M. Boja´nczykboja´nczyk, Two-way unary temporal logic over trees, LICS'07, pp.121-130, 2007.

M. Boja´nczykboja´nczyk, The Common Fragment of ACTL and LTL, Foundations of Software Science and Computational Structures, 11th International Conference Proceedings, pp.172-185, 2008.
DOI : 10.1007/978-3-540-78499-9_13

L. E. Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors, American Journal of Mathematics, vol.35, issue.4, pp.413-422, 1913.
DOI : 10.2307/2370405

V. Diekert, P. Gastin, and M. Kufleitner, A SURVEY ON SMALL FRAGMENTS OF FIRST-ORDER LOGIC OVER FINITE WORDS, International Journal of Foundations of Computer Science, vol.19, issue.03, pp.513-548, 2007.
DOI : 10.1142/S0129054108005802

K. Etessami, M. Y. Vardi, and T. Wilke, First-Order Logic with Two Variables and Unary Temporal Logic, Information and Computation, vol.179, issue.2, pp.279-295, 2002.
DOI : 10.1006/inco.2001.2953

P. Gastin and A. Petit, Infinite traces, The Book of Traces, pp.393-486, 1995.

A. R. Meyer and L. J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, 13th Annual Symposium on Switching and Automata Theory (swat 1972), pp.125-129, 1972.
DOI : 10.1109/SWAT.1972.29

D. Perrin and J. Pin, Infinite words Positive varieties and infinite words, Pure and Applied Mathematics J.-´ E. Pin. Lecture Notes in Computer Science, vol.141, issue.1380, pp.76-87, 1998.

M. P. Schützenberger, Sur Le Produit De Concatenation Non Ambigu, Semigroup Forum, vol.7, issue.1, pp.47-75, 1976.
DOI : 10.1007/BF02194921

A. P. Sistla, M. Y. Vardi, and P. L. Wolper, The complementation problem for B??chi automata with applications to temporal logic, Theoretical Computer Science, vol.49, issue.2-3, pp.217-237, 1987.
DOI : 10.1016/0304-3975(87)90008-9

P. Tesson and D. Thérien, DIAMONDS ARE FOREVER: THE VARIETY DA, Semigroups, Algorithms, Automata and Languages, pp.475-500, 2001.
DOI : 10.1142/9789812776884_0021

P. Tesson and D. Thérien, Logic Meets Algebra: the Case of Regular Languages, Logical Methods in Computer Science, vol.3, issue.1, pp.1-37, 2007.
DOI : 10.2168/LMCS-3(1:4)2007

D. Thérien, . Th, and . Wilke, Over words, two variables are as powerful as one quantifier alternation, Proceedings of the thirtieth annual ACM symposium on Theory of computing , STOC '98, pp.234-240, 1998.
DOI : 10.1145/276698.276749

W. Thomas, Classifying regular events in symbolic logic, Journal of Computer and System Sciences, vol.25, issue.3, pp.360-376, 1982.
DOI : 10.1016/0022-0000(82)90016-2

W. Thomas, Automata on Infinite Objects, Handbook of Theoretical Computer Science, pp.133-191, 1990.
DOI : 10.1016/B978-0-444-88074-1.50009-3

P. Weil, Some results on the dot-depth hierarchy, Semigroup Forum, vol.66, issue.1, pp.352-370, 1993.
DOI : 10.1007/BF02573578

P. Weil, Algebraic Recognizability of Languages, Mathematical Foundations of Computer Science, pp.149-174, 2004.
DOI : 10.1007/978-3-540-28629-5_8

URL : https://hal.archives-ouvertes.fr/hal-00096619

. Th and . Wilke, An Eilenberg theorem for ?-languages, ICALP'91, pp.588-599, 1991.

. Th and . Wilke, Classifying Discrete Temporal Properties, Habilitationsschrift, 1998.