
HAL Id: inria-00359630
https://inria.hal.science/inria-00359630

Submitted on 9 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Online Preemptive Scheduling: One Algorithm for
All Variants

Tomas Ebenlendr, Jiri Sgall

To cite this version:
Tomas Ebenlendr, Jiri Sgall. Semi-Online Preemptive Scheduling: One Algorithm for All Variants.
26th International Symposium on Theoretical Aspects of Computer Science - STACS 2009, Feb 2009,
Freiburg, Germany. pp.349-360. �inria-00359630�

https://inria.hal.science/inria-00359630
https://hal.archives-ouvertes.fr


Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 349–360
www.stacs-conf.org

SEMI-ONLINE PREEMPTIVE SCHEDULING:

ONE ALGORITHM FOR ALL VARIANTS

TOMÁŠ EBENLENDR 1 AND JIŘÍ SGALL 1

1 Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic.
E-mail address: {ebik,sgall}@math.cas.cz

Abstract. We present a unified optimal semi-online algorithm for preemptive schedul-
ing on uniformly related machines with the objective to minimize the makespan. This
algorithm works for all types of semi-online restrictions, including the ones studied before,
like sorted (decreasing) jobs, known sum of processing times, known maximal processing
time, their combinations, and so on. Based on the analysis of this algorithm, we derive
some global relations between various semi-online restrictions and tight bounds on the
approximation ratios for a small number of machines.

1. Introduction

We study online scheduling on uniformly related machines, which means that the time
needed to process a job with processing time p on a machine with speed s is p/s. Preemption
is allowed, i.e., each job may be divided into several pieces, which can be assigned to different
machines in disjoint time slots. The objective is to minimize the makespan, i.e., the length
of a schedule. In the online problem, jobs arrive one-by-one and we need to assign each
incoming job without any knowledge of the jobs that arrive later. When a job arrives, its
assignment at all times must be given and we are not allowed to change this assignment
later. In other words, the online nature of the problem is given by the ordering of the input
sequence and it is not related to possible preemptions and the time in the schedule.

We focus on semi-online algorithms. This term encompasses algorithms that are es-
sentially online, but some partial information about the input is given to the scheduler in
advance. The main motivation behind this approach is the observation that the classical
competitive analysis is too pessimistic compared to practical results, or, in other words, the
adversary who may arbitrarily determine the input sequence is too powerful. In practice,
the inputs are not completely arbitrary, and it may be reasonable to restrict the set of
inputs. In scheduling, numerous semi-online models have been studied; typical examples
include (sequences of) jobs with decreasing processing times, jobs with bounded processing
times, sequences with known total processing time of jobs and so on. Most of these models
can be viewed as online algorithms on a restricted set of input sequences. Restrictions of

Key words and phrases: On-line algorithms, scheduling.
Partially supported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci.,

Prague (project 1M0545 of MŠMT ČR) and grant IAA1019401 of GA AV ČR.

c© T. Ebenlendr and J. Sgall
CC© Creative Commons Attribution-NoDerivs License



350 T. EBENLENDR AND J. SGALL

this type have been studied also for other online problems; the most prominent example is
paging with locality of reference [1].

Our results

We give a semi-online algorithm for preemptive scheduling on uniformly related ma-
chines which is optimal for any chosen semi-online restriction, see Section 2. This means
not only the cases listed above—the restriction can be given as an arbitrary set of sequences
that are allowed as inputs. For any semi-online restriction, the algorithm achieves the best
possible approximation ratio for any number of machines and any particular combination
of machine speeds; it is deterministic, but its approximation ratio matches the best possible
approximation ratio of any randomized algorithm. This generalizes and unifies previous
results for various special cases of semi-online preemptive scheduling. We find such a gen-
eral result providing a provably optimal algorithm for many problems quite exceptional not
only in the area of scheduling but also in the whole area of online algorithms. Our result
also provides a clear separation between the design of the algorithm and the analysis of the
optimal approximation ratio. While the algorithm is always the same, analysis of the opti-
mal ratio depends on the studied restrictions. Nevertheless, the general result also provides
crucial new insights and methods and thus we can analyze the optimal ratio in cases that
have been out of reach with previously known techniques.

For typical semi-online restrictions, we show that the optimal ratio can be computed
by linear programs (with machine speeds as parameters). Studying these linear programs
allows us to progress in two directions. First, we are able to completely analyze the optimal
ratio for particular cases with a small number of machines. Second, we are able to study
the relations between the optimal approximation ratios for different semi-online restrictions
and give some bounds for a large number of machines.

The exact analysis of special cases for a small number of machines was given in [6, 3, 11]
for various restrictions, and in many more cases for non-preemptive scheduling. Typically,
these results involve similar but ad hoc algorithms and an extensive case analysis which is
tedious to verify, and can be done for two uniformly related machines or for more identical
machines (i.e., all speeds are equal). Using our linear programs we can calculate the ratio
as a formula in terms of speeds. This is a fairly routine task which can be simplified (but
not completely automated) using standard mathematical software. Once the solution is
known, verification amounts to checking the given primal and dual solutions for the linear
program. We give a few examples of such results in Section 3; typically the verification is
quite simple for m = 3 or m = 4.

Another research direction is to compute, for a given semi-online restriction, the optimal
approximation ratio which works for any number of machines and combination of speeds.
This task appears to be much harder, and even in the online case we only know that the
ratio is between 2.054 and e ≈ 2.718; the lower bound is shown by a computer-generated
hard instance with no clear structure [4]. Only for identical machines, the exact ratio for any
number of machines is known (i) for the online case, where it tends to e/(e − 1) ≈ 1.58 [2],

and (ii) for non-increasing processing times, where it tends to (1 +
√

3)/2 ≈ 1.366 [13].
We are able to prove certain relations between the approximation ratios for different

restrictions. Some basic restrictions form an inclusion chain: The inputs where the first
job has the maximal size (which is equivalent to known maximal size) include the inputs
with non-increasing processing times, which in turn include the inputs with all jobs of
equal size. Typically, the hard instances have non-decreasing processing times. Thus, one



SEMI-ONLINE PREEMPTIVE SCHEDULING 351

expected result is that the restriction to non-increasing processing times gives the same
approximation ratio as when all jobs have equal size, even for any particular combination
of speeds. The overall approximation ratio is at most 1.52, see Section 3.3. On the other
hand, for known maximal size of a job we have a computer-generated hard instance with
approximation ratio 1.88 with m = 120.1 Thus restricting the jobs to be non-increasing
helps the algorithm much more than just knowing the maximal size of a job. This is very
different from identical machines, where knowing the maximal size is equally powerful as
knowing that all the jobs are equal, see [13].

More interestingly, the overall approximation ratio with known sum of processing times
is the same as in the online case—even though for a small fixed number of machines know-
ing the sum provides a significant advantage. This is shown by a padding argument, see
Section 3.1. In fact this is true also in presence of any additional restriction that allows
scaling input sequences, taking a prefix, and extending the input by small jobs at the end.
Thus, for example, the overall approximation ratio with non-increasing jobs and known sum
of processing times is at least 1.366, using the bound for identical machines from [13].

Due to the space limit, some technical parts are available only in the extended version
at http://www.math.cas.cz/~sgall/ps/semirel.pdf

Preliminaries

Let Mi, i = 1, 2, . . . ,m, denote the m machines, and let si be the speed of Mi. The
machines are sorted by decreasing speeds, i.e., s1 ≥ s2 ≥ · · · ≥ sm. We assume that s1 > 0.

The vector of speeds is denoted s, the sum of the speeds is S =
∑m

i=1 si and Sk =
∑k

i=1 si

is the sum of the k largest speeds. W.l.o.g., we add infinitely many machines of speed zero,
i.e., we put si = 0 for any i > m. (Scheduling a job on one of these zero-speed machines
means that we do not process the job at the given time at all.) Let J = (pj)

n
j=1 denote the

input sequence of jobs, where n is the number of jobs and pj ≥ 0 is the size, or the processing
time, of the jth job. The sum of processing times is denoted P = P (J ) =

∑n
j=1 pj. Given

J and i ≤ n, let J[i] be the prefix of J obtained by taking the first i jobs.
The time needed to process a job pj on machine Mi is pj/si; each machine can process at

most one job at any time. Preemption is allowed, which means that each job may be divided
into several pieces, which can be assigned to different machines, but any two time slots to
which a single job is assigned must be disjoint (no parallel processing of a job); there is no
additional cost for preemptions. Formally, if ti denotes the total length of the time intervals
when the job pj is assigned to machine Mi, it is required that t1s1 + t2s3 + · · ·+ tmsm = pj .
(A job may be scheduled in several time slots on the same machine, and there may be
times when a partially processed job is not running at all.) In the (semi-)online version of
this problem, jobs arrive one-by-one and at that time the algorithm has to give a complete
assignment of this job at all times, without the knowledge of the jobs that arrive later.
The objective is to find a schedule of all jobs in which the maximal completion time (the
makespan) is minimized.

For an algorithm A, let CA
max[J ] be the makespan of the schedule of J produced by A.

By C∗
max[J ] we denote the makespan of the optimal offline schedule of J . A (randomized)

algorithm A is an R-approximation if for every input J , the (expected) makespan is at most
R times the optimal makespan, i.e., E[CA

max[J ]] ≤ R · C∗
max[J ].

The optimal makespan can be computed as C∗
max[J ] = max{P/S,maxm−1

k=1 {Pk/Sk}},
where Pk denotes the sum of the k largest processing times in J and Sk is the sum of the k

1See the Maple output at http://www.math.cas.cz/~sgall/ps/semirel-pmax.mpl



352 T. EBENLENDR AND J. SGALL

largest speeds. This is a lower bound on the makespan, as the first term gives the minimal
time when all the work can be completed using all the machines fully, and similarly the
term for k is the minimal time when the work of the k largest jobs can be completed using
the k fastest machines fully. The tightness of this bound follows from [10, 8, 5].

Semi-online restrictions and previous work

We define a general semi-online input restriction to be simply a set Ψ of allowed inputs,
also called input sequences. We call a sequence a partial input if it is a prefix of some
input sequence; the set of all partial inputs is denoted pref(Ψ). Thus the partial inputs are
exactly the sequences that the algorithm can see at some point. A (randomized) semi-online
algorithm A with restriction Ψ is an R-approximation algorithm if E[CA

max[J ]] ≤ R·C∗
max[J ]

for any J ∈ Ψ. Note that this implies that for any prefix J ′ of J , E[CA
max[J ′]] ≤ R·C∗

max[J ].
Below we list some of the restrictions that are studied in the literature, together with

the notation that we are going to use, the previous work, and our results.

Known sum of processing times,
∑

pj = P . For a given value P̄ , Ψ contains all
sequences with P = P̄ . We prove that the overall ratio is surprisingly the same as in the
general online case, on the other hand we note that for m = 2, 1-approximation is possible
and we analyze the cases of m = 3, 4.

Non-increasing processing times, denoted decr. Here Ψ contains all sequences with
p1 ≥ p2 ≥ · · · ≥ pn. For m = 2, the optimal algorithm for all s was analyzed in [6] and for
identical machines in [13]. We prove that for any s this case is the same as the case with
all jobs equal. We analyze the cases for m = 2, 3, and prove some bounds for larger m.

Known optimal makespan, C∗
max = T . For a given value T̄ , Ψ contains all sequences

with C∗
max[J ] = T̄ . A 1-approximation semi-online algorithm is known for any s, see [5].

Known maximal job size, pmax = p. For a given value p̄, Ψ contains all sequences with
max pj = p̄. This is equivalent to the case when the first job is maximal, as any algorithm
for that special case can be used also for the case when the maximal job arrives later.
Thus this restriction also includes non-increasing jobs. In [13] it is shown that for identical
machines, the approximation ratio is the same as when the jobs are non-increasing. We
show that this is not the case for general speeds. This restriction was introduced in [9] for
non-preemptive scheduling on 2 identical machines.

Tightly grouped processing times. For given values p̄ and α, Ψ contains all sequences
with pj ∈ [p̄, αp̄] for each j. This restriction was introduced in [9] for non-preemptive
scheduling on 2 identical machines. Tight bounds for preemptive scheduling on 2 uniformly
related machines were given in [3].

Inexact partial information. In this case, some of the previously considered values
(optimal makespan, sum of job sizes, maximal job size) is not known exactly but only up
to a certain factor. These variants were studied first in [15] without preemption and then
in [11] for preemptive scheduling; both on identical machines.

Online scheduling. Here Ψ contains all sequences. In our (i.e., the authors and Wojtek
Jawor) previous work [4], we have designed an optimal online algorithm for all speed vectors.
The algorithm and the proof of the main result in this paper generalize that result, using
the same techniques, however, some technical issues have to be handled carefully to achieve
the full generality of our new result. Online preemptive scheduling was studied first in [2].

The paper [12] is probably the first paper which studied and compared several notions
of semi-online algorithms, including known sum of processing times. Some combination



SEMI-ONLINE PREEMPTIVE SCHEDULING 353

of the previous restrictions were studied in [14] for non-preemptive scheduling on identical
machines. We should note that there are also semi-online models that do not fit into our
framework at all. For example, the algorithm may get a hint which job is the last one, or
it is allowed to store some job(s) in a buffer.

2. The optimal algorithm

The new algorithm is based on the algorithm for online scheduling from [4]. In this
section we present the key ideas with emphasis on the issues that need to be handled
differently in the more general semi-online setting.

Suppose that we are given a parameter r and we try to develop an r-approximation
algorithm. In the online case, we simply make sure that the current job completes by time r
times the current optimal makespan. In the semi-online case, if the restriction is not closed
under taking a prefix, this would be too pessimistic. It may happen that the current partial
input is not in Ψ and we know that any extension in Ψ has much larger optimal makespan
(e.g., if the restriction forces that some large jobs will arrive later). In this case we can
schedule the current job so that it complete much later than at time r times the current
optimal makespan. For this purpose, we define the appropriate quantity to be used instead
of the current optimal makespan.

Definition 2.1. For an input restriction Ψ and a partial input I ∈ pref(Ψ), we define the
optimal makespan as the infimum over all possible end extensions of J that satisfy Ψ:

C∗,Ψ
max[I] = inf{C∗

max[J ] | J ∈ Ψ & I is a prefix of J }

Note that for any input sequence J ∈ Ψ we have C∗
max[J ] = C∗,Ψ

max[J ].

Algorithm RatioStretch
Our algorithm takes as a parameter a number r which is the desired approximation

ratio. Later we show that, for the right choice of r, our algorithm is optimal. Given r,

we want to schedule each incoming job so that it completes at time r · C∗,Ψ
max[J[j]]. By the

definition of C∗,Ψ
max[J[j]], any schedule for any possible extension of the current partial input

will have makespan at least C∗,Ψ
max[J[j]], in particular C∗,Ψ

max[J[j]] ≤ C∗
max[J ]. Thus, if each

job j completes by time r ·C∗,Ψ
max[J[j]] ≤ r ·C∗

max[J ], we have an r-approximation algorithm.
Even when we decide the completion time of a job, there are many ways to schedule it

given the flexibility of preemptions. We choose a particular one based on the notion of a
virtual machine from [5, 4]. We define the ith virtual machine, denoted Vi, so that at each
time τ it contains the ith fastest machine among those real machines M1, M2, . . . , Mm

that are idle at time τ . Due to preemptions, a virtual machine can be thought and used
as a single machine with changing speed. When we schedule (a part of) a job on a virtual
machine during some interval, we actually schedule it on the corresponding real machines
that are uniquely defined at each time.

Upon arrival of a job j we compute a value Tj defined as r · C∗,Ψ
max[J[j]]. Then we find

two adjacent virtual machines Vk and Vk+1, and time tj, such that if we schedule j on Vk+1

in the time interval (0, tj ] and on Vk from tj on, then j finishes exactly at time Tj .
We need to show that we can always find such machines Vk and Vk+1. Since we have

added the machines of speed 0, it only remains to prove that each job can fit on V1. This
is true for the appropriate value of r.



354 T. EBENLENDR AND J. SGALL

Before we sketch the proof, we make a few remarks concerning efficiency and uniformity
of the algorithm. The only parts of the algorithm that depend on the semi-online restric-
tion are (i) the computation of the optimal approximation ratio and (ii) the computation

of C∗,Ψ
max[J ]. The rest of the algorithm is independent of the restriction and very efficient.

Similarly to the online algorithms, for semi-online algorithms we generally do not require
the computation to be polynomial time. For a general restriction the optimal algorithm
cannot be efficient. (If the set of input sequences is, e.g., not recursive, then it may be algo-
rithmically undecidable how much time we have even for scheduling the first job. Besides,
there are more possible restrictions than algorithms.) Nevertheless, the algorithm is efficient

for many natural restrictions. Computing C∗,Ψ
max[J ] is usually simple. If the restriction is

closed under taking prefixes, then it is equal to C∗
max[J ]. In other cases it is easy to see

which extension has the smallest makespan. Computing the optimal approximation ratio is
more difficult, but in Section 3 it is shown that in many natural cases it reduces to linear
programming. Alternatively, we can use any upper bound on the approximation ratio and
give to the algorithm as a parameter.

Optimality of Algorithm RatioStretch
Our goal is to show that Algorithm RatioStretch works whenever the parameter r is

at least the optimal approximation ratio for the given Ψ and s. We actually prove the
converse: Whenever for some input J Algorithm RatioStretch with the parameter r fails,
we prove that there is no r-approximation algorithm.

This is based on a generalization of a lemma from [7] which provides the optimal lower
bounds for online algorithms, as shown in [4]. The key observation in its proof is this: On
an input J , if the adversary stops the input sequence at the ith job from the end, any r-
competitive online algorithm must complete by time r times the current optimal makespan,
and after this time, in the schedule of J , only i − 1 machines can be used. This bounds
the total work of all the jobs in terms of r and optimal makespans of the prefixes, and thus
gives a lower bound on r. To generalize to an arbitrary restriction Ψ, we need to deal with
two issues.

First, the adversary cannot stop the input if the current partial input is not in Ψ.

Instead, the sequence then must continue so that its optimal makespan is the current C∗,Ψ
max

(or its approximation). Consequently, the bound obtained uses C∗,Ψ
max in place of previous

C∗
max, which possibly decreases the obtained bound.

Second, for a general semi-online restriction, using the last m prefixes of J may not
give the best possible lower bound. E.g., the restriction may force that some job is tiny, and
thus using the prefix ending at this job is useless; in general, we also cannot remove such
a job from the input sequence. To get a stronger lower bound, we choose a subsequence of

important jobs from J and bound their total work in terms of values C∗,Ψ
max of the prefixes

of the original sequence J .

Lemma 2.2. Let A be any randomized R-approximation semi-online algorithm for preemp-
tive scheduling on m machines with an input restriction Ψ. Then for any partial input
J ∈ pref(Ψ), for any k, and for any subsequence of jobs 1 ≤ j1 < j2 < · · · < jk ≤ n we
have

k
∑

i=1

pji
≤ R ·

k
∑

i=1

sk+1−iC
∗,Ψ
max[J[ji]].



SEMI-ONLINE PREEMPTIVE SCHEDULING 355

Let rΨ be the largest lower bound on the approximation ratio obtained by Lemma 2.2:

Definition 2.3. For any vector of speeds s and any partial input J ∈ pref(Ψ),

rΨ(s,J ) = sup
1≤j1<j2<···<jk≤n

∑k
i=1 pji

∑k
i=1 sk+1−i · C∗,Ψ

max[J[ji]]
.

For any s, let rΨ(s) = supJ∈pref(Ψ) rΨ(s,J ). Finally, let rΨ = sup
s
rΨ(s).

With these definitions and Lemma 2.2, we can prove the following main theorem. If
Algorithm RatioStretch cannot schedule the incoming job, we choose a subsequence includ-
ing the jobs scheduled so far on the first virtual machine and the incoming job. We use
Lemma 2.2 with this subsequence to argue that that no (randomized) algorithm can have
the same approximation ratio.

Theorem 2.4. For any restriction Ψ and vector of speeds s, Algorithm RatioStretch with a
parameter r ≥ rΨ(s) is an r-approximation algorithm for semi-online preemptive scheduling
on m uniformly related machines. In particular, rΨ(s) (resp. rΨ) is the optimal approxi-
mation ratio for semi-online algorithms for Ψ with speeds s (resp. with arbitrary speeds).

3. Reductions and linear programs

We have a formula for rΨ(s) which gives the desired approximation ratio for any speeds
and Ψ as a supremum over a bound for all partial inputs and all their subsequences. It is not
obvious how to turn this into an efficient algorithm. Now we develop a general methodology
how to compute the ratio using linear programs and apply it to a few cases.

We observed that for a general restriction it may be necessary to use an arbitrary
subsequence in Definition 2.3. However, for many restrictions it is sufficient to use the
whole sequence, similarly as for online scheduling. Usual restrictions are essentially of two
kinds. The first type are the restrictions that put conditions on individual jobs or their
order. These restrictions are closed under taking subsequences (not only prefixes), i.e., any
subsequence of an input sequence is also in Ψ. The second type are the restrictions where
some global information is given in advance, like

∑

pj = P or C∗
max = T . These are not

closed under taking subsequences, but are closed under permuting the input sequence.
We define a large class of restrictions that includes both types of restrictions discussed

above as well as their combinations; in particular it includes all the restrictions listed and
studied here. The definition below implies that any subsequence of any input sequence is
a prefix of another input. Thus, the sets of all the subsequences and all the prefixes of Ψ
coincide, and Definition 2.3 simplifies using the monotonicity condition in the definition.

Definition 3.1. An input restriction Ψ is proper if for any J ∈ Ψ and any subsequence I
of J , we have I ∈ pref(Ψ) and furthermore C∗,Ψ

max[I] ≤ C∗,Ψ
max[J ].

Definition 3.2. Let Ψ be a proper semi-online restriction and J ∈ pref(Ψ) a partial input.
We define

r̄Ψ(s,J ) =

∑n
j=1 pj

∑n
j=1 sn+1−j · C∗,Ψ

max[J[j]]
.



356 T. EBENLENDR AND J. SGALL

From now on, we focus on proper restrictions. It may happen that rΨ(s,J ) > r̄Ψ(s,J ).
By Definitions 2.3 and 2.3 we may take a subsequence of jobs I = (pji

)ki=1 that achieves
the value of r̄Ψ(s,I) ≥ rΨ(s,J )− ε for any ε > 0. By the definition of a proper restriction,
I ∈ pref(Ψ). Taking the supremum over all partial inputs, we obtain the following simpler
formula for the optimal approximation ratio.

Observation 3.3. For any proper restriction Ψ, rΨ(s) = supJ∈pref(Ψ) r̄Ψ(s,J ) .

Our strategy is to reduce the number of sequences J that need to be taken into account.
Typically, we show that the sequences must be sorted. Then we know which jobs are the
biggest ones and we can express the optimal makespans for prefixes by linear constraints
in job sizes. Maximizing the expression for r̄Ψ(s), which gives the desired bound, is then
reduced to solving one or several linear programs. The following observation helps us to
limit the set of relevant sequences.

Observation 3.4. Let Ψ be arbitrary proper restriction, let s be arbitrary speed vector,
and let J ,J ′ ∈ pref(Ψ),. be two partial inputs with n jobs. Suppose that for some b > 0:

n
∑

j=1

p′j = b ·
n
∑

j=1

pj , and

(∀i = 1, . . . , n) C∗,Ψ
max[J ′

[i]] ≤ b · C∗,Ψ
max[J[i]].

Then r̄(s,J ′) ≥ r̄(s,J ).

The observation follows immediately from the definition of r̄Ψ(s,J ).
Whenever (i) Ψ is closed under permutations of the sequence and (ii) increasing the

size of the last job of a partial input cannot decrease C∗,Ψ
max, the observation implies that

it is sufficient to consider sequences of non-decreasing jobs: If J contains two jobs with

pk < pk+1, swapping them can only increase C∗,Ψ
max[J[k]] and any other C∗,Ψ

max[J[i]] remains
unchanged; thus the observation applies with b = 1.

3.1. Known sum of processing times,
∑

pj = P

Here we are given a value P̄ and Ψ contains all J with P = P̄ . It can be easily verified

that C∗,Ψ
max[J ] = max{C∗

max[J ], P̄ /S} for any J with P ≤ P̄ .
Since we can permute the jobs and increasing the size of the last job does not decrease

C∗,Ψ
max, Observation 3.4 implies that we can restrict ourselves to non-decreasing sequences

J . Furthermore, we may assume that P = P̄ : We know that P ≤ P̄ , as otherwise J is not
a partial input. If P < P̄ , we scale up J to J ′ by multiplying all the sizes by b = P ′/P .

Observation 3.4 then applies, as each C∗,Ψ
max[J ′

[i]] = max{C∗
max[J ′

[i]], P̄ /S} increases by at

most the scaling factor b. Finally, we observe that we can restrict ourselves to sequences J
with less than m jobs. If n ≥ m, we use the fact that C∗,Ψ

max[J[i]] ≥ P̄ /S for any i and obtain

r̄Ψ(s,J ) = P/(
∑n

i=1 sn+1−i · C∗,Ψ
max[J[i]]) ≤ P/(

∑n
i=1 sn+1−i · P̄ /S) = 1, using n ≥ m in the

last step.
Summarizing, we can assume that J is a non-decreasing sequence of n < m jobs with

P = P̄ . (Note that this does not mean that the adversary uses fewer jobs than machines,
as he may need to release some small jobs at the end of the prefix sequence, to extend it
to a sequence in Ψ.) To obtain the worst case bound, we compute m − 1 linear programs,



SEMI-ONLINE PREEMPTIVE SCHEDULING 357

one for each value of n, and take the maximum of their solutions. The linear program for a
given P , s, and n has variables qi for job sizes and Oi for optimal makespans of the prefixes:

minimize r−1 =
s1On + s2On−1 + · · · + snO1

P̄
subject to

q1 + · · · + qn = P̄
P̄ ≤ (s1 + s2 + · · · + sm)Ok for k = 1, . . . , n

qj + qj+1 + · · · + qk ≤ (s1 + s2 + · · · + sk−j+1)Ok for 1 ≤ j ≤ k ≤ n
0 ≤ qj ≤ qj+1 for j = 1, · · · , n − 1

If we fix the input sequence, i.e., the values of qi, then the smallest objective is achieved
for Ok as small as possible which is exactly the value of the optimal makespan, by the con-
straints involving Ok. Thus the linear program computes correctly the value 1/r

P

pj=P (s).
We can also see that the linear program scales and the optimum does not depend on P̄ .

We now examine the special cases of m = 2, 3. The linear program is trivial for n = 1,
and we conclude that for m = 2 the approximation ratio is equal to 1, i.e., RatioStretch
always produces an optimal schedule. We can see this also intuitively: The algorithm
starts scheduling the incoming jobs in the interval [0, T1) where T1 ≥ P̄ /S. Consider the
first time when a job is scheduled at the first real machine M1. It is always possible to
schedule this job at the empty machine M1 so that it completes before the current optimal
makespan. Furthermore, after M1 is used the first time, the algorithm guarantees that in
the interval [0, T1) there is only one real machine idle at any time. This in turn implies that
the remaining jobs can be completed by time T1, as the total size of all jobs is P̄ ≤ S · T1.

For m = 3, it remains to solve the linear program for n = 2. The resulting ratio is:

r
P

pj=P (s1, s2, s3) =







s1(s1 + s2)

s2
1 + s2

2

for s2
1 ≤ s2(s2 + s3)

1 + s2s3

s1(s1+s2+s3)+s2(s1+s2)
for s2

1 ≥ s2(s2 + s3)

The overall worst case ratio for three machines is 2+
√

2
3 ≈ 1.138 for s1 =

√
2, s2 = s3 = 1.

Padding. We prove a theorem that shows that knowing the total size of jobs does not
improve the overall approximation ratio. This may sound surprising, as for two machines,
knowing the sum allows to generate an optimal schedule, and also for three machines the im-
provement is significant. The same result holds also in presence of an additional restriction
with suitable properties. Among the restrictions that we consider, the requirements are sat-
isfied for non-increasing jobs, known maximal job size, or the online case. By “Ψ,

∑

pj = P”
we denote the intersection of the two restrictions, i.e., the set of all sequences (pj)

n
j=1 ∈ Ψ

such that
∑n

i=1 pj = P̄ for a given value of P̄
We say that Ψ allows scaling if for any J ∈ Ψ and b > 0, the modified sequence

J ′ = (bpj)
n
j=1 satisfies J ′ ∈ Ψ. We say that Ψ allows padding if for any J ∈ Ψ, there exists

ε0 > 0 such that any sequence J ′ created by extending J by an arbitrary number of equal
jobs of size ε < ε0 at the end satisfies J ′ ∈ Ψ.

Theorem 3.5. Suppose that Ψ is proper, allows scaling, padding, and is closed under taking
prefixes. Let J ∈ Ψ and let s be arbitrary. Then for any δ > 0 there exists J ′ and s′ such
that r̄Ψ,

P

pj=P (s′,J ′) ≥ r̄Ψ(s,J )/(1 + δ). Consequently, rΨ,
P

pj=P = rΨ.

Proof. We fix s, J , and P̄ given to the algorithm with the restriction
∑

pj = P . We proceed
towards constructing the appropriate s′ and J ′.



358 T. EBENLENDR AND J. SGALL

Since Ψ allows scaling, the value C∗,Ψ
max[J ] is multiplied by b when J is scaled by b.

Consequently, the value of r̄Ψ(s,J ) does not change when J is scaled. Let J ′ = (p′j)
n
j=1 be

the sequence J scaled so that
∑n

j=1 p′j = P̄ . Then r̄Ψ(s,J ′) = r̄Ψ(s,J ).

Choose a small σ > 0 so that σ < sm and σ < δS/n. Let O1 = p′1/s1, i.e., the
optimal makespan after the first job. Let s′ be the sequence of speeds starting with s and
continuing with n + P̄ /(O1σ) of values σ. The first condition on σ guarantees that s′ is
monotone and thus a valid sequence of speeds. The second condition guarantees that the
added machines are sufficiently slow, so that for any sequence of at most n jobs, in particular
for the prefixes of J ′, the makespan decreases by at most the factor of (1 + δ). Since Ψ is

closed under taking prefixes, C∗,Ψ
max equals C∗

max for any sequence. Thus we conclude that
r̄Ψ(s′,J ′) ≥ r̄Ψ(s,J ′)/(1 + δ).

Finally, we have added sufficiently many new machines so that for any sequence of at
most n jobs, the empty new machines can accommodate total work of P̄ without exceeding

makespan O1. This implies that for all prefixes of J ′, C
∗,Ψ,

P

pj=P
max [J ′

[i]] = C∗,Ψ
max[J ′

[i]]; thus

r̄Ψ,
P

pj=P (s′,J ′) = r̄Ψ(s′,J ′) ≥ r̄Ψ(s,J ′)/(1 + δ) ≥ r̄Ψ(s,J )/(1 + δ).

3.2. Known maximal processing time, pmax = p

Here we are given p̄, the maximal size of a job. As noted before, any algorithm that
works with the first job being the maximal one can be easily changed to a general algorithm
for this restriction. First it virtually schedules the maximal job and then it compares the
size of each job to p̄. If it is equal for the first time, it schedules the job to the time slot(s)
it reserved by virtual scheduling at the beginning. Other jobs are scheduled in the same
way in both algorithms. Thus we can work with the equivalent restriction containing all the

sequences where the first job is maximal. Then C∗,Ψ
max[J ] = C∗

max[J ] for any partial input.
By Observation 3.4, the other jobs can be reordered as in the previous case, and we can
maximize only over sequences with non-decreasing job sizes from the second job on.

In this case we are able to use a single linear program to cover input sequences of an
arbitrary length. The variables are: p for the length of the first job, q1 for the total length
of jobs p2, . . . , pn−m+1, and q2, . . . ,qm for the jobs pn−m+2, . . . ,pn. For sequences with
n < m, we set q1 = q2 = · · · qn−m = 0. Consider the following non-linear program:

maximize r =
P

s1Om + s2Om−1 + · · · + smO1
subject to

p + q1 + · · · + qm = P
p + q1 + · · · + qk ≤ (s1 + s2 + · · · + sm)Ok for k = 1, . . . ,m

p + qj+1 + qj+2 + · · · + qk ≤ (s1 + s2 + · · · + sk−j+1)Ok for 1 ≤ j ≤ k ≤ m
0 ≤ qj ≤ qj+1 ≤ p for j = 2, · · · ,m − 1

0 ≤ q1

If we fix the values of qi, then the largest objective is achieved for Ok as small as possible.
By the constraints involving Ok, this is exactly the value of the optimal makespan for a
sequence where q1 represents a prefix of a sequence of jobs smaller than q2. Thus the program
computes correctly the value r

P

pj=P (s). The program scales, thus we can scale any feasible
solution so that the denominator of the objective function is a given constant. Thus we get
an equivalent linear program after adding the constraint 1 = s1Om + s2Om−1 + · · ·+ smO1.



SEMI-ONLINE PREEMPTIVE SCHEDULING 359

Small number of machines. For two machines we get the approximation ratio

rpmax=p(s1, s2) = 1 +
s1s2

(s1 + s2)2 + s2
1

The maximum is 1.2 for s1 = s2. For three machines we get

rpmax=p(s1, s2, s3) =















1 +
s1(s2 + s3)

S2 + s2
1

for s1s2 ≥ s3S

1 +
s1s2 + 2s1s3

S2 + 2s2
1 + s1s2

for s1s2 ≤ s3S

This is maximized at s1 = 2, s2 = s3 =
√

3 which gives the ratio (8 + 12
√

3)/23 ≈ 1.252.

3.3. Non-increasing processing times, decr

We are also interested in sequences of non-increasing jobs, as this is one of the most
studied restrictions. Now Ψ contains sequences which have pj ≥ pj+1 for all j. We cannot
swap jobs, however, we can take two adjacent jobs j and j + 1 and replace both of them
by jobs of the average size (pj + pj+1)/2. By Observation 3.4, the approximation ratio does
not decrease. Similarly, we can replace longer segment of jobs with only two distinct sizes
by the same number of jobs of the average size. Repeating this process, we can conclude
that for the worst case for a given set of speeds it is sufficient to consider sequences where
all jobs have equal size. By scaling, the actual size of jobs does not matter, we only need
to determine the length of the sequence which gives the highest ratio.

Let us denote r̂n(s) = r̄decr(s,J ) for a sequence J with n jobs with pj = 1. For this

sequence, C∗,Ψ
max[J ] = C∗

max[J ] = n/Sn. (Recall that si = 0 for i > m and Sk =
∑k

i=1 si.)
Using this for the prefixes, we obtain from Observation 3.3 that

r̂n(s) = n ·
(

n
∑

k=1

ksn−k+1

Sk

)−1

.

It can be seen that for any speed vector, the sequence r̂n(s) decreases with n for n ≥ 2m.
Thus computing the approximation ratio for any given speeds is efficient.

A natural approach to estimate the overall ratio is to find for each n the worst speed
vector and the corresponding ratio r̂n = sup

s
r̂n(s). Based on numerical experiments, we

conjecture that for each n, r̂n is attained for some s with s1 = s2 = · · · = sm−1. I.e., almost
all the speeds are equal. This conjecture would imply that with non-increasing jobs, the
optimal overall approximation ratio is the same for the uniformly related machines and for
the identical machines, and this is equal to (1 +

√
3)/2 ≈ 1.366 by [13].

This is related to an intriguing geometric question. Suppose we have numbers xi, yi, i =
1, . . . , n such that xiyi = i for all i and both sequences (xi)

n
i=1 and (yi)

n
i=1 are non-decreasing.

Consider the union of rectangles [0, xi] × [0, yn+1−i] over all i; this is a staircase-like part
of the positive quadrant of the plane. What is the smallest possible area of this union of
rectangles? We conjecture that the minimum is attained for some y1 = y2 = . . . = yk and
xk+1 = xk+2 = . . . = xn for some k. This would imply the previous conjecture.

We are not able to determine exactly the values of r̂n, but we can prove certain relations
between these values. In particular, for any integers a, n, and n′, ran ≥ rn and rn′ ≤ n+1

n
rn.

For the first proof, we replace a sequence of speeds from the bound for rn by a sequence
where each speed is repeated a times, and the bound follows by manipulating the formula



360 T. EBENLENDR AND J. SGALL

for rn. The second inequality is shown by replacing the speeds for rn′ by a shorter sequence
where each new speed is a sum of a segment of a speeds in the original sequence, for a
suitable a. These relations show that whenever we are able to evaluate some rn for a fixed
n, the optimal overall ratio is at most n+1

n
rn.

For n = 3, maximizing the function r̂n(s) can be done by hand and the maximum is
r3 = 1.2 for s1 = s2 = 1, s3 = 0. This yields an overall upper bound of r̂n ≤ 4

3 · 6
5 = 1.6. By

a computer-assisted proof we have shown that r̂4 = (
√

7 + 1)/3 ≈ 1.215, yielding an overall

upper bound of r̂n ≤ 5
4 r̂4 = 5

12 (
√

7 + 1) ≈ 1.52.

Conclusions. Similar methods can be used to analyze other semi-online restrictions, their
combinations and inexact versions, or give formulas for the approximation ratios for more
machines. This becomes a somewhat mechanical exercise; we have not found any surprising
phenomenon in the cases we have examined so far.

It would be interesting, and it seems hard to us but not impossible, to determine the
exact overall approximation ratios for the basic restrictions.

References

[1] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of reference. J.
Comput. Systems Sci., 50:244–258, 1995.

[2] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line scheduling.
Oper. Res. Lett., 18:127–131, 1995.

[3] D. Du. Optimal preemptive semi-online scheduling on two uniform processors. Inform. Process. Lett.,
92(5):219–223, 2004.

[4] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: Optimal algorithms for all speeds.
In Proc. 13th European Symp. on Algorithms (ESA), volume 4168 of Lecture Notes in Comput. Sci.,
pages 327–339. Springer, 2006.

[5] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related machines. In
Proc. 21st Symp. on Theoretical Aspects of Computer Science (STACS), volume 2996 of Lecture Notes
in Comput. Sci., pages 199–210. Springer, 2004.

[6] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize makespan on
two related machines. Oper. Res. Lett., 30:269–275, 2002.

[7] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related machines. Oper. Res.
Lett., 26(1):17–22, 2000.

[8] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor systems. J. ACM, 25:92–101,
1978.

[9] Y. He and G. Zhang. Semi on-line scheduling on two identical machines. Computing, 62(3):179–187,
1999.

[10] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling. J. ACM, 24:32–43,
1977.

[11] Y. Jiang and Y. He. Optimal semi-online algorithms for preemptive scheduling problems with inexact
partial information. Theoret. Comput. Sci., 44(7-8):571–590, 2007.

[12] H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi on-line algorithms for the partition problem.
Oper. Res. Lett., 21:235–242, 1997.

[13] S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with decreasing job sizes. Oper. Res.
Lett., 27:215–221, 2000.

[14] Z. Tan and Y. He. Semi-on-line problems on two identical machines with combined partial information.
Oper. Res. Lett., 30:408–414, 2002.

[15] Z. Tan and Y. He. Semi-online scheduling problems on two identical machines with inexact partial
information. Theoret. Comput. Sci., 377(1-3):110–125, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.


