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ABSTRACT. This paper gives a brief overview of computation models fordata stream process-
ing, and it introduces a new model for multi-pass processingof multiple streams, the so-called
mp2s-automata. Two algorithms for solving the set disjointness problem with these automata are
presented. The main technical contribution of this paper isthe proof of a lower bound on the size
of memory and the number of heads that are required for solving the set disjointness problem with
mp2s-automata.

1. Introduction

In the basic data stream model, the input consists of a streamof data items which can be read
only sequentially, one after the other. For processing these data items, a memory buffer of limited
size is available. When designing data stream algorithms, one aims at algorithms whose memory
size is far smaller than the size of the input.

Typical application areas for which data stream processingis relevant are, e.g., IP network
traffic analysis, mining text message streams, or processing meteorological data generated by sensor
networks. Data stream algorithms are also used to support query optimization in relational database
systems. In fact, virtually all query optimization methodsin relational database systems rely on
information about the number of distinct values of an attribute or the self-join size of a relation —
and these pieces of information have to be maintained while the database is updated. Data stream
algorithms for accomplishing this task have been introduced in the seminal paper [2].

Most parts of the data stream literature deal with the task ofperformingone pass over a single
stream. For a detailed overview on algorithmic techniques for thisscenario we refer to [23].Lower
boundson the size of memory needed for solving a problem by a one-pass algorithm are usually
obtained by applying methods fromcommunication complexity(see, e.g., [2, 20]). In fact, for many
concrete problems it is known that the memory needed for solving the problem by a deterministic
one-pass algorithm is at least linear in the sizen of the input. For some of these problems, however,
randomizedone-pass algorithms can still compute goodapproximateanswers while using memory
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of size sublinear inn. Typically, such algorithms are based onsampling, i.e., only a “representative”
portion of the data is taken into account, andrandom projections, i.e., only a rough “sketch” of
the data is stored in memory. See [23, 10] for a comprehensivesurvey of according algorithmic
techniques and for pointers to the literature.

Also the generalization wheremultiple passes over a single stream are performed, has re-
ceived considerable attention in the literature. Techniques for proving lower bounds in this scenario
can be found, e.g., in [20, 18, 9, 12, 22].

A few articles also deal with the task ofprocessing several streams in parallel. For example,
the authors of [28] consider algorithms which perform one pass over several streams. They introduce
a new model of multi-party communication complexity that issuitable for proving lower bounds on
the amount of memory necessary for one-pass algorithms on multiple streams. In [28], these results
are used for determining the exact space complexity of processing particular XML twig queries.
In recent years, the database community has also addressed the issue of designing general-purpose
data stream management systemsand query languages that are suitable for new application areas
where multiple data streams have to be processed in parallel. To get an overview of this research
area, [3] is a good starting point. Foundations for a theory of stream querieshave been laid in
[19]. Stream-based approaches have also been examined in detail in connection withXML query
processing and validation, see, e.g. the papers [27, 26, 13, 8, 4, 5, 16].

Thefinite cursor machines(FCMs, for short) of [14] are a computation model for performing
multiple passes over multiple streams. FCMs were introduced as an abstract model of database
query processing. Formally, they are defined in the framework of abstract state machines. Infor-
mally, they can be described as follows: The input for an FCM is a relational database, each relation
of which is represented by atable, i.e., an ordered list of rows, where each row corresponds toa
tuple in the relation. Data elements are viewed as “indivisible” objects that can be manipulated by
a number of “built-in” operations. This feature is very convenient to model standard operations on
data types like integers, floating point numbers, or strings, which may all be part of the universe of
data elements. FCMs can operate in a finite number ofmodesusing aninternal memoryin which
they can store bitstrings. They access each relation through a finite number ofcursors, each of
which can read one row of a table at any time. The model incorporates certainstreamingor sequen-
tial processingaspects by imposing a restriction on the movement of the cursors: They can move
on the tables only sequentially in one direction. Thus, oncethe last cursor has left a row of a table,
this row can never be accessed again during the computation.Note, however, that several cursors
can be moved asynchronously over the same table at the same time, and thus, entries in different,
possibly far apart, regions of the table can be read and processed simultaneously.

A common feature of the computation models mentioned so far in this paper is that the in-
put streams areread-onlystreams that cannot be modified during a pass. Recently, alsostream-
based models for external memory processing have been proposed, among them theStrSort
model[1, 24], theW-Streammodel [11], and the model ofread/write streams[17, 16, 15, 7, 6].
In these models, several passes may be performed over a single stream or over several streams in
parallel, and during a pass, the content of the stream may be modified.

A detailed introduction toalgorithms on data streams, respectively, to the related area ofsub-
linear algorithmscan be found in [23, 10]. A survey ofstream-based models for external memory
processingand of methods for provinglower boundsin these models is given in [25]. A database
systems oriented overview of so-calleddata stream systemscan be found in [3]. For a list ofopen
problemsin the area of data streams we refer to [21].
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In the remainder of this article, a new computation model formulti-pass processing of multiple
streams is introduced: themp2s-automata. In this model, (read-only) streams can be processed by
forward scans as well as backward scans, and several “heads”can be used to perform several passes
over the streams in parallel. After fixing the basic notationin Section 2, the computation model of
mp2s-automata is introduced in Section 3. In Section 4, we consider theset disjointness problem
and prove upper bounds as well as lower bounds on the size of memory and the number of heads
that are necessary for solving this problem with an mp2s-automaton. Section 5 concludes the paper
by pointing out some directions for future research.

2. Basic notation

If f is a function from the set of non-negative integers to the setof reals, we shortly write
f(n) instead of⌈f(n)⌉ (where⌈x⌉ denotes the smallest integer> x). We write lg n to denote the
logarithm ofn with respect to base 2. For a setD we writeD

∗ to denote the set of all finite strings
over alphabetD. We viewD

∗ as the set of all finitedata streamsthat can be built from elements in
D. For a stream~S ∈ D

∗ write |~S| to denote the length of~S, and we writesi to denote the element
in D that occurs at thei-th position in~S, i.e., ~S = s1s2 · · · s|~S|.

3. A computation model for multi-pass processing of multiple streams

In this section, we fix a computation model for multi-pass processing of multiple streams. The
model is quite powerful: Streams can be processed by forwardscans as well as backward scans, and
several “heads” can be used to perform several passes over the stream in parallel. For simplicity, we
restrict attention to the case where justtwostreams are processed in parallel. Note, however, that it
is straightforward to generalize the model to an arbitrary number of streams.

The computation model, calledmp2s-automata1, can be described as follows: LetD be a set,
and letm,kf , kb be integers withm > 1 andkf , kb > 0. An

mp2s-automatonA with parameters(D,m, kf , kb)

receives as input two streams~S ∈ D
∗ and~T ∈ D

∗. The automaton’s memory consists ofm different
states (note that this corresponds to a memory buffer consisting of lg m bits). The automaton’s state
space is denoted byQ. We assume thatQ contains a designatedstart stateand that there is a
designated subsetF of Q of so-calledaccepting states.

On each of the input streams~S and ~T , the automaton haskf heads that process the stream
from left to right (so-calledforward heads) andkb heads that process the stream from right to left
(so-calledbackward heads). The heads are allowed to move asynchronously. We usek to denote
the total number of heads, i.e.,k = 2kf + 2kb.

In the initial configurationof A on input(~S, ~T ), the automaton is in thestart state, all forward
heads on~S and~T are placed on the leftmost element in the stream, i.e.,s1 resp.t1, and allbackward
heads are placed on the rightmost element in the stream, i.e., s|~S| resp.t|~T |.

During each computation step, depending on (a) the current state (i.e., the current content of the
automaton’s memory) and (b) the elements of~S and~T at the current head positions, a deterministic
transition function determines (1) the next state (i.e., the new content of the automaton’s memory)
and (2) which of thek heads should be advanced to the next position (where forwardheads are

1“mp2s” stands for multi-pass processing of 2streams
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D : set ofdata itemsof which input streams~S and ~T are composed

m : size of the automaton’sstate spaceQ (this corresponds tolg m bits of memory)

kf : number offorward headsavailable on each input stream

kb : number ofbackward headsavailable on each input stream

k : 2kf + 2kb (total number of heads)

Figure 1: The meaning of the parameters(D,m, kf , kb) of an mp2s-automaton.

advanced one step to the right, and backward heads are advanced one step to the left). Formally, the
transition function can be specified in a straightforward way by a function

δ : Q × (D ∪ {end})k −→ Q × {advance, stay}k

whereQ denotes the automaton’s state space, andend is a special symbol (not belonging toD)
which indicates that a head has reached the end of the stream (for a forward head this means that
the head has been advanced beyond the rightmost element of the stream, and for a backward head
this means that the head has been advanced beyond the leftmost element of the stream).

The automaton’s computation on input(~S, ~T ) ends as soon as each head has passed the entire
stream. The input isacceptedif the automaton’s state then belongs to the setF of accepting states,
and it isrejectedotherwise.

The computation model of mp2s-automata is closely related to thefinite cursor machinesof
[14]. In both models, several streams can be processed in parallel, and several heads (or, “cur-
sors”) may be used to perform several “asynchronous” passesover the same stream in parallel. In
contrast to the mp2s-automata of the present paper, finite cursor machines were introduced as an
abstract model for database query processing, and their formal definition in [14] is presented in the
framework ofabstract state machines.

Note that mp2s-automata can be viewed as a generalization ofother models for one-pass or
multi-pass processing of streams. For example, the scenario of [28], where a single pass over two
streams is performed, is captured by an mp2s-automaton where 1 forward head and no backward
heads are available on each stream. Also, the scenario wherep consecutive passes of each input
stream are available (cf., e.g., [20]), can be implemented by an mp2s-automaton: just usep forward
heads and0 backward heads, and let thei-th head wait at the first position of the stream until the
(i−1)-th head has reached the end of the stream.

4. The set disjointness problem

Throughout Section 4 we consider a particular version of theset disjointness problemwhere,
for each integern > 1, Dn := { a1, b1, . . . , an, bn } is a fixed set of2n data items. We write
Disjn to denote the following decision problem: The input consists of two streams~S and ~T over
Dn with |~S| = |~T | = n. The goal is to decide whether the sets{s1, . . . , sn} and{t1, . . . , tn} are
disjoint.

An mp2s-automatonsolvesthe problemDisjn if, for all valid inputs toDisjn (i.e., all ~S, ~T ∈ D
∗

with |~S| = |~T | = n), it accepts the input if, and only if, the corresponding sets are disjoint.
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4.1. Two upper bounds for the set disjointness problem

It is straightforward to see that the problemDisjn can be solved by an mp2s-automaton with
22n states and a single forward head on each of the two input streams: During a first phase, the
head on~S processes~S and stores, in the automaton’s current state, the subset ofDn that has been
seen while processing~S. Afterwards, the head on~T processes~T and checks whether the element
currently seen by this head belongs to the subset ofDn that is stored in the automaton’s state.
Clearly,22n states suffice for this task, since|Dn| = 2n. We thus obtain the following trivial upper
bound:

Proposition 4.1. Disjn can be solved by an mp2s-automaton with parameters(Dn, 22n, 1, 0).

The following result shows that, at the expense of increasing the number of forward heads on
each stream to

√
n, the memory consumption can be reduced exponentially:

Proposition 4.2. Disjn can be solved by an mp2s-automaton with parameters(Dn, n+2,
√

n, 0).2

Proof. The automaton proceeds in two phases.
The goal inPhase 1is to move, for eachi ∈ {1, . . . ,√n }, the i-th head on~S onto the

(

(i−1)
√

n + 1
)

-th position in ~S. This way, after having finishedPhase 1, the heads partition
~S into

√
n sub-streams, each of which has length

√
n. Note thatn + 1 − √

n states suffice for
accomplishing this: The automaton simply stores, in its state, the current position of the rightmost
head(s) on~S. It starts by leaving head 1 at position1 and moving the remaining heads on~S to the
right until position

√
n + 1 is reached. Then, it leaves head 2 at position

√
n + 1 and proceeds by

moving the remaining heads to the right until position2
√

n + 1 is reached, etc.
DuringPhase 2, the automaton checks whether the two sets are disjoint. This is done in

√
n sub-

phases. During thej-th sub-phase, thej-th head on~T processes~T from left to right and compares
each element in~T with the elements on the current positions of the

√
n heads on~S. When thej-th

head on~T has reached the end of the stream, each of the heads on~S is moved one step to the right.
This finishes thej-th sub-phase. Note thatPhase 2can be accomplished by using just 2 states: By
looking at the combination of heads on~T that have already passed the entire stream, the automaton
can tell which sub-phase it is currently performing. Thus, for Phase 2we just need one state for
indicating that the automaton is inPhase 2, and an additional state for storing that the automaton
has discovered already that the two sets arenot disjoint.

4.2. Two lower bounds for the set disjointness problem

We first show a lower bound for mp2s-automata where only forward heads are available:

Theorem 4.3. For all integersn, m, kf , such that, fork = 2kf and v = k2
f

+ 1,

k2 · v · lg(n+1) + k · v · lg m + v · (1 + lg v) 6 n ,

the problem Disjn cannot be solved by any mp2s-automaton with parameters(Dn,m, kf , 0).

Proof. Let n, m, andkf be chosen such that they meet the theorem’s assumption. For contradiction,
let us assume thatA is an mp2s-automaton with parameters(Dn,m, kf , 0) that solves the problem
Disjn.

2To be precise, the proof shows that alreadyn + 2 −

√

n states suffice.
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Recall thatDn = { a1, b1, . . . , an, bn } is a fixed set of2n data items. Throughout the proof
we will restrict attention to input streams~S and ~T which are enumerations of the elements in a set

AI := {ai : i ∈ I} ∪ {bi : i ∈ I}

for arbitraryI ⊆ {1, . . , n} and its complementI := {1, . . , n} \ I.
Note that for allI1, I2 ⊆ {1, . . , n} we have

AI1 andAI2 are disjoint ⇐⇒ I2 = I1. (4.1)

For eachI ⊆ {1, . . , n} we let ~SI be the stream of lengthn which is defined as follows: For each
i ∈ I, it carries data itemai at positioni; and for eachi 6∈ I, it carries data itembi at positioni. The
stream~T I contains the same data items as~SI , but in the opposite order: For eachi ∈ I, it carries
data itemai at positionn − i + 1; and for eachi 6∈ I, it carries data itembi at positionn − i + 1.

For setsI1, I2 ⊆ {1, . . , n}, we writeD(I1, I2) to denote the input instance~SI1 and~T I2 for the
problemDisjn. From (4.1) and our assumption that the mp2s-automatonA solvesDisjn, we obtain
that

A acceptsD(I1, I2) ⇐⇒ I2 = I1. (4.2)

Throughout the remainder of this proof, our goal is to find twosetsI, I ′ ⊆ {1, . . , n} such that

(1) I 6= I ′, and

(2) the accepting run ofA on D(I, I) is “similar” to the accepting run ofA on D(I ′, I ′), so
that the two runs can be combined into an accepting run ofA on D(I, I ′) (later on in the
proof, we will see what “similar” precisely means).

Then, however, the fact thatA accepts inputD(I, I ′) contradicts (4.2) and thus finishes the proof
of Theorem 4.3.

For accomplishing this goal, we let

v := k2
f

+ 1 (4.3)

be 1 plus the number of pairs of heads on the two streams. We subdivide the set{1, . . , n} into v

consecutive blocksB1, . . . , Bv of equal sizen
v
. I.e., for eachj ∈ {1, . . , v}, block Bj consists of

the indices in{ (j−1)n
v

+ 1, . . . , j n
v
}.

We say that a pair(hS , hT ) of heads ofA checks blockBj during the run on inputD(I1, I2)
if, and only if, at some point in time during the run, there exist i, i′ ∈ Bj such that headhS is on
elementai or bi in ~SI1 and headhT is on elementai′ or bi′ in ~T I2.

Note that each pair of heads can check at most one block, sinceonly forward heads are available
and the data items in~T I2 are arranged in the reverse order (with respect to the indices i of elements
ai andbi) than in~SI1 . Since there arev blocks, but onlyv − 1 pairs(hS , hT ) of heads on the two
streams, we know that for eachI1, I2 ⊆ {1, . . , n} there exists a blockBj that isnot checkedduring
A’s run onD(I1, I2).

In the following, we determine a setX ⊆ {I : I ⊆ {1, . . , n}} with |X| > 2 such that for all
I, I ′ ∈ X, item (2) of our goal is satisfied. We start by using a simple averaging argument to find a
j0 ∈ {1, . . , v} and a setX0 ⊆ {I : I ⊆ {1, . . , n}} such that

• for eachI ∈ X0, blockBj0 is not checked duringA’s run on inputD(I, I), and

• |X0| >
2n

v
.
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For the remainder of the proof we fix̂B := Bj0.
We next choose a sufficiently large setX1 ⊆ X0 in which everything outside block̂B is fixed:
A simple averaging argument shows that there is aX1 ⊆ X0 and aÎ ⊆ {1, . . , n} \ B̂ such that

• for eachI ∈ X1, I \ B̂ = Î, and

• |X1| >
|X0|

2n− n
v

> 2
n
v
−lg v.

We next identify a setX2 ⊆ X1 such that for allI, I ′ ∈ X2 the runs ofA onD(I, I) andD(I ′, I ′)
are “similar” in a sense suitable for item (2) of our goal. To this end, for each headh of A we let
configIh be theconfiguration(i.e., the current state and the absolute positions of all the heads) in the
run of A on inputD(I, I) at the particular point in time where headh has just left blockB̂ (i.e.,
headh has just left the last elementai or bi with i ∈ B̂ that it can access). We letconfigI be the
ordered tuple of the configurationsconfigIh for all headsh of A. Note that the number of possible
configurationsconfigIh is 6 m · (n+1)k, sinceA hasm states and since each of thek = 2kf

heads can be at one out ofn+1 possible positions in its input stream. Consequently, the number of
possiblek-tuplesconfigI of configurations is6

(

m · (n+1)k
)k

.
A simple averaging argument thus yields a tuplec of configurations and a setX2 ⊆ X1 such that

• for all I ∈ X2, configI = c, and

• |X2| >
|X1|

(m·(n+1)k)k > 2
n
v
−lg v − k lg m − k2 lg(n+1).

Using the theorem’s assumption on the numbersn, m, andkf , one obtains that|X2| > 2. Therefore,
we can find two setsI, I ′ ∈ X2 with I 6= I ′.

To finish the proof of Theorem 4.3, it remains to show that the runs ofA on D(I, I) and on
D(I ′, I ′) can be combined into a run ofA onD(I, I ′) such thatA (falsely) accepts inputD(I, I ′).
To this end let us summarize what we know aboutI andI ′ in X2:

(a) I andI ′ only differ in blockB̂.

(b) Block B̂ is not checked duringA’s runs onD(I, I) and onD(I ′, I ′). I.e., while any head on
~SI (resp.~SI′) is at an elementai or bi with i ∈ B̂, no head on~T I (resp.~T I′) is on an element
ai′ or bi′ with i′ ∈ B̂.

(c) ConsideringA’s runs onD(I, I) and onD(I ′, I ′), each time a head leaves the last position
in B̂ that it can access, both runs are are in exactly the same configuration. I.e., they are in
the same state, and all heads are at the same absolute positions in their input streams.

Due to item (a),A’s run on inputD(I, I ′) starts in the same way as the runs onD(I, I) and
D(I ′, I ′): As long as no head has reached an element in blockB̂, the automaton has not yet seen
any difference betweenD(I, I ′) on the one hand andD(I, I) andD(I ′, I ′) on the other hand.

At some point in time, however, some headh will enter block B̂, i.e., it will enter the first
elementai or bi with i ∈ B̂ that it can access. The situation then is as follows:

• If h is a head on~SI , then, due to item (b), no head on~T I′ is at an element in̂B. Therefore,
until headh leaves blockB̂, A will go through the same sequence of configurations as in
its run on inputD(I, I). Item (c) ensures that whenh leaves blockB̂, A is in the same
configuration as in its runs onD(I, I) and onD(I ′, I ′).
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• Similarly, if h is a head on~T I′ , then, due to item (b), no head on~SI is at an element
in B̂. Therefore, until headh leaves blockB̂, A will go through the same sequence of
configurations as in its run on inputD(I ′, I ′). Item (c) ensures that whenh leaves blockB̂,
A is in the same configuration as in its runs onD(I ′, I ′) and onD(I, I).

In summary, inA’s run onD(I, I ′), each time a headh has just left the last element in block̂B that
it can access, it is in exactly the same configuration as inA’s runs onD(I, I) and onD(I ′, I ′) at
the points in time where headh has just left the last element in block̂B that it can access. After
the last head has left block̂B, A’s run onD(I, I ′) finishes in exactly the same way asA’s runs
on D(I, I) andD(I ′, I ′). In particular, it acceptsD(I, I ′) (since it acceptsD(I, I) andD(I ′, I ′)).
This, however, is a contradiction to (4.2). Thus, the proof of Theorem 4.3 is complete.

Remark 4.4. Let us compare the lower bound from Theorem 4.3 with the upperbound of Proposi-
tion 4.2: The upper bound tells us thatDisjn can be solved by an mp2s-automaton withn+2 states
and

√
n forward heads on each input stream. The lower bound implies (for large enoughn) that

if just 5
√

n forward heads are available on each stream, not even2
3
√

n states suffice for solving the
problemDisjn with an mp2s-automaton.

Remark 4.5. A straightforward calculation shows that the assumptions of Theorem 4.3 are satisfied,

for example, for all sufficiently large integersn and all integersm andkf with 4kf 6 4

√

n
lg n

and

lg m 6
n

4kf ·(k2

f
+1)

.

Theorem 4.3 can be generalized to the following lower bound for mp2s-automata where also
backward heads are available:

Theorem 4.6. For all n, m, kf , kb such that, fork = 2kf +2kb and v = (k2
f
+k2

b
+1)·(2kf kb+1),

k2 · v · lg(n+1) + k · v · lg m + v · (1 + lg v) 6 n ,

the problem Disjn cannot be solved by any mp2s-automaton with parameters(Dn,m, kf , kb).

Proof. The overall structure of the proof is the same as in the proof of Theorem 4.3. We consider
the same setsAI , for all I ⊆ {1, . . , n}. The stream~SI is chosen in the same way as in the proof of
Theorem 4.3, i.e., for eachi ∈ I, the stream~SI carries data itemai at positioni; and for eachi 6∈ I,
it carries data itembi at positioni.

Similarly as in the proof of Theorem 4.3, the stream~T I contains the same data items as~SI .
Now, however, the order in which the elements occur in~T I is a bit more elaborate. For fixing this
order, we choose the following parameters:

v1 := k2
f

+ k2
b

+ 1 , v2 := 2kfkb + 1 , v := v1 · v2 . (4.4)

We subdivide the set{1, . . , n} into v1 consecutive blocksB1, . . . , Bv of equal sizen
v1

. I.e., for each
j ∈ {1, . . , v1}, blockBj consists of the indices in{ (j−1) n

v1
+ 1, . . . , j n

v1
}.

Afterwards, we further subdivide each blockBj into v2 consecutive subblocks of equal sizen
v
.

These subblocks are denotedB1
j , . . . , Bv2

j . Thus, each subblockBj′

j consists of the indices in
{ (j−1) n

v1
+ (j′−1)n

v
+ 1, . . . , (j−1) n

v1
+ j′ n

v
}.

Now let π be the permutation of{1, . . , n} which maps, for allj, r with 1 6 j 6 v1 and
1 6 r 6

n
v1

, element(j−1) n
v1

+ s onto element(v1−j) n
v1

+ s. Thus,π maps elements in block
Bj onto elements in blockBv1−j+1, and inside these two blocks,π maps the elements of subblock
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B
j′

j onto elements in subblockBj′

v1−1+1. Note thatπ reverses the blocksBj in order, but it doesnot

reverse the order of the subblocksB
j′

j .

Finally, we are ready to fix the order in which the elements inAI occur in the stream~T I : For
eachi ∈ I, the stream~T I carries data itemai at positionπ(i); and for eachi 6∈ I, it carries data
item bi at positionπ(i).

In the same way as in the proof of Theorem 4.3, we writeD(I1, I2) to denote the input instance
~SI1 and ~T I2.

A pair of heads(hS , hT ) is calledmixedif one of the heads is a forward head and the other is
a backward head. Sinceπ reverses the order of the blocksB1, . . , Bv1

, it is straightforward to see
that everynon-mixedpair of heads can check at most one of the blocksB1, . . , Bv1

. Since there
arev1 blocks, but only(v1 − 1) non-mixed pairs of heads, we know that for allI1, I2 ⊆ {1, . . , n}
there exists a blockBj that isnot checkedby any non-mixed pair of heads duringA’s run on input
D(I1, I2).

The same averaging argument as in the proof of Theorem 4.3 thus tells us that there is aj1 ∈
{1, . . , v1} and a setX ′

0 ⊆ {I : I ⊆ {1, . . , n}} such that

• for eachI ∈ X ′
0, blockBj1 is not checked by any non-mixed pair of heads duringA’s run

on inputD(I, I), and

• |X ′
0| >

2n

v1
.

From our particular choice ofπ, it is straightforward to see that everymixedpair of heads can check
at most one of the subblocksB1

j1
, . . . , Bv2

j1
. Since there arev2 such subblocks, but only(v2 − 1)

mixed pairs of heads, there must be aj2 ∈ {1, . . , v2} and a setX0 ⊆ X ′
0 such that

• for eachI ∈ X0, subblockBj2
j1

is not checked by any pair of heads duringA’s run on input

D(I, I), and

• |X0| >
|X′

0
|

v2
> 2n

v
.

For the remainder of the proof we fix̂B := B
j2
j1

, and we letk := 2kf + 2kb denote the total
number of heads. Using these notations, the rest of the proofcan be taken vertatim from the proof
of Theorem 4.3.

The proof of Theorem 4.6 is implicit in [14] (see Theorem 5.11in [14]). There, however, the
proof is formulated in the terminology of a different machine model, the so-calledfinite cursor
machines.

5. Final remarks

Several questions concerning the computational power of mp2s-automata occur naturally. On
a technical level, it would be nice to determine the exact complexity of the set disjointness problem
with respect to mp2s-automata. In particular: Is the upper bound provided by Proposition 4.2
optimal? Can backward scans significantly help for solving the set disjointness problem? Are

√
n

heads really necessary for solving the set disjointness problem when only a sub-exponential number
of states are available?

A more important task, however, is to consider also randomized versions of mp2s-automata,
to design efficient randomized approximation algorithms for particular problems, and to develop
techniques for proving lower bounds in the randomized model.
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