 1

0

ZsdWs. (3.32)

Let also G be the σ-algebra generated by (ε1, . . . , εn). Hence, for X
n

=
Xn − E[Xn],

E
[
X
n | G

]
=

∫ 1

0

Zn
s−dW

n
s . (3.33)

It follows that

E
[
E
[
X
n | G

]2]
= E

[∫ 1

0

(Zn
s−)2dcn(s)

]
.

Since the εk’s are constructed from the trajectories of W , one has F ⊂ FW1 .
Hence

E
[
E
[
X
n | G

]2] ≤ 2E
[
E
[
X
n −X | G

]2]
+ 2E

[
E
[
X | G

]2]
.

With the Jensen inequality on conditional expectation and (H’), one gets
that

E
[
E
[
X
n −X | G

]2] −−−→
n→∞

0

and

E
[
E
[
X | G

]2] ≤ E
[
E
[
E
[
X | FW1

]
| G
]2] ≤ E

[
E
[
X | FW1

]2]
.

From (3.32) and (3.33), one gets that

lim sup
n→∞

E
[∫ 1

0

(Zn
s )2ds

]
≤ E

[∫ 1

0

Z2
sds

]
. (3.34)

Similar arguments prove that

lim sup
n→∞

E
[∫ 1

0

(Un
s )2ds

]
≤ E

[∫ 1

0

U2
s ds

]
.

From Proposition 2, [Mn,W n]→ [M,W ] in probability for the J1-Skorokhod
topology, as well as [Mn,Mn]. Then

sup
0≤t≤1

∣∣∣∣∣
∫ ψn(t)

0

Zn
s−dcn(s)−

∫ t

0

Zsds

∣∣∣∣∣ −−−→n→∞
0 (3.35)
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in probability, where ψn(t) ↑ t. Then we get easily that

sup
0≤t≤1

∣∣∣∣∫ t

0

Zn
s ds−

∫ t

0

Zsds

∣∣∣∣ −−−→n→∞
0 (3.36)

in probability and with (3.31), in L1(P).

On the other hand, [Mn, Ñn]→ [M, Ñ ] in probability for the J1-Skorokhod
topology. This implies that

sup
0≤t≤1

∣∣∣∣∣
∫ ψn(t)

0

η2
cn(s)U

n
s−dcn(s)− λ

∫ t

0

Usds

∣∣∣∣∣ −−−→n→∞
0. (3.37)

We can apply the same arguments used for (3.36), Burkholder-Davis-Gundy
inequality to control the distance between η2

k and κn(1 − κn), and the fact
that 1− κn ∼n→∞ λ/n to get

sup
0≤t≤1

λ

∣∣∣∣∫ t

0

Un
s ds−

∫ t

0

Usds

∣∣∣∣ −−−→n→∞
0 (3.38)

in probability and in L1(P).
The second part relies on the following argument: let (gn)n∈N∪{∞} be a

sequence of functions on [0, 1]× Ω such that

lim sup
n→∞

E
[∫ 1

0

(gn(s, ω))2ds

]
≤ E

[∫ 1

0

(g∞(s, ω))2ds

]
< +∞, (3.39)

and E

[
sup
t∈[0,1]

∣∣∣∣∫ t

0

(gn(s, ·)− g∞(s, ·))ds
∣∣∣∣
]
−−−→
n→∞

0. (3.40)

For any given function h∞ in L2([0, 1]×Ω), there exists a sequence of func-
tions (hn)n∈N in L2([0, 1]×Ω) such that hn(s, ω) is of form

∑p
i=1 ci(ω)1[ti,ti+1](s)

and hn converges to h in L2([0, 1]× Ω).
With (3.39),∣∣∣∣E [∫ 1

0

gn(s, ω)h∞(s, ω)ds

]
− E

[∫ 1

0

gn(s, ω)hm(s, ω)ds

]∣∣∣∣
≤ sup

n∈N
‖gn‖L2([0,1]×Ω‖h∞ − hm‖L2([0,1]×Ω
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and with (3.39)-(3.40),

E
[∫ 1

0

gn(s, ω)hm(s, ω)ds

]
−−−→
n→∞

E
[∫ 1

0

g∞(s, ω)hm(s, ω)ds

]
.

It follows that gn converges weakly in L2([0, 1] × Ω) to g∞. In addition,
(3.39) implies indeed the strong convergence of gn to g∞, which means that

E
[∫ 1

0
|gn(s, ω)− g∞(s, ω)|2ds

]
converges to 0.

It is now possible to apply this argument to both Zn and Un.

3.4 Convergence of the solution of the BSDE

The idea is now to prove that if (Y n,p, Zn,p, Un,p) converges to (Y ∞,p, Z∞,p, U∞,p)
in a given sense, then this is also true for the (p+ 1)-th Picard iteration.

Here, the notion of convergence is

sup
0≤t≤1

∣∣∣Y n,p
ψn(t) − Y

∞,p
t

∣∣∣2 +

∫ 1

0

|Zn,p
s− − Z

∞,p
s− |

2 ds

+ λ

∫ 1

0

|Un,p
s− − U

∞,p
s− |

2 ds −−−→
n→∞

0 (3.41)

in L1(P), where ψn is a random one-to-one continuous mapping from [0, 1]
to [0, 1] that converges uniformly to t 7→ t almost surely.

Let us set

An,pt =

∫ t

0

fn(cn(s), Y n,p
s− , Z

n,p
s− , U

n,p
s− )dcn(s)

and

A∞,pt =

∫ t

0

f(s, Y ∞,ps , Z∞,ps , U∞,ps )ds.

Lemma 4. If for some integer p, (Y n,p, Zn,p, Un,p) converges to (Y ∞,p, Z∞,p, U∞,p)
in the sense of (3.41), then An,pψn(t) converges uniformly in t to A∞,pt in L2(P).

Proof. Let us note first that An,p is piecewise constant on the intervals
[k/n, (k + 1)/n). Let ξn(t) be the inverse of ψn(t). Then

sup
t∈[0,1]

|An,pψn(t) − A
∞,p
t | = sup

t∈[0,1]

|An,pt − A
∞,p
ξn(t)|

= sup
k=0,...,n−1

|An,pk/n − A
∞,p
k/n |+ sup

k=0,...,n−1
sup

t∈[k/n,(k+1)/n]

|A∞,pk/n − A
∞,p
ξn(t)|.
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Because of (A), (A’) and (3.17), we easily get that the last term above
converges to 0 in L2(P) uniformly in p.

On the other hand, with (A) and (A’),

|An,pk/n − A
∞,p
k/n | ≤ K

∫ 1

0

(|Y n,p
s − Y ∞,ps |+ |Zn,p

s − Z∞,ps |+ |Un,p
s − U∞,ps |)ds.

Yet let us note that∫ 1

0

|Y n,p
s − Y ∞,ps |ds ≤

∫ 1

0

|Y n,p
s − Y ∞,pξn(s)|ds+

∫ 1

0

|Y ∞,pξn(s) − Y
∞,p
s |ds.

The first term in the right-hand side of the previous inequality converges to 0
since Y n,p − Y ∞,p ◦ ξn converges uniformly to 0 in L2(P).

Regarding the second term, s 7→ Y ∞,ps is continuous except at the times at
which the Poisson process jumps. Hence, Y ∞,pξn(s) converges to Y ∞,ps for almost

every s ∈ [0, 1] and then
∫ 1

0
|Y ∞,pξn(s) − Y ∞,ps |ds converges to 0 almost surely.

With Lemma 2, supt∈[0,1] |A
n,p
ψn(t)−A

∞,p
t | converges converges to 0 in L2(P).

Proposition 3. Under Hypotheses (A), (A’), (B) and (B’), for any p ∈ N,
(Y n,p, Zn,p, Un,p) converges to (Y ∞,p, Z∞,p, U∞,p) in the sense of (3.41).

Proof. This will be done by induction on p. We rewrite (3.16) as

Y n,p+1
t = ξn + An,p1 − A

n,p
t

−
∫ 1

t

Zn,p+1
s− dW n

s −
∫ 1

t

Un,p+1
s− dÑn

s −
∫ 1

t

V n
s dM̃

n
s . (3.42)

The induction hypothesis is that (Y n,p, Zn,p, Un,p) converges to (Y ∞,p, Z∞,p, U∞,p)
in the sense of (3.41) so that our aim is to prove that the triplet (Y n,p+1, Zn,p+1, Un,p+1)
converges to (Y ∞,p+1, Z∞,p+1, U∞,p+1) in the same sense.

As (Y n,0, Zn,0, Un,0) = (0, 0, 0) and s 7→ f(s, 0, 0, 0) is continuous, the
first step of the induction is immediate from Corollary 1 using (B’).

Taking conditional expectations w.r.t. Fnk in (3.16) and using the fact
that Y n,p+1

tk
is Fnk -measurable, we find that for tk ≤ cn(t) < tk+1,

Y n,p+1
t = E

[
ξn +

∫ 1

t

fn (cn(s), Y n,p
s− , Z

n,p
s− , U

n,p
s− ) dcn(s) |Fnk

]
.
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So that

Mn,p+1
t :=Y n,p+1

t +

∫ t

0

fn (cn(s), Y n,p
s− , Z

n,p
s− , U

n,p
s− ) dcn(s) = Y n,p+1

t + An,pt

=E
[
ξn +

∫ 1

0

fn (s−, Y n,p
s− , Z

n,p
s− , U

n,p
s− ) dcn(s)

∣∣Fnk ]
=E

[
Mn,p+1

1

∣∣Fnk ] is a Fn. martingale.

Moreover, we have the representation

Mn,p+1
t = E

[∫ 1

0

Zn,p+1
s− dW n

s +

∫ 1

0

Un,p+1
s− dÑn

s +

∫ 1

0

V n,p+1
s− dM̃n

s

∣∣Fnk ]
=

∫ tk

0

Zn,p+1
s− dW n

s +

∫ tk

0

Un,p+1
s− dÑn

s +

∫ tk

0

V n,p+1
s− dM̃n

s

=

∫ t

0

Zn,p+1
s− dW n

s +

∫ t

0

Un,p+1
s− dÑn

s +

∫ t

0

V n,p+1
s− dM̃n

s .

The last decomposition corresponds to the martingale representation the-
orem given in Corollary 1. In order to apply this corollary to the sequence

of martingales
{(
Mn,p+1

t

)
0≤t≤1

;n ∈ N
}

, we have to prove the L2 (P) conver-

gence of Mn,p+1
1 (the terminal value).

Using the fact that Y n,p, Zn,p and Un,p are piecewise constant, we have
that

|Mn,p+1
1 − ξ − A∞,p1 | ≤ |ξn − ξ|+ |An,p1 − A

∞,p
1 |.

With Lemma 2, Lemma 4 and (H), this last quantity tends to zero in L2 (P).
Applying Corollary 1, we see that Mn,p+1 converges to

M∞,p+1
t := E

(
ξ +

∫ 1

0

f (s, Y p
s , Z

p
s , U

p
s ) ds

∣∣Ft) = Y ∞,p+1
t + A∞,pt , (3.43)

in the sense that

sup
0≤t≤1

∣∣∣Mn,p+1
ψn(t) −M

∞,p+1
t

∣∣∣2 +

∫ 1

0

∣∣Zn,p+1
s − Z∞,p+1

s

∣∣2 ds
+ λ

∫ 1

0

∣∣Un,p+1
s − U∞,p+1

s

∣∣2 ds→ 0

in L2(P), where ψn is a random one-to-one continuous mapping from [0, 1]
to [0, 1] that converges uniformly to t 7→ t almost surely.

With (3.43) and Lemma 4, then we get the convergence of (Y n,p+1, Zn,p+1, Un,p+1)
to (Y ∞,p+1, Z∞,p+1, U∞,p+1) in the sense of (3.41).
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4 Applications to decoupled system of SDE

and BSDEJ and to the numerical compu-

tations of the solutions of PIDE

Let X be the solution of the d-dimensional SDE with jumps

Xt = x+

∫ t

0

σ(s−, Xs−)dWs+

∫ t

0

b(s−, Xs−)ds+

∫ t

0

c(s−, Xs−)dÑs, (4.44)

where we have assumed that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)|+ |c(t, x)− c(t, y)| ≤ K ′|x− y|, (4.45)

sup
t∈[0,1]

(|b(t, 0)|+ |σ(t, 0)|+ |c(t, 0)|) ≤ K ′′ (4.46)

for all t ∈ [0, 1] and for alll x, y ∈ R. Of course, the BSDEJ

Yt = ξ +

∫ 1

t

f(s,Xs−, Ys, Zs, Us)ds−
∫ 1

t

Zsσ(s−, Xs−)dWs −
∫ 1

t

UsdÑs

(4.47)
is linked to the non-linear PIDE (with a = σ · σT) by

∂u(t, x)

∂t
+

d∑
i,j=1

1

2
ai,j(t, x)

∂2u(t, x)

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u(t, x)

∂xi

+

∫
R

(
u(t, x+ c(t, x, z))− u(t, x)− ci(t, x, z)

∂u(t, x)

∂xi

)
Π(dz)

= f(t, x, u(t, x),∇u(t, x)σ(t, x), u(t, x+ c(t, x, ·))− u(t, x)) (4.48)

with the terminal condition u(1, x) = g(x). It is standard in the theory of
BSDE that u(t,Xt) = Yt and thus u(0, x) = Y0 . One can compute similarly
u(s, x) for any s ∈ [0, t) by using the solution to (4.44) starting from (s, x)
instead of (0, x).

We use now for Π(dz) the measure Π(dz) =
∑

xi
πiδxi , where xi belongs

to the interval Ii.
Following Remark 3, we assume for the sake of simplicity that indeed

Π(dz) = λδ0 and that the dimension of the Brownian motion W is 1. Hence,
we rewrite c(t, x, z) as c(t, x) since only c(t, x, 0) is used.

26



The SDE (4.44) may be discretized the following way for an integer n:
we set χn0 = x and for i = 0, . . . , n,

χni+1 = χni + hb((i+ 1)h, χni )

+
√
hσ(((i+ 1)h, χni ))εni+1 + c((i+ 1)h, χni )ηni+1 (4.49)

where ηn is a Bernoulli approximation of the compensated Poisson process
with intensity λ and εn is a Bernoulli approximation of the Brownian mo-
tion W . Of course, the χni ’s are easily simulated. This discrete equation
(4.49) may be rewritten in continuous time as

Xn
t = x+

∫ t

0

σ(s−, Xn
s−)dW n

s +

∫ t

0

b(s−, Xn
s−)dcn(s) +

∫ t

0

c(s−, Xn
s−)dÑn

s

(4.50)
Thanks to the results in [22], Xn converges in probability in the J1-Skorokhod
topology to the solution X to (4.44).

Using our algorithm, it is then possible to find (yni , z
n
i , u

n
i )i=1,...,n adapted

to (Fni )i=0,...,n that solves the discrete BSDE

yni = yni+1 +hf((i+ 1)h, χni , y
n
i , z

n
i , u

n
·,i)− zni εni+1−uni ηni+1− vni εni+1η

n
i+1 (4.51)

for i = 0, . . . , n− 1 with the terminal condition ynn = g(χnn).
We are looking for a function vn(i, z) such that ynk = vn(i, χni ) and vn

solves a discrete PDE.
For a function v on {0, . . . , n} × R, we define using (2.13) the discrete

operators

Dn
0 v(k, x) = E[v(k, x) | Fnk ]

=
1− κ

2

(
v(k, x+ hb(kh, x) +

√
hσ(kh, x) + κc(kh, x))

+ v(k, x+ hb(kh, x)−
√
hσ(kh, x) + κc(kh, x))

)
+
κ

2

(
v(k, x+ hb(kh, x) +

√
hσ(kh, x) + (κ− 1)c(kh, x))

+ v(k, x+ hb(kh, x)−
√
hσ(kh, x) + (κ− 1)c(kh, x))

)
and

Dn
1 v(k, x) = E[v(k, x)εnk+1 | Fnk ] and Dn

2 v(k, x) = E[v(k, x)ηnk+1 | Fnk ],
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for which formulae similar to the one for Dn
0 v(k, x) can be given.

From these results, one can deduce the representation of the solution of
a discrete PDE with the help of the χni . This representation is similar to the
representation of the solution of the BSDEJ in term of Yt = u(t,Xt), where
u is the solution to the PIDE (4.48).

Proposition 4. Let vn be the solution to the discrete PDE

vni (i, x) = Dn
0 v

n(i+ 1, x)

+ hf((i+ 1)h, x, vni (i, x), h−1/2Dn
1 v

n(i+ 1, χni ), Dn
2 v

n(i+ 1, x))

for i = 0, . . . , n− 1, x ∈ R, (4.52)

with the terminal condition vni (1, x) = g(x). If hK < 1, then this solution
exists and is unique. In addition, the solution (yn, zn, un) to the discrete
BSDE (2.11) with the terminal condition ξ = g(χnn) which we construct using
our algorithm satisfies yni = vn(i, χni ), zni = h−1/2Dn

1 v
n(i + 1, χni ) and uni =

Dn
2 v

n(i+ 1, χni ).

Proof. As hK < 1 the existence and uniqueness of vn(i, ·) follows from the
existence of the solution ρ(x) to

ρ(x) = Dn
0 v

n(i+ 1, x) + hf((i+ 1)h, x, ρ(x), h−1/2Dn
1 v

n(i+ 1, x),

(1− κ)−1Dn
2 v

n(i+ 1, x))

for any x ∈ R, once vn(i+ 1, ·) is known. Thus, one can proceed recursively
with i = n− 1 down to 0.

Let (yn, zn, un) be given by our algorithm. We assume vn(i + 1, χni+1) =
yni+1, which is true for i+ 1 = n. Using (2.8), (2.9), and the definitions of Dn

1

and Dn
2 ,

zni = h−1/2E[vn(i+ 1, χni+1)εni+1|Fni ] = h−1/2Dn
1 v

n(i+ 1, χni ),

uni = E[vn(i+ 1, χni+1)ηni+1|Fni ] = Dn
2 v

n(i+ 1, χni ).

Taking conditional expectation with respect to Fni in (4.52), sinceDn
0 v

n(i+
1, χni ) = E[vn(i+ 1, χni+1)|Fni ], we get

vn(i, χni ) = E[yni+1|Fni ]

+ hf((i+ 1)h, χni , v
n(i, χni ), h−1/2Dn

1 v
n(i+ 1, χni ), Dn

2 v
n(i+ 1, χni )), (4.53)
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while taking the conditional expectation with respect to Fni in (2.11), we get

yni = E[yni+1|Fni ]

+ hf((i+ 1)h, χni , y
n
i , h

−1/2Dn
1 v

n(i+ 1, χni ), Dn
2 v

n(i+ 1, χni )). (4.54)

As hf(·, ·, ·, ·, ·) is Kh-Lipschitz in its third argument with Kh < 1, we
obtain that yni and vn(i, χni ) are equal.

5 A numerical example

In this section, we deal with a numerical example. We consider N a Poisson
process with λ = 1 and c < 1, and the following BSDEJ:

dYt = −cUtdt+ ZtdWt + Ut(dNt − dt), (5.55)

with ξ = NT .
The explicit solution of (5.55) is given by

(Yt, Zt, Ut) = (Nt + (1 + c)(T − t), 0, 1).

Furthermore if ξ = 0 then the solution is equal to (Yt, Zt, Ut) = (0, 0, 0). This
example is borrowed from [2].

We have implemented this method on a standard personal computing
platform (PC), and have observed that it performs very well using simulated
data, as can be seen from the simulated data in the Table 1 and Figure 1.
Despite the apparent algebraic complexity of the equations (2.8), (2.9) and
(2.12) one needs to solve at each step the conditional expectation to obtain
ynti , the problem poses no difficulty. Using MATLAB’s simulations and alge-
bra capabilities (Version 7.0 running on the University of Valparáıso CIMFAV
cluster) yielded best computing times.

In our implementation, and for computational conveniences we consider
the case when T = 1. The iteration of the algorithm begins from yntn = ξn =
Nn

1 at time tn = T = 1 and proceeds backward to solve (yntj , z
n
tj
, untj), where

tj = j/n, at time j = 0. Values are given with 4 significant digits.
In the following table and picture we summarize the results.
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n c = 0.3 c = 0.9 c = 0.1 c = 0.5
10 1.27 1.81 1.09 1.45
100 1.2970 1.8910 1.0990 1.495
1000 1.2997 1.8991 1.0999 1.4995
2000 1.2999 1.8996 1.1 1.4998
3000 1.2999 1.8997 1.1 1.4998
4000 1.2999 1.8998 1.1 1.4999
4500 1.2999 1.8998 1.1 1.4999
4900 1.2999 1.8998 1.1 1.4999
5000 1.2999 1.8998 1.1 1.4999

Real Value Y0 1.3 1.9 1.1 1.5

Table 1: Numerical Scheme for dYt = −cUtdt+ZtdBt−Ut(dNt− dt) with n
from 10 until n = 5000 steps, λ = 1, T = 1 and different values of c.
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Figure 1: Monte Carlo Simulation; c = 0.3, λ = 1, n = 1000 and T = 1.
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