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ABSTRACT. Motivated by the quantum algorithm for testing commuiatiof black-box groups
(Magniez and Nayak, 2007), we study the following problenive@ a black-box finite ring by an
additive generating set and a multilinear polynomial ovet tring, also accessed as a black-box
function (we allow the indeterminates of the polynomial ®dommuting or noncommuting), we
study the problem of testing if the polynomial is &entity for the given ring. We give a quantum
algorithm with query complexity sub-linear in the numbegeferators for the ring, when the number
of indeterminates of the input polynomial is small (idealgonstant). Towards a lower bound, we
also show a reduction from a version of the collision problgvhich is well studied in quantum
computation) to a variant of this problem.

1. Introduction

For any finite ring(R, +,-) the ring R[z1,x2,- - ,x,,] IS the ring of polynomials in com-
muting variablesey, =2, - - - , z,,, and coefficients irkR. The ringR{x1, z2, - , ., } is the ring of
polynomials where the indeterminatesarenoncommutingBy noncommuting variables, we mean
TiTj — T4 #0 for i 75 J-

For the algorithmic problem we study in this paper, we asstimethe elements of the ring
(R, +, ) are uniformly encoded by binary strings of lengtand R = (ry,r2,--- ,71) IS given by
an additive generating séty,r, -+ , 7, }. Thatis,

R = {ZO&@T@ | o; € Z}.

Also, the ring operations aR are performed by black-box oracles for addition and mutttion
that take as input two strings encoding ring elements anpubdiheir sum or product (as the case
may be). Additionally, we assume that the zero elemenk a encoded by a fixed string. The
black-box model for finite rings was introduced [n JADMO06]. ewiow define the problem which
we study in this paper.
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The Multilinear Identity Testing Problem (MIT): The input to the problem is a black-box ring
R = (r1,---,rk) given by an additive generating set, and a multilinear patyial f (z1,--- ,z,)

(in the ring R[x1, - - - , 2y, Or the ring R{z1,--- ,z,,}) that is also given by a black-box access.
The problem is to test if is anidentity for the ring R. More precisely, the problem is to test if
flai,az,--- ,an,) =0foralla; € R.

A natural example of an instance of this problem is the bataripolynomialf(z1,z2) =
x1x9 — wox1 OVer the ringR{x1, z2}. This is an identity forR precisely whenR is a commutative
ring. Clearly, it suffices to check if the generators comnwitild each other, which gives a naive
algorithm that make® (k?) queries to the ring oracles.

Given a polynomialf (z1, - - - , z,,) and a black-box ring? by generators, we briefly discuss
some facts about the complexity of checkingfit= 0 is an identity forR. The problem can be
NP-hard when the number of indeterminatess unbounded, even wheh is a fixed ring. To see
this, notice that a 3-CNF formul&'(x1,--- ,z,) can be expressed as’yn) degree multilinear
polynomial f(x1, z2,- - - ,z,) overFy, by writing F' in terms of addition and multiplication over
Fs. It follows that f = 0 is an identity forlF, if and only if F' is an unsatisfiable formula. However
in this paper we focus only on the upper and lower bounds oqukey complexityf the problem.

In our query model, each ring operation, which is performgdalguery to one of the ring
oracles, is of unit cost. Furthermore, we consider eactuatiah of f(aq,--- ,a,,) to be of unit
cost for a given inputay, - - - ,a,,) € R™. This model is reasonable because we consides a
parameter that is much smaller thian

The starting point of our study is a result of Magniez and NapgdMNO7)], where the authors
study the quantum query complexity of group commutativésting: LetG be a finite black-box
group given by a generating set, ¢o, - - - , g, and the group operation is performed by a group
oracle. The algorithmic task is to checkdf is commutative. For this problem the authors in
[MNO7] give a quantum algorithm with query complexi(y(k2/3 log k) and time complexity
O(k*/31og? k). Furthermore, #&(k*/3) lower bound for the quantum query complexity is also
shown. The main technical tool for their upper bound resals @ method of quantization of ran-
dom walks first shown by Szegedy [SzE04]. More recently, Niget al in [MNRSOJ] discovered
a simpler and improved description of Szegedy’s method.

Our starting point is the observation that Magniez-Nayaulte]MNO{] for group commuta-
tivity can also be easily seen as a commutativity test foitramy finite black-boxrings with similar
query complexity. Furthermore, as mentioned earlier,ceothat the commutativity testing for a
finite ring coincides with testing if the bivariate polynahjf (x1, x2) = x122 — z2x1 iS an identity
for the ring. Sincef (x4, x2) is a multilinear polynomial, a natural question is, whetthés approach
would extend to testing if any multilinear polynomial is afentity for a given ring. Motivated by
this connection, we study the problem of testing multilinielentities for any finite black-box ring.

The upper bound result ifi [MNpP7] is based on a group-theotethma of Pak[[Pak(0]. Our
(query complexity) upper bound result takes an analogopsoaph. The main technical contri-
bution here is a suitable generalization of Pak's lemma toultiinear polynomial setting. The
multilinearity condition is crucially required. The restthe proof is a suitable adaptation of the
Magniez-Nayak result.

For the lower bound result, we show a reduction to a somewlat general version afliT
from a problem that is closely related to the COLLISION problem studied in quantum com-
putation. Them-COLLISION problem is the following. Given a functioff : {1,2,--- .k} —
{1,2,--- ,k} as an oracle and a positive integer the task is to determine if there is some element
in the range off with exactlym pre-images.
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We define then-SPLIT COLLISIONproblem that is closely related to-COLLISION problem.
Here the domain(1,2,--- ,k} is partitioned intom equal-sized intervals (assunieis a multi-
ple of m) and the problem is to determine if there is some elementenréimge off with ex-
actly one pre-image in each of the intervals. We show a reduction from-SPLIT COLLISION
to a general version afiT. There is an easy randomized reduction fronCOLLISION prob-
lem tom-SPLIT COLLISIONproblem. The best known quantum query complexity lower ldion
m-COLLISION problem isQ(kg) [AS04] and thus we get the same lower bound for the general ver
sion of MIT that we study. Improving, the current lower bound f®COLLISION is an important
open problem in quantum computation since last few y@ars.

Our reduction for lower bound is conceptually differentrfr¢he lower bound proof if [MNQ7].
It uses ideas from automata theory to construct a suitablekiox ring. We recently used similar
ideas in the design of a deterministic polynomial-time &thm for identity testing of noncommu-

tative circuits computing small degree sparse polynonffei8S04].

2. Black-box Rings and the Quantum Query model

We briefly explain the standard quantum query model. We mdtg definition of black-box
ring operations by making them unitary transformations ¢ha be used in quantum algorithms. For
a black-box ringRz, we have two oracle®$% andO7 for addition and multiplication respectively.
For any two ring elements s, and a binary string € {0, 1}" we haveO%|r)|s) = |r)|r + s) and
OF|r)|s)|t) = |r)|s)|rs @ t), where the elements d? are encoded as strings {0, 1}". Notice
that O¢, is a reversible function by virtue dfR, +) being an additive group. On the other hand,
(R, -) does not have a group structure. Thus we have riggieeversible by defining it as&place
function O : {0,1}3" — {0,1}3". Whenr or s do not encode ring elements these oracles can
compute any arbitrary string.

The query model in quantum computation is a natural extensi@lassical query model. The
basic difference is that a classical algorithm queriesrdetastically or randomly selected basis
states, whereas a quantum algorithm can query a quantuenvetith is a suitably prepared su-
perposition of basis states. Our query model closely f@lole query model of Magniez-Nayak
[MNO7, Section 2.2]. For black-box ring operations the gugperators are simpl@%, andO7; (as
defined above). For an arbitrary oracle functibn X — Y, the corresponding unitary operator
is Or : |g)|h) — |g)|h @ F(g)). Inthe query complexity model, we charge unit cost for alsing
query to the oracle and all other computations are free. Vleagsume that the input black-box
polynomial f : R — R is given by such an unitary operatoy.

All the quantum registers used during the computation camitielised to |0). Then ak-
query algorithm for a black-box ring is a sequencekof 1 unitary operators ané ring oracle
operators:Up, @1, Ui, - - - ,Ur—1,Qk, U WhereQ; € {O%,0%,0r} are the oracle queries and
U,’s are unitary operators. The final step of the algorithm isneasure designated qubits and
decide according to the measurement output.

3. Quantum Algorithm for Multilinear Identity Testing

In this section we describe our quantum algorithm for mok#r identity testingMIT). Our
algorithm is motivated by (and based on) the group comnvitiatiesting algorithm of Magniez
and Nayak ]. We briefly explain the algorithm of Magnidayak. Their problem is the

Lambainis in ] show a quantum query complexity uppeutbofO(k™/™+1) for m-COLLISIONproblem.
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following: given a black-box grougs by a set of generatorg,, g2, - - , gx, the task is to find
nontrivial upper bound on the quantum query complexity tiedeine whethets is commutative.
The group operators (corresponding to the oracleyxy@ndOg-1.

Note that for this problem, there is a trivial classical aitjon (so as quantum) of query com-
plexity O(k?). In an interesting paper, Pak showed a classical randonaigedithm of query com-
plexity O(k) for the same problenj [PaK00]. Pak’s algorithm is based offidlf@ving observation
([Pak0p, Lemma 1.3]): Consider a subprodlict gi'gs? - - - gi* wheree;’ s are picked uniformly
at random from{0, 1}. Then for any proper subgroup of G, Prodh ¢ H| > 1/2.

One important step of the algorithm ih [MNO7] is a generdl@a of Pak’s lemma. LeV, be

the set of all distinct elemerittuples of elements fronil, 2, - -- , k}. Foru = (uq,--- ,uy), define
_ =)+ (k=) (k—t—1)
Gu = Guqi " Guaz * " Gu,- Letp - E(k—1) .

Lemma3.1. For any proper subgrougs of G, Prob,ey, (g, & K] > 52.

As a simple corollary of this lemma, Magniez and Nayak shoyMNO7] that, if G is non
abelian then for randomly picked andwv from V, the elementg, andg, will not commute with

i 1—p)? i i 1-p)® i

probability at Ieasz. Thus, for non abelianr there will be at Ieasi4— fraction of noncom-
muting pairs(u, v). Call such pairs amarked pairs Next, their idea is to do a random walk in the
space of all pairs and to decide whether there exists a mg@&iedThey achieved this by defining
a random walk and quantizing it using [Sze04]. We briefly lietbe setting from , Section

2.3], and the main theorem frorh [Sz£04], which is the centrahe analysis of Magniez-Nayak
result.

3.0.1. Quantum WalksLet P be an irreducible and aperiodic Markov chain on a gr@pk (V, E)
with n vertices. A walk following such a Markov chain is always atgoand has unique stationary
distribution. LetP(u,v) denote the transition probability from — v, and M be a set of marked
nodes ofl’. The goal is to make a walk on the vertices(dfollowing the transition matrix? and
decide whethef is nonempty Assume that every nodec V' is associated with a databaBgv)
from which we can determine whetherc M. This search procedure is modelled by a quantum
walk. To analyze the performance of the search procedureneed to consider the cost of the
following operations:

Set up Cost (S)The cost to set up(v) forv € V.

Update Cost (U)The cost to updat®(v), i.e. to update fronD(v) to D(v’), where the move
v — v’ is according to the transition matrik.

Checking Cost (C)To check whether € M using D(v).

The costs are specific to the application for e.g. it can beygemplexity or time complexity.
The problem that we consider or the group commutativity [enmbof Magniez-Nayak, concern
about query complexity. The following theorem due to Szgggdes a precise analysis of the total
cost involved in the quantum walk.

Theorem 3.2. [EzeOk]Let P be the transition matrix of an ergodic, symmetric Markov @han
agraphG = (V, E) and o be the spectral gap aP. Also, letM be the set of all marked vertices
inV and|M|/|V| > € > 0, wheneverM is nonempty. Then there is a quantum algorithm which
determines whethe¥/ is nonempty with constant success probability and §as ((U+C) /v/de).

S is the set up cost of the quantum procdsds the update cost for one step of the walk @nib

the checking cost.

Later, Magniez-Nayak-Ronald-Santfja [MNRE07] improvettiial cost of the quantum walk.
We state their main result.
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Theorem 3.3. [MNRSO07] Let P be the transition matrix of a reversible, ergodic Markov @han
agraphG = (V, E) andj be the spectral gap aP. Also letM be the set of all marked vertices
inV and|M|/|V| > € > 0, wheneverM is nonempty. Then there is a quantum algorithm which
determines whethel/ is nonempty and in that case finds an elementoiwith constant success
probability and cost of ordef + \%(%U + C). S'is the set up cost of the quantum procd$ss

the update cost for one step of the walk &nik the checking cost.

The analysis of Magniez-Nayak [MNO7] is based on Theofelln B& our problem also, we
follow similar approach.

3.1. Query Complexity Upper Bound

Now we describe our quantum algorithm #afT. Our main technical contribution is a suitable
generalization of Pak’s lemma. For ahy [m], consider the sek; C R defined as follows:

Ri={uc R|Y(by, - ,bi_1,bisx1, - ,bm) € R™ 7 f(br, -+ bi1,u,bit1, -+ ,bm) = 0}

Clearly, if f is not a zero function fronR™ — R, then|R;| < |R|. In the following lemma,
we prove that iff is not a zero function thefR;| < |R|/2.

Lemma 3.4. Let R be any finite ring andf (x1, z2, - - - , z,,) be a multilinear polynomial oveR
such thatf = 0 is not an identity forR. For i € [m] define

Ri = {u S R ’ v(bla o 7bi—17 bi+17 o 7bm) S Rm_la f(b17 o 7bi—17u7 bi+17 o 7bm) = 0}
ThenR; is an additive coset of a proper additive subgroupgénd henceR;| < |R|/2.

Proof. Write f = A(‘Tla Ty i1 Ty Lip 1 0 me) + B(xla Ty i1, T, 7xm) where A

is the sum of all the monomials gfcontainingz; andB is the sum of the rest of the monomials. Let

v1,v9 be any two distinct elements iR;. Then for any fixedj = (y1,- -+ ,%i—1,Yit+1, " sYm) €

R™ 1, consider the evaluation of and B over the pointS(y1,- -+ ,¥i—1,v1,%i+1," " ,Ym) and

(Y1, ,¥i-1,V2,¥itr1," - ,Ym) respectively. For convenience, we abuse the notation aite, wr
A(Ubg) + B(g) = A(’U27g) + B(g) = 07

whereg is an assignment toq,x2, - , 2,1, %11, -+ , T andwvy, vy are the assignments tg

respectively. Note that, a is a multilinear polynomial, the above relation in turns lrap that
A(v1 — v9,7) = 0. A '

Consider the seR;, defined as follows: Fix any® € R;,

RZ’ = {w — u(’) | w € RZ}

We claim thatR; is an (additive) subgroup aR. We only need to show thak; is closed under
the addition (ofR). Consider(w; — u®), (wy — u)) € R;. Then(w; — u®) + (wy — u®) =
(wy +ws —u®) —u, Itis now enough to show that for agye R, f(w;y +wy —u®,7) = 0
(note thatw; + ws, + u(? is an assignment to;). Again using the fact thaf is multilinear, we can
easily see the following:

flwi +wy —u®,§) = A(wr,§) + A(ws, §) — A(u?, 5) + B()

and,
A(wr, §) + A(ws, ) — A(uD, ) + B(§) = A(ws, §) — A(u®, 7) = 0.
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Note that the last equality follows becausgandu are inR;. Hence we have proved th&y
is a subgroup oR. SOR; = R; + u i.e. R; is a coset ofR; inside R. Also |R;| < |R| (f is not

identically zero overR). Thus, finally we getR;| = |R;| < |R|/2. ]
Our quantum algorithm is based on the algorithn] of [MNO7]the rest of the paper we denote
by S, the set of alll sizesubsetof {1,2,--- ,k}. We follow a quantization of a random walk on
Spx - x Sp =S Foru = {ui,us,- - ,up}, definer, = ry, +--- +r,,. Now, we suitably
adapt Lemma 1 of [MN®7] in our contes§.
Let R be a finite ring given by a additive generating Set= {ry,--- ,r;}. W.l.0o.g. assume

thatr, is the zero element aR. Let R be a proper additive subgroup @R, +). Letj be the least
integer in[k] such that; ¢ R. SinceR is a proper subgroup dt, such aj always exists.

Lemma35. LetR < R be a proper additive subgroup & and T be an additive coset dt in R.
ool # T1 = 126, ety AL ]

Proof. Let j be the least integer ifk] such that-; ¢ R. Fix a setu of size/ such thatl € u and
j ¢ u. Denote byv the set obtained from by deletingl and insertingj. This defines a one to
one correspondence (matching) between all such pait,ef). Moreoverr, = r, + r; (notice that
r1 = 0). Then at least one of the elementor r, is not inT'. For otherwisdr, —r,) € R implying
r; € R, which is a contradiction.

Therefore,

Prob,cs,[ry € T |j€uxorl € ul <

DO =

For any two indices, j,
-1+ (k—0)(k—¢—1)
k(k—1)

Probycgs,[i,j € uwori,j & u] =

Thus,
Prob,es,[ry € T) < (1 —p)/2+p < (1+Dp)/2.
This completes the proof. [

LetT = R; in Lemma[3.p, where®; is as defined in Lemmja 3.4.

Supposef = 0 is not an identity for the ring?. Then, using Lemmf 3.5, it is easy to see
that, foruy, us,-- - ,u,, picked uniformly at random frondy, f(ry,,--- ,74,,) IS NON zero with
non-negligible probability. This is analogous fo [MNIO7 rhma 2]. We include a proof for the sake
of completeness.

Lemma 3.6. Let f(z1,--- ,z,,) be a multilinear polynomial (in commuting or noncommuting i
determinates) oveR such thatf = 0 is not an identity for the ring?. Then,

1-p\™
Probll,“‘ JUmESy [f(ruu e 7Tum) 7& 0] Z <?> .

Proof. Fori € [m], let R; be the additive coset defined in Leming 3.4. The proof is by leimp
induction onm. The proof for the base case of the induction (i.erfor= 1) follows easily from
the definition of R; and Lemmd_3]5. By induction hypothesis assume that thetreslds for all
t-variate multilinear polynomialg such thaty = 0 is not an identity forR with ¢t < m — 1.

2 Notice that in [MNOY], the author consider the set oféatliples instead of subsets. This is important for them as
they work in non abelian structure in general (where ordetters). But we will be interested only over additive abelian
structure of a ring and thus order does not matter for us.



MULTILINEAR IDENTITY TESTING 93

Consider the given multilinear polynomigl(x, z2,--- ,z,,). Then, by Lemmd 34R,, is
a coset of an additive subgroup,, inside R. Picku,, € S, uniformly at random. Iff = 0 is
not an identity onR then by Lemmd 3|5 we get,, ¢ R,, with probability at Ieast%. Let
g(x1, 20, Tm1) = f(@1,-+ , Tm_1,Tu,, ). Sincer, & R,, with probability at least -2, it
follows thatg = 0 is not an identity onR with probability at Ieastl%p. Given thatg is not an
identity for R, by induction hypothesis we have thatoh,, ... 4., ,es,[9(Tu,, s Tuy_y) # 0] >

m—1 m
(12;”> . Hence we getProb,, ... u,. e85, [f (Tuys- s Tun) 7 0] > (12;”> , Which proves the
lemma. ]

We observe two simple consequences of Lenimp 3.6. Noticel#f#at= % Letting

{ =1we get% = 1/k, and Lemmd 3]6 implies that if = 0 is not an identity forR then
flay, -+ ,anm,) # 0 for one of thek™ choices for the:; from the generating sét-y,--- , 7 }.

Letting ¢ = k/2 in Lemma[3.p, we gei;—p > 1/4. Hence we obtain the following randomized
test which maked™ mk queries.

Corollary 3.7. There is a randomized™mk query algorithm foMIT with constant success prob-
ability, where f is m-variate andR is given by an additive generating set of sizeThis can be
seen as a generalization of Pak’¥ k) query randomized test for group commutativity.

We use Lemmg 3.6 to design our quantum algorithm. Techgijaalir quantum algorithm is
similar to the one described in [MN7]. The Lemfng 3.6 is useguarantee that there will at least

m
12;” fraction of marked pointsn the spaceS;” i.e. the points wher¢ evaluates to non-zero.

The underlying graph in our random walk is a Johnson Graploandnalysis require some simple
modification of the analysis described jn [MNI07].

3.1.1. Random walk or5,. Our random walk can be described as a random walk over a graph
G = (V, E) defined as follows: The vertices 6f are all possible subsets ofk]. Two vertices are
connected by an edge whenever the corresponding setslalifestactly one element. Notice th&t
is a connected(k — ¢)-regular Johnson graph, with parameter?, ¢ — 1) [BCN89]. Let P be the
normalized adjacency matrix &f with rows and columns are indexed by the subset&ofThen
Pxy =1/0(k —¢)if | X NY| = ¢— 1and0 otherwise. It is well known that the spectral gapf
P (0 = 1— )\, where) is the second largest eigenvalueRfis (1/¢) for ¢ < k/2 [BCN89]. Now
we describe the random walk dn

Let the current vertex is = {uy,u2, -+ ,us} andr,, = ry, +ry, +-- - +1,,. With probability
1/2 stay atu and with probabilityl /2 do the following: randomly pick; € v andj € [k]\ u. Then
move to vertexv such thatv is obtained fromu by removingu; and insertingj. Computer, by
simply subtracting-,, from r,, and adding; to it. That will only cost2 oracle access. Staying in any
vertex with probabilityl /2 ensures that the random walk is ergodic. So the stationatyitalition
of the random walk is always uniform. It is easy to see thatrduesition matrix of the random walk
is A = (I + P)/2 wherel is the identity matrix of suitable dimension. So the spédap of the
transition matrixA is § = (1 — \)/2 = §/2.

The query complexity analysis is similar to the analysis afgvliez-Nayak. But to fit it with
our requirement, we need some careful parameter settingndiele a brief self-contained proof.

Theorem 3.8. Let R be a finite black-box ring given as an oracle afi¢ic,,- - - ,z,,) be a mul-
tilinear polynomial overR given as a black-box. Moreover I¢ty,--- 7} be a given additive
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generating set foR. Then the quantum query complexity of testing whefhisran identity forR,
is O(m(1 + a)™/2km+1), assuming: > (14 1/a)™1

Proof. Setup cost(S): For the quantum walk step we need to start with an unifornridigion on
Sy*. With eachu € S, we maintain a quantum registgf,) that computes-,. So we need to
prepare the following state):

’\I’> = Z ‘u17ru1>®’u27ru2>®”'®‘umﬂrum>'

|Sm| u17u27"'7u7nesgn

It is easy to see that to compute any, we need/ — 1 oracle access to the ring oracle. Since in
each ofm independent walk, quantum queries over all choices wfill be made in parallel (using
quantum superposition), the total query cost for setup(i6— 1).

Update cost(U): Itis clear from the random walk described in the secfioni3 that the update
cost overS, is only 2 oracle access. Thus for the random walk gh\@hich is justm independent
random walks, one on each copy of e need a total update cd}m.ﬁ

Checking cost(C): To check whethef is zero on a point during the walk, we simply query the
oracle forf once.

Recall from Szegedy's resulf [Sz¢04] (as stated in Theré the total cost for query com-
plexity isQ = S + \/13—(U + C) wheree = (%) is the proportion of the marked elements
and § is the spectral gap of the transition mattik described in sectiofi 3.1.1. Combining to-

gether we getQ) < m {(6 -1)+ -2 } From the random walk described in the secfion B.1.1,

Ve
R _e
we know thaté > ﬁ Hence,Q < m [(E— 1)+ %] Notice that,% = % <1_§>.
5 k

Substituting for% we get,Q < m |({—1) +3\/§km/2W]. We will choose
T2 (=

k—1

a suitably smalle > 0 so that% < 14 a. Then we can upper boun@ as follows.

Q<m [(E —1)+3vV2-(1+ a)m/%m/?é”},l ] Now our goal is to minimizeQ with respect
-2

to ¢ anda. For that we choosé = k' where we will fixt appropriately in the analysis. Substituting
¢ = k' we get,Q < m [(k:t 1) +3v2-(1+ a)m/Ztl/Zk’""’S’l”]. Choosing = (m/(m + 1)),
we can easily see that the query complexity of the algorite® (im(1 + a)m/zkm%l). Finally,
recall that we need choose an> 0 so that% < 1+ a. Clearly, it suffices to choose so that

(1+ a)l < ak. Letting? = k™/™+1 we get the constraintl + 1/a)™*! < k which is satisfied if

em+/a < k. We can choose = 7L, n

Remark 3.9. The choice oty in the above theorem shows some trade-offs in the query epitypl
between the parameteksandm. For constantn notice that this gives us aﬁ(km/ m+1) query
complexity upper bound for the quantum algorithm, whichiisilsr to the best known query upper
bound form-COLLISION [Amb07], when the problem instance is a functipn [k] — [].

Generalized Multilinear | dentity Testing (GMIT): We now consider a variant of th&iT problem,
which we callGMIT (for generalizedIT).

3in [] the underlying group operation is not necessazdynmutative (it is being tested for commutativity). Thus
the update cost is more.
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Let f : R™ — R be a black-box multilinear polynomial. Consider aagditive subgroupA of
the black-box ringR, given by a set of generators, o, - - - , 7%, S0 thatd = {>", Bir; | §; € Z}.
TheGMIT (R, A, f) problem is the following: test whether a black-box multar polynomialf is
an identity forA. In other words, we need to testfifa,,--- ,a,,) = 0for all a; € A.

It is easy to observe that the quantum algorithm actuallyes@MIT and the correctness proof
and analysis given in Theorem B.8 also hold@IT problem. We summarize this observation in
the following theorem.

Theorem 3.10. Let R be a black-box finite ring given by ring oracles add= (ry,ra,- - ,7%)
be anadditive subgroumf R given by generators; € R. Let f(x1,xz9,--- ,x,,) be a black-box
multilinear polynomialf : R™ — R. Then there is a quantum algorithm with query complexity

O(m(1 4 )™ 2kmi7) for theGMIT(R, A, f) problem (assuming > (1 + 1/a)™t1).

4. Query Complexity Lower Bound

In this section we show th&MIT problem of multilinear identity testing for additive subgps
of a black-box ring (described in Sectipn 3]1.1), is at lesshard asn-SPLIT COLLISION (again,
m-SPLIT COLLISIONproblem is defined in Sectidf 1). Also, the well-knomrCOLLISION prob-
lem can be easily reduced no-SPLIT COLLISIONproblem using a simple randomized reduction.
In the following lemma, we briefly state the reduction.

Lemma 4.1. There is a randomized reduction from-COLLISION to m-SPLIT COLLISION with
success probability close to™.

Proof. Let f : [k] — [k] be a ‘yes’ instance ofm-COLLISION, and supposef~'(i) =
{1,142, ,im}. ToO reduce this instance t@-SPLIT COLLISIONwe pick a randomm-partition
I, I, -, I, of the domaink] with each|I;| = k/m. It is easy to see that, with probability close
to e~ "™, the set{iy, i, - - , i, } Will be a split collision for the functiory. m

Consequently, showing a quantum lower boun @t ) for m-COLLISIONwill imply a quan-
tum lower bound of2(k*/e™) for m-SPLIT COLLISION It will also show similar lower bound for
GMIT because of our reduction.

If f:[k] — [k]is an instance ofm-SPLIT COLLISIONproblem, then the classical randomized
query complexity lower bound i€ (k). This is observed in[[MN07] forn = 2. Due to our
reduction, we get similar randomized query complexity lot@und forGMIT.

Currently the best known quantum query complexity lowerrzbiior m-COLLISION prob-
lem is Q(k%*3) (in the casem = 2) [AS04]. Thus we obtain the same explicit lower
bound for m-SPLIT COLLISION problem due to the random reduction framCOLLISION to
m-SPLIT COLLISION It also implies quantum query complexity lower bound &mIT.

Our reduction fromm-SPLIT COLLISIONto GMIT problem is based on some new automata
theoretic ideas. We first describe necessary automateetiemeas those are useful for our reduc-
tion.

4.1. Automatatheory background

We recall some standard automata theory notations (seexémnple, [HU78]). Fix a finite
automatond = (Q, X, 9, qo, gf) Which takes as input strings B*. @ is the set of states ofl,
¥ is the alphabety : Q x ¥ — @ is the transition function, angy and g, are the initial and
final states respectively (throughout, we only consideormata with unique accepting states). For
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each lette € 3, let g, : @ — @ be the function defined byi,(¢q) = d(¢q,b). These functions
generate a submonoid of the monoid of all functions fi@rto Q. This is the transition monoid of
the automaton! and is well-studied in automata theory: for example, fe@fSpage 55]. We now
define thed-1 matrix M, € FIQI*IQl as follows: M (q,¢') = 1 if 6,(¢) = ¢/, and0 otherwise.

The matrix, is simply the adjacency matrix of the graph of the functdnAs the entries of
M, are only zeros and ones, we can consitigrto be a matrix over any fielH.

Furthermore, for anyw = wyws - - - wy, € X*, we define the matrid/,, to be the matrix product
My, My, -+ My, If w is the empty string, defind/,, to be the identity matrix of dimension
|Q| x |Q|. For a stringw, let §,, denote the natural extension of the transition functiomtdf w
is the empty stringd,, is simply the identity function. It is easy to check thatf,(¢,q') = 1 if
dw(q) = ¢’ and0 otherwise. Thus),, is also a matrix of zeros and ones for any stringAlso,
M (q0,qf) = 1ifand only if w is accepted by the automaten We now describe the reduction.

Theorem 4.2. Them-SPLIT COLLISIONproblem reduces t@MIT problem for additive subgroups
of black-box rings.

Proof. Aninstance ofn-SPLIT COLLISIONis a functionf : [k] — [k] given as an oracle, where we
assume w.l.o.g. thdt = nm. Divide {1,2,--- |k} intom intervalsly, I, - - - , I,;,, each containing
n consecutive points df|. Recall from Sectidj1 thaff is said to have am-split collision if for
somej € [k] we have|f~1(j)| = m and|f~1(j) N I;| = 1 for each interval;.

Consider the alphabét = {b,c,b1,b,--- , by }. Let A = (Q, %, 6, qo, g5) be a deterministic
finite state automaton that accepts all strings >* such that each;,1 < j < m occurs at least
once inw. Itis easy to see that such an automaton with a single fini@ gtaan be designed with
total number of statels)| = 200™) = ¢. W.l.0.g. let the set of state3 be renamed afl, 2, - - - , 1},
wherel is the initial state and is the final state.

For each letter € X, let M, denote the x ¢ transition matrix for, (as defined in Sectidn 4.1).
Since eachl/, is at x t 0-1 matrix, eachl/, is in the ring M, (FF2) of ¢ x t matrices with entries from
the fieldF,. Let R denote the:-fold product ring(M,(F3))*. Clearly, R is a finite ring (which is
going to play the role of the black-box ring in our reductioWje now define an additive subgroup
T of R, where we describe the generating sef'afsing them-SPLIT COLLISIONinstancef.

For each index € [k], define ark-tupleT; € R as follows. Ifi # f(i), then defind;[i] = M,
T;[f(i)] = My, (wherei € I;) and and for each index ¢ {7, f(i)} defineT;[s] = M.. For
i = f(i), defineT[i] = M,, (i € I;) and the rest of the entries a.. The additive subgroup at
that we consider i§" = (11, T»,--- ,T}) generated by th&;, 1 < i < k.

Furthermore, define two x ¢ matricesA and B in M,(IFy) as follows. LetA[l,1] = 1 and
Alu, €] = 0for (u,?) # (1,1). For the matrixB, let B[t, 1] = 1 andB[u, ¢] = 0 for (u,¢) # (¢,1).

Claim 1. Letw = wjws - - - ws € ¥* be any string. Then the automatghdefined above accepts
w if and only if the matrixAM,,, M., - - - M, B is nonzero.

Proof of ClaimBy definition of the matriced/,, the(1,¢)"" entry of the product/,,, M, - - - M,
is 1 if and only if w is accepted byd. By definition of the matricest and B the claim follows
immediately.

Now, consider the polynomiaP(z1,z2,--- ,z,,) with coefficients from the matrix ring?
defined as follows:

P(x17x27”' 7xm) - Axle---me,
whereA = (A, A,...,A) € RandB = (B,B,---,B) € R arek-tuples of A’s and B’s re-
spectively. We claim that the multilinear polynomi&(x1, x2, - - - , x,,) = 0 is an identity for the

additive subgrouf” if and only if f has nom-split collision.
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Claim 2. P(x1,--- ,x,) = 0is an identity for the additive subgrodp= (T3, - - - , T) if and only
if f has nom-split collision. In other wordsGMIT(R, T, P) is an ‘yes’ instance if and only if
has nom-split collision.

Proof of ClaimSupposef has anm-split collision. Specifically, let; € I; (1 < 7 < m and
i1 < iy < --- < 1ip,) be indices such thaf(i;) = --- = f(i,,) = ¢. In the polynomialP, we
substitute the indeterminatg by 7;. .

ThenP(T;,, T;,, - ,T;,,) = AMB,whereM = T;, ---T; . M is ak-tuple oft x ¢t matrices
such that the'" component of\/ is [T, My, wherei; € I;. Sinceb;, by, - - - b;,, € X* is alength
m-string containing all thé;’s it will be accepted by the automatofi Consequently, thgyo, ¢ f)th
entry of the matrix)/, which is the(1, ¢)*" entry, is1 (as explained in Sectidn #.1). It follows that
the (1, 1) entry of the matrixdM B is 1. HenceP = 0 is not an identity over the additive subgroup
T.

For the other direction, assume thfahas nom-split collision. We need to show th&t = 0 is
an identity for the rindl’. For anym elementsSy, Sa, - -+, S,, € T considerP(Sy, S, -+ ,Sp) =
AS1 S, -+ - S B. Since Eacls; is anFs-linear combination of the generatdfs, - - - , T, it follows
by distributivity in the ringR that P(S1, S, - - -, .Sy,) is anFs-linear combination of terms of the
form P(Ty,, Tk, - ,Tk,,) for somem indicesky,--- ,ky,, € [k]. Thus, it suffices to show that
P(Tklkay T 7Tkm) = 0.

Let T = Ty Tk, - Tk, - Then, for eachy ¢ [k] we haveT[j] = Ty, [§] Tk, [j] - - - Tho, [4]-
Sincef has nom-split collision, for eacly € [N] the set of matrice$ My, , My, ,--- , My, } is not
contained in the setT:[j], (5], - - - , Tk[j]}. Thus,T[j] = T, [j]Tk, 5] - - - Tk, [i] is @ product of
matricesM,,, M., - - - M,,,, forawordw = wyws - - - wy, that is not accepted hyt. It follows from
the previous claim thaAT[j]B = 0. HenceP(Ty,, Tk,, - , Tk, ) = 0 which completes the proof.

u

In Section 3], we have already shown a quantum algorithnmetfmcomplexityO(k#) for
MIT (m is a constant). This bound holds as well@&wIT. We conclude this section by showing that
any algorithm of query complexity(k, m) (¢ is any function) forGMIT will give an algorithm of
similar query complexity fom-COLLISION problem. In particular an algorithm f@MIT of query
complexity k°(™/™+1) will improve the best known algorithm fan-COLLISION problem due to
Ambainis [Amb0}]. The following corollary is an easy congeqce of Theorer 4.2.

Corollary 4.3. Let f : [k] — [k] be an instance ofm-SPLIT COLLISION problem and
GMIT(R, T, P) be an instance o&EMIT problem, where the multilinear polynomi& : R™ — R
and T is an additive subgroup off given byk generators. Then, if we have a quantum al-
gorithm of query complexity(k, m) for GMIT problem, we will have a quantum algorithm for
m-SPLIT COLLISIONwith query complexity) (¢(k, m)).

Proof. Let.4 be an algorithm foGMIT with quantum query complexity(k, m). Given an instance
of m-SPLIT COLLISION the generators for the additive subgrdiips indexed byl,2,--- |k (as
defined in the proof of Theorefn }.2). Also, define the polyradi(z;, z2, - - - , ) So the inputs
of our GMIT problem arel, 2, --- , k and P. Using the algorithmA, we define another algorithm
A’ which does the following. When € [k] is invoked by.A for the ring operation, the algorithm
A’ constructs the generat@; by making only one query to the oracle fér One more query to
the f-oracle is required to erase the output. MoreoveH ifvants to check whether the output of
the ring operation is a valid generator (sByfor somej), then alsa4’ uses just two queries to the
oracle off. Thus we have an algorithpd’ for m-SPLIT COLLISIONwith query complexitylq(k).m
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Recall that the best known lower bound farSPLIT COLLISION problem isQ(k/3). Then,
combining Theorerfi 4.2 and Corollafy]4.3, we g&&>/3) quantum query lower bound f@MIT
problem.
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