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ABSTRACT. This paper gives a brief overview of computation models data stream process-
ing, and it introduces a new model for multi-pass processihgnultiple streams, the so-called
mp2s-automata Two algorithms for solving the set disjointness problenthvihese automata are
presented. The main technical contribution of this papénésproof of a lower bound on the size
of memory and the number of heads that are required for gplvie set disjointness problem with
mp2s-automata.

1. Introduction

In the basic data stream model, the input consists of a stodatata items which can be read
only sequentially, one after the other. For processingethieta items, a memory buffer of limited
size is available. When designing data stream algorithmes,aims at algorithms whose memory
size is far smaller than the size of the input.

Typical application areas for which data stream procesgnglevant are, e.g., IP network
traffic analysis, mining text message streams, or proagss@teorological data generated by sensor
networks. Data stream algorithms are also used to suppery gptimization in relational database
systems. In fact, virtually all query optimization methddsrelational database systems rely on
information about the number of distinct values of an atiébor the self-join size of a relation —
and these pieces of information have to be maintained whidelatabase is updated. Data stream
algorithms for accomplishing this task have been introdunehe seminal papef][2].

Most parts of the data stream literature deal with the taglediormingone passover a single
stream. For a detailed overview on algorithmic techniques for gusnario we refer td [P3).ower
boundson the size of memory needed for solving a problem by a ong-glg®rithm are usually
obtained by applying methods from@mmunication complexifgee, e.g.[]7, 20]). In fact, for many
concrete problems it is known that the memory needed foirgplthe problem by a deterministic
one-pass algorithm is at least linear in the siz# the input. For some of these problems, however,
randomizedone-pass algorithms can still compute gaggroximateanswers while using memory
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of size sublinear im. Typically, such algorithms are basedsamplingi.e., only a “representative”
portion of the data is taken into account, aathdom projectionsi.e., only a rough “sketch” of
the data is stored in memory. S¢e][3, 10] for a comprehermssinesy of according algorithmic
techniques and for pointers to the literature.

Also the generalization whemaultiple passes over a single stream are performed, has re-
ceived considerable attention in the literature. Techesdgor proving lower bounds in this scenario
can be found, e.g., i [20,]18,[0] 12] 22].

A few articles also deal with the task pfocessing several streamsin parallel. For example,
the authors of[28] consider algorithms which perform ongspaver several streams. They introduce
a new model of multi-party communication complexity thasustable for proving lower bounds on
the amount of memory necessary for one-pass algorithms ttiptastreams. In[[38], these results
are used for determining the exact space complexity of gsmeg particular XML twig queries.

In recent years, the database community has also addréssessie of designing general-purpose
data stream management systesnsl query languages that are suitable for new applicatieasar
where multiple data streams have to be processed in pardtledet an overview of this research
area, [B] is a good starting point. Foundations for a thedrgt®am queriehave been laid in
[L9]. Stream-based approaches have also been examinethihideonnection withXML query
processing and validatigrsee, e.g. the papefs]27] 26] 3] q] 4. b. 16].

Thefinite cursor machine§~CMs, for short) of [14] are a computation model for perfargn
multiple passes over multiple streams. FCMs were introduced as an abstract model of database
guery processing. Formally, they are defined in the framkwbrabstract state machinednfor-
mally, they can be described as follows: The input for an FE€ldiielational database, each relation
of which is represented bytableg i.e., an ordered list of rows, where each row corresponds to
tuple in the relation. Data elements are viewed as “indiésSiobjects that can be manipulated by
a number of “built-in” operations. This feature is very cenient to model standard operations on
data types like integers, floating point numbers, or strimdsgch may all be part of the universe of
data elements. FCMs can operate in a finite numbenadesusing aninternal memonyin which
they can store bitstrings. They access each relation thraufjnite number otursors each of
which can read one row of a table at any time. The model ingatps certairstreamingor sequen-
tial processingaspects by imposing a restriction on the movement of theocsirs’hey can move
on the tables only sequentially in one direction. Thus, dhedast cursor has left a row of a table,
this row can never be accessed again during the computatiote, however, that several cursors
can be moved asynchronously over the same table at the sammeatnd thus, entries in different,
possibly far apart, regions of the table can be read and gsedesimultaneously.

A common feature of the computation models mentioned sonfdhis paper is that the in-
put streams aresad-onlystreams that cannot be modified during a pass. Recentlystaiksam-
based models for external memory processing have been proposed, among them 8teSort
model[fl, P4], theW-Streammodel [I]], and the model akad/write stream4fLq, [1§,[IH[]7[]6].

In these models, several passes may be performed over a singhm or over several streams in
parallel, and during a pass, the content of the stream mayolokfied.

A detailed introduction talgorithms on data streamsespectively, to the related areasuib-
linear algorithmscan be found in[[33, 10]. A survey stream-based models for external memory
processingand of methods for provinpwer boundsn these models is given ifi [25]. A database
systems oriented overview of so-callddta stream systentzn be found in[]3]. For a list afpen
problemsin the area of data streams we refer[td [21].
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In the remainder of this article, a new computation modehioiti-pass processing of multiple
streams is introduced: thmp2s-automataln this model, (read-only) streams can be processed by
forward scans as well as backward scans, and several “head$¥e used to perform several passes
over the streams in parallel. After fixing the basic notaiioSection[R, the computation model of
mp2s-automata is introduced in Sect[dn 3. In Sedon 4, wesider theset disjointness problem
and prove upper bounds as well as lower bounds on the sizermmbrgeand the number of heads
that are necessary for solving this problem with an mp2sraaton. Sectiof]5 concludes the paper
by pointing out some directions for future research.

2. Basic notation

If fis a function from the set of non-negative integers to theo$etals, we shortly write
f(n) instead of] f(n)] (where[z] denotes the smallest integerz). We writelgn to denote the
logarithm ofn with respect to base 2. For a $&twe writeD* to denote the set of all finite strings
over alphabebD. We viewDD* as the set of all finitelata streamghat can be built from elements in
D. For a strean$ e D* write | S| to denote the length of, and we writes; to denote the element

in D that occurs at théth position inS, i.e.,S = s1s9--- 55"

3. A computation model for multi-pass processing of multiple streams

In this section, we fix a computation model for multi-passgessing of multiple streams. The
model is quite powerful: Streams can be processed by foraeans as well as backward scans, and
several “heads” can be used to perform several passes evargam in parallel. For simplicity, we
restrict attention to the case where jugb streams are processed in parallel. Note, however, that it
is straightforward to generalize the model to an arbitramnher of streams.

The computation model, calIades-automaﬂa can be described as follows: LBtbe a set,
and letm, k;, k, be integers withn > 1 andk;, k, > 0. An

mp2s-automatotd with parametersD, m, k;, k)

receives as input two strearfisc D* andT’ € D*. The automaton’s memory consistsofdifferent
states (note that this corresponds to a memory buffer dorgsisf 1g m bits). The automaton’s state
space is denoted b§. We assume tha) contains a designatestart stateand that there is a
designated subsét of () of so-calledaccepting states

On each of the input streanfs and 7', the automaton haB; heads that process the stream
from left to right (so-calledorward head¥ and k, heads that process the stream from right to left
(so-calledbackward heads The heads are allowed to move asynchronously. We:usedenote
the total number of heads, i.&.= 2k; + 2k,.

In theinitial configurationof A4 on input(g, T), the automaton is in thetart state all forward
heads or andT’ are placed on the leftmost element in the stream s,&esp.¢;, and allbackward
heads are placed on the rightmost element in the stream@er.esp.twr

During each computation step, depending on (a) the curtata §.e., the current content of the
automaton’s memory) and (b) the elementsSandT at the current head positions, a deterministic
transition function determines (1) the next state (i.ee,riew content of the automaton’s memory)
and (2) which of thek heads should be advanced to the next position (where fortheads are

l“mpZS” stands for mlti-pass processing of 2reams
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D : setofdata itemsof which input streams and T are composed

m : sSize of the automaton'state spacé&) (this corresponds ttg m bits of memory)
k; : number offorward headsavailable on each input stream

k, : number ofbackward headavailable on each input stream

k : 2k;+ 2k, (total number of heads)

Figure 1: The meaning of the parametéis m, &, k,) of an mp2s-automaton.

advanced one step to the right, and backward heads are advane step to the left). Formally, the
transition function can be specified in a straightforwarg g a function

§: Qx (Du{end) — Q x {advancestay”

where Q) denotes the automaton’s state space, emdis a special symbol (not belonging i)
which indicates that a head has reached the end of the stfeain forward head this means that
the head has been advanced beyond the rightmost elememt stf¢lam, and for a backward head
this means that the head has been advanced beyond the leffisrogent of the stream).

The automaton’s computation on inq&, f) ends as soon as each head has passed the entire
stream. The input iacceptedf the automaton’s state then belongs to thefseif accepting states,
and it isrejectedotherwise.

The computation model of mp2s-automata is closely relabeithe finite cursor machinesf
[[4]. In both models, several streams can be processed allgdaand several heads (or, “cur-
sors”) may be used to perform several “asynchronous” passasthe same stream in parallel. In
contrast to the mp2s-automata of the present paper, finiicmachines were introduced as an
abstract model for database query processing, and theiafatefinition in [1}] is presented in the
framework ofabstract state machines

Note that mp2s-automata can be viewed as a generalizatiothef models for one-pass or
multi-pass processing of streams. For example, the sceabig], where a single pass over two
streams is performed, is captured by an mp2s-automatonewthfarward head and no backward
heads are available on each stream. Also, the scenario whamesecutive passes of each input
stream are available (cf., e.d.,J20]), can be implemenyeanbmp2s-automaton: just ugdorward
heads and backward heads, and let tli¢h head wait at the first position of the stream until the
(i—1)-th head has reached the end of the stream.

4. The set digointness problem

Throughout Sectiof] 4 we consider a particular version ofsttedisjointness problemvhere,
for each integen > 1, D,, := {ay,b1, ..., ay, b, } is afixed set okn data items. We write
Disj,, to denote the following decision problem: The input corsstst two streamsS and T’ over
D,, with |S| = |T| = n. The goal is to decide whether the séis, ..., s,} and{t,...,t,} are
disjoint.

An mp2s-automatosolvesthe problenDisj,, if, for all valid inputs toDisj,, (i.e., all§, T’ € D*
with \5[ = ]T\ = n), it accepts the input if, and only if, the corresponding set disjoint.
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4.1. Two upper boundsfor the set digointness problem

It is straightforward to see that the problddsj,, can be solved by an mp2s-automaton with
227 states and a single forward head on each of the two inputnsste®uring a first phase, the
head onS processes§ and stores, in the automaton’s current state, the subdgt tfiat has been
seen while processinﬁ. Afterwards, the head off processef and checks whether the element
currently seen by this head belongs to the subsdb,pthat is stored in the automaton’s state.
Clearly,2?" states suffice for this task, sinfi,| = 2n. We thus obtain the following trivial upper
bound:

Proposition 4.1. Disj,, can be solved by an mp2s-automaton with parametys 227, 1, 0).

The following result shows that, at the expense of increpiie number of forward heads on
each stream t@/n, the memory consumption can be reduced exponentially:

Proposition 4.2. Disj, can be solved by an mp2s-automaton with paramé@fsn-+2, \/n, 0).f

Proof. The automaton proceeds in two phases.

The goal inPhase 1is to move, for each € {1,...,/n}, thei-th head onS onto the
((z‘—l)\/ﬁ + 1)—th position in S. This way, after having finisheBhase 1 the heads partition
S into \/n sub-streams, each of which has length. Note thatn + 1 — /n states suffice for
accomplishing this: The automaton simply stores, in ittestide current position of the rightmost
head(s) orS. It starts by leaving head 1 at positidrand moving the remaining heads Srto the
right until position/n + 1 is reached. Then, it leaves head 2 at positjon+ 1 and proceeds by
moving the remaining heads to the right until positibpin + 1 is reached, etc.

During Phase 2the automaton checks whether the two sets are disjoins.i¥tdone in/n sub-
phases. During thg-th sub-phase, thgth head oril’ processef from left to right and compares
each element ifl’ with the elements on the current positions of tjte heads orS. When thej-th
head oril’ has reached the end of the stream, each of the heaissomoved one step to the right.
This finishes the-th sub-phase. Note thBhase Zan be accomplished by using just 2 states: By
looking at the combination of heads @hthat have already passed the entire stream, the automaton
can tell which sub-phase it is currently performing. Thus,Fhase 2we just need one state for
indicating that the automaton is Phase 2 and an additional state for storing that the automaton
has discovered already that the two setsraralisjoint. L]

4.2. Two lower boundsfor the set digointness problem
We first show a lower bound for mp2s-automata where only fahvii@ads are available:
Theorem 4.3. For all integersn, m, k;, such that, fork = 2k, and v = k? + 1,
k2 -v-lgn+l) + k-v-lgm + v-(14+1gv) < n,
the problem Disj cannot be solved by any mp2s-automaton with paramefysm, &, 0).

Proof. Letn, m, andk; be chosen such that they meet the theorem’s assumptionofiadiction,
let us assume thad is an mp2s-automaton with parametéis,, m, k;, 0) that solves the problem
Disj,,.

2To be precise, the proof shows that already 2 — \/n states suffice.
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Recall thatD,, = {a1,b1, ..., an, b, } is afixed set on data items. Throughout the proof
we will restrict attention to input streantsand7” which are enumerations of the elements in a set

Al = a;iieIY U {b:ieT}

for arbitraryI C {1,..,n} and its complement := {1,..,n} \ I.
Note that for alll;, I, C {1,..,n} we have

Alv and A”2 are disjoint <= I, =1;. (4.1)

For eachl C {1,..,n} we letS’ be the stream of length which is defined as follows: For each
i € 1, it carries data item; at position:; and for eachi ¢ I, it carries data itemh; at position:. The
stream?” contains the same data items&s but in the opposite order: For eacle I, it carries
data itema; at positionn — i + 1; and for each ¢ I, it carries data item; at positionn — i + 1.

Forsetsl;, I, C {1,..,n}, we write D(Iy, I5) to denote the input instanc&! and7"> for the
problemDisj,,. From (4.1) and our assumption that the mp2s-automatsolvesDisj,,, we obtain
that

A acceptsD(I1, ) < I =1. (4.2)

Throughout the remainder of this proof, our goal is to find setsI, I’ C {1,..,n} such that
Q) I#1TI, and

(2) the accepting run oft on D(I,1) is “similar” to the accepting run ofd on D(I’, I’), so
that the two runs can be combined into an accepting rud oh D(I,I’) (later on in the
proof, we will see what “similar” precisely means).

Then, however, the fact that accepts inpuD (7, I’) contradicts [(4]2) and thus finishes the proof

of Theoren{4]3.
For accomplishing this goal, we let
1.2
v o= ky+1 (4.3)
be 1 plus the number of pairs of heads on the two streams. i the sef{1,..,n} into v
consecutive blocks,, ..., B, of equal sizeZ. l.e., for eachj € {1,..,v}, block B; consists of

the indices in{ (j—1)% +1, ..., j2 }.

We say that a paifhg, hr) of heads ofA checks blockB; during the run on inpuD(I;, I5)
if, and only if, at some point in time during the run, therestxj:’ € B; such that headg is on
elementa; or b; in S* and head is on element; or by in T2,

Note that each pair of heads can check at most one block, @igéorward heads are available
and the data items i’z are arranged in the reverse order (with respect to the isdiockelements
a; andb;) than inS71. Since there are blocks, but onlyv — 1 pairs(hg, hr) of heads on the two
streams, we know that for eaéh, I, C {1, .., n} there exists a blocB; that isnot checkedluring
A'srunonD(Iy, I5).

In the following, we determine aséf C {I : I C {1,..,n}} with | X| > 2 such that for all
I,I' € X, item (2) of our goal is satisfied. We start by using a simpleraging argument to find a
jo€{l,..,v}andasetXy C {/: I C{1,..,n}} such that

e for eachl € X, block B;, is not checked duringl’s run on inputD(I, I), and
® |X0| 2 %
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For the remainder of the proof we fi® := Bj,.
We next choose a sufficiently large s€t C X, in which everythirJg outside blod?i is fixed:
A simple averaging argument shows that there ,aC Xy and al C {1,..,n} \ B such that

e foreach/ ¢ X;, I\ B=1, and

Xo n_]
o |Xy| > 2‘%% > 208,

We next identify a se, C X such that for alll, I’ € X, the runs ofd on D(I,T) andD(I', ")
are “similar” in a sense suitable for item (2) of our goal. fiGtend, for each heald of A we let
config, be theconfiguration(i.e., the current state and the absolute positions of alhtrads) in the
run of A on input D(I, 1) at the particular point in time where heachas just left blockB (i.e.,
headh has just left the last element or b; with i € B that it can access). We lebnfig be the
ordered tuple of the configuratiorenfig, for all headsh of .A. Note that the number of possible
configurationsconfig, is < m - (n+1)¥, sinceA hasm states and since each of the= 2k;,
heads can be at one outiof-1 possible positions in its input stream. Consequently, tiralver of
possiblek-tuplesconfig of configurations is< (m - (n+1)’f)k.

A simple averaging argument thus yields a tuptsf configurations and a séf; C X, such that

e forall I € X, config = ¢, and

° [ Xo| > (m_~(‘n)j-1_1‘)_k_)k > 2% lav = klam = K lg(nt1)
Using the theorem’s assumption on the numbers, andk;, one obtains thatXs| > 2. Therefore,
we can find two set$, I’ € X, with [ # I'.
To finish the proof of Theorerp 4.3, it remains to show that tesrof A on D(Z, 1) and on
D(I',T') can be combined into a run of on D(I, I’) such thatA (falsely) accepts inpub(I, I").
To this end let us summarize what we know abband!’ in Xs:

(a) I andI’ only differ in block B.

(b) Block B is not checked duringl’s runs onD(I,I) and onD(Ii, T). |.e., while any head on
ST (resp.S!') is at an element; or b; with i € B, no head o™ (resp.7”") is on an element
a; or by with i/ € B.

(c) ConsideringA’s runs onD(I,1) and onD(I’, 1), each time a head leaves the last position

in B that it can access, both runs are are in exactly the same omatf@n. |.e., they are in
the same state, and all heads are at the same absoluterpoBitibeir input streams.

Due to item (a),A’s run on inputD(I,I’) starts in the same way as the runs B/, 1) and
D(I',T'): As long as no head has reached an element in hisicthe automaton has not yet seen
any difference betweed (I, I’') on the one hand anB (I, T) andD(I’, I’) on the other hand.

At some point in time, however, some headwill enter block B, i.e., it will enter the first
elementa; or b; with i € B that it can access. The situation then is as follows:

e If his ahead orb’, then, due to item (b), no head @H’ is at an element id3. Therefore,
until headh leaves blockB, A will go through the same sequence of configurations as in
its run on inputD(I,T). ltem (c) ensures that whenleaves blockB, A is in the same
configuration as in its runs oR (1, T) and onD(I’, T').
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e Similarly, if » is a head oril’”’, then, due to item (b), no head & is at an element
in B. Therefore, until head leaves blockB, A will go through the same sequence of
configurations as in its run on inpf(1’, I’). Item (c) ensures that whenleaves block?,
Alis in the same configuration as in its runsB/’, I’) and onD(I, T).

In summary, ind’s run onD(I, T'), each time a heahl has just left the last element in bloékthat
it can access, it is in exactly the same configuration ad'sruns onD(I, 1) and onD(I’, T’) at
the points in time where heddhas just left the last element in blodk that it can access. After
the last head has left block, .A’s run on D(I, T') finishes in exactly the same way as runs
onD(I, 1) andD(I',T’). In particular, it accept® (I, I’) (since it acceptd (I, 1) and D(I', I')).
This, however, is a contradiction fo (#.2). Thus, the prddfleeoreni 43 is complete. "

Remark 4.4. Let us compare the lower bound from Theorenj 4.3 with the uppend of Proposi-
tion @.2: The upper bound tells us tHaisj,, can be solved by an mp2s-automaton with2 states
and./n forward heads on each input stream. The lower bound impieeddrge enoughz) that
if just /n forward heads are available on each stream, not evénstates suffice for solving the
problemDisj,, with an mp2s-automaton.

Remark 4.5. A straightforward calculation shows that the assumptidiiheoren] 4.8 are satisfied,
for example, for all sufficiently large integersand all integersn andk; with 4k, < ¢ lgin and
lem < Froa-

Theorem[4]3 can be generalized to the following lower boumdrfp2s-automata where also
backward heads are available:

Theorem 4.6. For all n, m, k;, k, such that, fork = 2k;+2k, and v = (k?+kZ+1)-(2ksk,+1),
k2 -v-lgn+l) + k-v-lgm + v-(14+1gv) < n,
the problem Disj cannot be solved by any mp2s-automaton with paraméf&ysm, k;, k).

Proof. The overall structure of the proof is the same as in the prédheorem[4]3. We consider
the same setd’, forall I C {1,..,n}. The streant’ is chosen in the same way as in the proof of
Theoren17_l']3, i.e., for eache I, the streanf! carries data item; at position:; and for each & 1,
it carries data itend; at positioni.

Similarly as in the proof of Theoreifn .3, the stredih contains the same data items.$fs
Now, however, the order in which the elements occuf'inis a bit more elaborate. For fixing this
order, we choose the following parameters:

vp = kT ki 41, vy = 2kky + 1, Vo= v vy . (4.4)

We subdivide the sdtl, . ., n} into v; consecutive block®s, . .., B, of equal sizevﬂl. l.e., for each
j€{l,..,v1}, block B, conS|sts of the indices ifi(j—1)+ + 1, ..,j% }.
Afterwards we further subdivide each blogk into vy consecutive subblocks of equal size

These subblocks are denoté?g‘, e ,B;.’Q. Thus, each subbloclij/ consists of the indices in
{G-DE+0-D5+1 ..., (-DE+5'%H
Now let = be the permutation of1,..,n} which maps, for allj,» with 1 < j < v; and

1<r <4, element(j—1)7+ + s onto element(v1 —J)u + s. Thus,m maps elements in block
B; onto elements in bIocle1 —j+1, and inside these two blocks ,maps the elements of subblock
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’

B!’ onto elements in subblock], _, , ;. Note thatr reverses the blockB; in order, but it doesiot
reverse the order of the subblocB?.

Finally, we are ready to fix the order in which the elementglinoccur in the streari’’: For
eachi € I, the streani” carries data item; at positionr(i); and for each ¢ I, it carries data
item b; at positionr (7).

In the same way as in the proof of Theorfn] 4.3, we wiitd; , I5) to denote the input instance
S andT™.

A pair of headghg, hr) is calledmixedif one of the heads is a forward head and the other is
a backward head. Sincereverses the order of the blocks, . ., B,,, it is straightforward to see
that everynon-mixedpair of heads can check at most one of the blaBks. ., B,,. Since there
arewv; blocks, but only(v; — 1) non-mixed pairs of heads, we know that for All I, C {1,..,n}
there exists a block; that isnot checkedy any non-mixed pair of heads duriodjs run on input
D(I, I5).

The same averaging argument as in the proof of Thegrem 4s3¢his us that there isa €
{1,..,v1}andaseX; C {I:I C {1,..,n}} such that

e for eachl € X|, block B;, is not checked by any non-mixed pair of heads duritig run
oninputD(I,I), and
o | X} > %
From our particular choice of, it is straightforward to see that evamjixedpair of heads can check
at most one of the subbloclﬁ}l, ..., B;?. Since there are, such subblocks, but onlfv, — 1)
mixed pairs of heads, there must bgae {1,..,v2} and a sef;, C X, such that

e for each/ € Xy, subblockijf is not checked by any pair of heads durid& run on input

D(I,1), and
o |Xo| > il > 2

For the remainder of the proof we figg = ij and we letk := 2k; + 2k, denote the total
number of heads. Using these notations, the rest of the peoobe taken vertatim from the proof
of Theoren{4]3. "

The proof of Theorenh 4.6 is implicit irf [14] (see Theorem 5i11L4]). There, however, the
proof is formulated in the terminology of a different maahimodel, the so-callefinite cursor
machines

5. Final remarks

Several questions concerning the computational power @srapitomata occur naturally. On
a technical level, it would be nice to determine the exactmerity of the set disjointness problem
with respect to mp2s-automata. In particular: Is the uppemd provided by Propositioh 4.2
optimal? Can backward scans significantly help for solvimg det disjointness problem? Ayé
heads really necessary for solving the set disjointnedsgmowhen only a sub-exponential number
of states are available?

A more important task, however, is to consider also randethizersions of mp2s-automata,
to design efficient randomized approximation algorithmsgdarticular problems, and to develop
techniques for proving lower bounds in the randomized model
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