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Abstract

Leader election and arbitrary pattern formation are fundammental tasks for a set of au-
tonomous mobile robots. The former consists in distinguishing a unique robot, called the leader.
The latter aims in arranging the robots in the plane to form any given pattern. The solvability
of both these tasks turns out to be necessary in order to achieve more complex tasks.

In this paper, we study the relationship between these two tasks in a model, called CORDA,
wherein the robots are weak in several aspects. In particular, they are fully asynchronous and
they have no direct means of communication. They cannot remember any previous observation
nor computation performed in any previous step. Such robots are said to be oblivious. The robots
are also uniform and anonymous, i.e, they all have the same program using no global parameter
(such that an identity) allowing to differentiate any of them. Moreover, none of them share any
kind of common coordinate mechanism or common sense of direction, except that they agree on
a common handedness (chirality).

In such a system, Flochini et al. proved in [9] that it is possible to solve the leader election
problem for n ≥ 3 robots if the arbitrary pattern formation is solvable for n ≥ 3. In this paper, we
show that the converse is true for n ≥ 4 and thus, we deduce that both problems are equivalent
for n ≥ 4 in CORDA provided the robots share the same chirality. The possible equivalence for
n = 3 remains an open problem in CORDA.
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1 Introduction

Mobile robots working together to perform cooperative tasks in a given environment is an important,
open area of research. Teams (or, swarms) of mobile robots provide the ability to measure proper-
ties, collect information and act in a given physical environment. Numerous potential applications
exist for such multi-robot systems, to name only a very few: environmental monitoring, large-scale
construction, risky area surrounding or surveillance, and exploration of awkward environments.

In a given environment, the ability for the swarm of robots to succeed in the accomplishment of
the assigned task greatly depends on (1) global properties assigned to the swarm, and (2) individual
capabilities each robot has. Examples of such global properties are the ability to distinguish among
themselves at least one (or, more) robots (leader), to agree on a common global direction (sense of
direction), or to agree on a common handedness (chirality). The individal capacities of a robot are
its moving capacities and its sensory organs.

To deal with cost, flexibility, resilience to dysfunction, and autonomy, many problems arise for
handling the distributed coordination of swarms of robots in a deterministic manner. This issue was
first studied in [14, 15], mainly motivated by the minimal level of ability the robots are required
to have in the accomplishment of basic cooperative tasks. In other words, the faisibility of some
given tasks is addressed assuming swarm of autonomous robots either devoid or not of capabilities
like (observable) identifiers, direct means of communication, means of storing previous observations,
sense of direction, chirality, etc. So far, except the “classical” leader election problem [1, 5, 9, 12],
most of the studied tasks are geometric problems, so that pattern formation, line formation, gathering,
and circle formation—refer to [3, 4, 6, 8, 9, 10, 15] for these problems.

In this paper, we concentrate on two of the aforementioned problems: leader election and pattern
formation. The former consists in moving the system from an initial configuration were all entities
are in the same state into a final configuration were all entities are in the same state, except one,
the leader. The latter consists in the design of protocols allowing autonomous mobile robots to form
any (arbitrary) geometric pattern.

The issue of whether the pattern formation problem can be solved or not according to some
capabilities of the robots is addressed in [9]. Assuming that every robot is able to observe all its
pairs, the authors consider sense of direction and chirality. They show by providing an algorithm
that, if the robots have sense of direction and chirality, then they can form any arbitrary pattern.
They rafine their result by showing that with the lack of chirality (i.e., assuming that they have
sense of direction only), the problem can be solved in general with an odd number of robots only.
They also show that, assuming robots having no sense of direction, then, in general, the robots
cannot form an arbitrary pattern, even with chirality. As a matter of fact, the idea of proof relies
on the fact that if it is possible to solve the pattern formation problem, then the robots can form
an asymmetric configuration in order to distinguish a unique robot. That means that, the ability to
(deterministically) form a particular type of patterns implies the ability to (deterministically) elect
a robot in the system as the leader. In other words, if it is not possible to solve the leader election
problem, then it is not possible to solve the pattern formation problem. However, in [5], assuming
anonymous robots (possibly motionless) with chirality only (without sense of direction), the authors
provide a complete characterization (necessary and sufficient conditions) on the robots positions to
deterministically elect a leader. An interesting question arises from the above facts: “With robots
devoid of sense of direction, does the (arbitrary) pattern formation problem becomes solvable if the
robots have the possibility to distinguish a unique leader?” In [17], the authors provide a positive
answer to this question assuming that robots have the chirality property. There result holds in the
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semi-synchronous model (SSM) introduced in [14], a.k.a. Model SYm in the literature. In this paper,
we show that this results also holds for n ≥ 4 robots in a fully asynchronous model, called CORDA.

Combined with the result in [9] and provided the robots have the chirality property, we deduce
that Leader Election and Pattern Formation are two equivalent problems in CORDA for n ≥ 4
robots, in the precise sense that, the former problem is solvable if and only if the latter problem is
solvable. The possible equivalence for the case n = 3 remains an open problem in CORDA.

The rest of the paper is organized as follows: In Section 2, we describe the distributed systems
and state the problems considered in this paper. The proof of equivalence is given in Section 3 for
any n ≥ 4 by providing an algorithm working in CORDA. (Due to lack of space, technical proofs
have been moved in the appendix.) Finally, we make concluding remarks in Section 4.

2 Preliminaries

In this section, we define the distributed system and the problems considered in this paper.

2.1 Distributed Model.

We adopt the model CORDA introduced in [13]. The distributed system considered in this paper
consists of n robots r1, r2, · · · , rn—the subscripts 1, . . . , n are used for notational purpose only. Each
robot ri is viewed as a point in a two-dimensional space unbounded and devoid of any landmark.
When no ambiguity arises, ri also denotes the position in the plane occupied by that robot. Each
robot has its own local coordinate system and unit measure. The robots do not agree on the
orientation of the axes of their local coordinate system, nor on the unit measure.

Definition 1 (Sense of Direction) A set of n robots has sense of direction if the n robots agree
on a common direction of one axis (x or y) and its orientation. The sense of direction is said to
be partial if the agreement relates to the direction only —ie. they are not required to agree on the
orientation.

In Figure 1, the robots have sense of direction in the cases (a) and (b), whereas they have no
sense of direction in the cases (c) and (d).

Given an x-y Cartesian coordinate system, the handedness is the way in which the orientation of
the y axis (respectively, the x axis) is inferred according to the orientation of the x axis (resp., the
y axis).

Definition 2 (Chirality) A set of n robots has chirality if the n robots share the same handedness.
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Figure 1: Four examples showing the relationship between Sense of Direction and Chirality
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In Figure 1, the robots have chirality in the cases (a) and (c), whereas they have no chirality in
the cases (b) and (d). In the sequel, we assume that all the robots have the chirality property.

The robot’s life is viewed as an infinite sequence of cycles. Each cycle is a sequence of four states
Wait-Observe-Compute-Move characterized as follows.

Life cycle. Initially, a robot is in the waiting state (Wait). Asynchronously and independently
from other robots, it observes its surroundings (Observe) by using its sensors. The latter ones
return a set of all the positions occupied by at least one robot, with respect to its own coordinate
system. Then, from its new observations the robot computes its next location (Compute) according
to a given protocol which is the same one for all the robots. Once the computation is done, the robot
moves towards its new location (Move). However, it is assumed the distance travelled by a robot
in a cycle is bounded by a constant σ. So, if the destination point is too far, the robot may stop
its motion before reaching the computed location . Finally, the robot returns to the waiting state.It
is assumed that the amount of time spent in each phase of a cycle is finite but unpredictable and
may be different for each cycle and for each robot. That is why the robots are considered to be fully
asynchronous.

Finally we assume that the robots are uniform and anonymous, i.e, they all have the same
program using no local parameter (such that an identity) allowing to differentiate any of them.
Moreover, they have no direct means of communication and they are oblivious, i.e., none of them
can remember any previous observation nor computation performed in any previous cycles.

2.2 Leader Election Problem

The leader election problem considered in this paper is stated as follows: Given the positions of n
robots in the plane, the n robots are able to deterministically agree on the same robot L called the
leader. Initially, the robots are in arbitrary positions, with the only requirement that no two robots
are in the same position.

2.3 Arbitrary Pattern Formation Problem

In the Arbitrary Pattern Formation Problem, the robots have in input the same pattern, called the
target pattern P, described as a set of positions in the plane given in lexicographic order (each robot
sees the same pattern according to the direction and orientation of its local coordinate system).
They are required to form the pattern: at the end of the computation, the positions of the robots
coincide, in everybody’s local view, with the positions of P, where P may be translated, rotated,
and scaled in each local coordinate system. Initially, the robots are in arbitrary positions, with the
only requirement that no two robots are in the same position, and that, of course, the number of
positions prescribed in the pattern and the number of robots are the same.

3 Equivalence for n ≥ 4

In this section we prove the following theorem:

Theorem 3 In CORDA, assuming a cohort of n ≥ 4 robots having chirality and devoid of any kind
of sense of direction, if the leader election problem is solvable, then the pattern formation problem is
solvable.
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In a recent paper [9], the authors prove the following result:

Theorem 4 [9] In CORDA, assuming a cohort of n ≥ 3 robots devoid of any kind of sense of
direction, if it is possible to solve the pattern formation problem, then the leader election problem is
solvable too.

So, to prove Theorem 3, from Theorem 4, it remains to show the following lemma:

Lemma 5 In CORDA, assuming a cohort of n ≥ 4 robots having chirality and devoid of any kind
of sense of direction, if the leader election problem is solvable, then the pattern formation problem is
solvable.

The proof of Lemma 5 is mainly based on the existence of a protocol allowing to form an arbitrary
target pattern if initially the robots are in a configuration allowing the robots to deterministically
elect a leader. Such a configuration is called a leader configuration.

Definition 6 (Leader configuration) A configuration allowing the robots to deterministically elect
a leader is called a leader configuration.

3.1 Definitions and Basic Properties

In the rest of this paper, we assume the set of all the positions Q occupied by the robots in the
plane is the set of all the coordinates expressed in a cartesian coordinate system S which is unknown
for all the robots. However, all the coordinates Q expressed in S coincide with all the cordinates Q
expressed in everybody’s local system where Q may be translated, rotated or scaled.

Definition 7 (Smallest enclosing circle) [4] Given a set Q of n ≥ 2 positions p1, p2, · · · , pn on
the plane, the smallest enclosing circle of Q , called SEC(Q), is the smallest circle enclosing all the
positions in Q.

When no ambiguity arises, SEC(Q) is shortly denoted by SEC and SEC(Q) ∩ Q indicates the
set of all the positions both on SEC(Q) and Q. Besides, we say that a robot r is inside SEC if, and
only if, r is not located on the circumference of SEC. In any configuration Q, SEC is unique and
can be computed in linear time [11]. Note that since the robots have the ability of chirality, they are
able to agree on a common orientation of SEC, denoted �, in the sequel referred to as the clockwize
direction.

The following property contains some details about the smallest enclosing circle:

Property 8 [16] SEC passes either through two of the positions that are on the same diameter
(opposite positions), or through at least three positions. SEC does not change by eliminating or
adding positions that are inside it. SEC does not change by adding positions on its boundary.
However, it may be possible that SEC changes by either eliminating or moving positions on its
circumference.

Examples showing the latter assertion of Property 8 are proposed in Figure 2.

Definition 9 (Critical position) [10] Given a set Q of distinct positions. We say that a position
p is critical iff SEC(Q) 6= SEC(Q \ {p}).
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SEC2
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(a) Critical (white) robot cannot be

deleted without changing SEC.

SEC SEC

(b) An example showing how SEC may change by moving one robot.

Figure 2: Examples illustrating Property 8
.

An example of such a critical robot is given by Figure 2, Case (a). According to Property 8, a
critical position cannot be inside SEC. So, we have the following corollary:

Corollary 10 Let Q be a configuration. If there exists a critical position p in Q, then p is on the
circumference of SEC(Q).

Before giving other properties about critical positions, we need to define extra notions.

Definition 11 (adjacent(r, C,�)) Given a circle C and a group of robots located on it, we say that
r′ = adjacent(r, C,�) if r′ is the next robot on C just after r in the clockwise direction.

In the same way, we can define adjacent(r,	) in the counterclockwise direction. When no ambigu-
ity arises, adjacent(r, C,�) is shortly denoted by adjacent(r,�). Sometimes, if r′ = adjacent(r,�),
we simply say that r′ and r are adjacent.

Definition 12 (angle(p, c, p′,�)) Given a circle C centered at c and two points p and p′ located on
it, angle(p, c, p′,�) is the angle centered at c from p to p′ in the clockwise direction.

In the same way, we can define angle(p, c, p′,	) in the counterclockwise direction.
The following properties are fundammental results about smallest enclosing circles:

Lemma 13 [2] Let ri, rj and rk be three consecutive robots on SEC centered at c such that rj =
adjacent(ri,�) and rk = adjacent(rj ,�). If angle(ri, c, rk,�) ≤ 180o, then rj is non-critical and
SEC does not change by eliminating rj .

Corollary 14 Let SEC(Q) be the smallest circle enclosing all the positions in Q. For all couple of
positions ri and rj in SEC(Q)∩Q such that rj = adjacent(ri,�), we have angle(ri, c, rj ,�) ≤ 180o.

Lemma 15 [2] Given a smallest enclosing circle with at least four robots on it. There exists at least
one robot which is not critical.

Definition 16 (Concentric Enclosing Circle) Given a set P of distinct positions. We say that
CP is a concentric enclosing circle if and only if it is centered at the center c of SEC, has a radius
strictly greater than zero and it passes through at least one position in P .
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In the following, SCP and |SCP | respectively denote the set of all the concentric enclosing circle in
P and its cardinality. For some k such that 1 ≤ k ≤ |SCP |, CP

k indicates the kth greatest concentric

enclosing circle in P and
⋃k

i=1 CP
i is the set of the k first greatest enclosing circles in P . Moreover,

we assume that a position (or robot) located inside a concentric enclosing circle CP
k is not on the

circumference of CP
k . CP

i ∩ P indicate the set of all the positions both on CP
i and P .

Remark 17 From Definition 16, SEC is the greatest concentric enclosing circle of SC (i.e., SEC =
C1) and the center of SEC cannot be a concentric enclosing circle.

From Definition 16, we can introduce the notion of agreement configuration:

Definition 18 (Agreement Configuration) A configuration Q is an agreement configuration if,
and only if both following conditions hold:
1. There exists a robot rl in Q such that rl is the unique robot located on the smallest concentric
enclosing circle CQ

|SCQ|
,

2. There is no robot at the center of SEC(Q).

In an agreement configuration, rl is called the leader

Definition 19 (Equivalent agreement configuration) Two agreement configuration Q1 and Q2

is said to be equivalent if, and only if, both following conditions hold:
1. SEC(Q1) and SEC(Q2) are superimposed.
2. Let c1 and c2 be respectively the center of SEC(Q1) and the center of SEC(Q2). Let rl1 and rl2

be respectively the leader in Q1 and the leader in Q2. [c1, rl1) and [c2, rl2) are superimposed.

We end with the three following definitions:

Definition 20 (Map(Q,P)) Let Q and P be respectively an agreement configuration formed by the
robots in the plane and a target pattern.
Map(Q,P) is the set of all the final positions P expressed in the plane where the robots currently
lies and computed as follows:
1. First, the center of SEC(P)) is translated to the center of SEC(Q).
2. Then, let o, c, rl and s be respectively the center of SEC(Q), the center of SEC(P), the leader
in Q and the first non-critical position (in the lexicographic order) located on the smallest concentric
enclosing circle of P. P is rotated so that the half-line [o, rl) is viewed as the half-line [c, s).
3. Finally, P is scaled with respect to the radius of SEC(Q) in order that all the distances are
expressed according to the radius of SEC(Q). In particular SEC(Q) = SEC(P).

An example showing the construction of Definition 20 is given in Figure 3.

Definition 21 ((k,P)-partial pattern) Let Q and P be respectively an agreement configuration
formed by the robots in the plane and a target pattern. We say that:
1. Q is a (0,P)-partial pattern if the leader in Q is inside the smallest concentric enclosing circle of
Map(Q,P).
2. Q is a (k,P)-partial pattern with 1 ≤ k ≤ Min(|SCQ|, |SCP |) if the three following properties
holds:

a. Q is a (0,P)-partial pattern.

b. C
Map(Q,P)
k ∩ Map(Q,P) j CQ

k ∩ Q.

c.
⋃k−1

i=1 CQ
i ∩Q =

⋃k−1
i=1 C

Map(Q,P)
i ∩ Map(Q,P).
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Figure 3: An example showing a pattern P mapped on an agreement configuration Q—Definition 20.

In the sequel, we say that Q is a maximal (k,P)-partial pattern if Q is a (k,P)-partial pattern
and not a (k + 1,P)-partial pattern.

Definition 22 (Extra robots) Let P and Q be respectively a target pattern and a configuration
formed by the robots in the plane such that Q is a maximal (k,P)-partial pattern. We say that a
robot r is an extra robot if one of the two following properties holds:

1. k = 0, r is inside SEC(Q), and r is not the leader in Q;

2. k ≥ 1 and

(a) either r is inside the enclosing circle C
Map(Q,P)
k and r is not the leader in Q;

(b) or r is on the circumference of C
Map(Q,P)
k and r does not occupy a position in C

Map(Q,P)
k ∩

Map(Q,P).

3.2 The protocol

Starting from a leader configuration, the protocol, shown in Algorithm 1, allows to form any target
pattern P. It is a compound of two procedures presented in the two following subsections:
1. Protocol <Leader;Agreement> transforms an arbitrary leader configuration into an agreement
configuration.
2. Protocol <Agreement;Pattern> transforms an agreement configuration into a pattern P.

Algorithm 1 Form an arbitrary pattern starting from a leader configuration (n ≥ 4).

P := the target pattern ;
if the robots do not form the target pattern
then if the robots do not form an agreement configuration

then Execute <Leader;Agreement>;
else Execute <Agreement;Pattern>;
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3.2.1 Procedure <Leader;Agreement>.

Algorithm 2 Procedure <Leader;Agreement> for any robot ri in an arbitrary leader configura-
tion
Q := the configuration where the robots currently lies;
rl := Leader(Q);
c := center of SEC(Q)
if rl is located at c

then rk := the closest robot to c ∈ Q \ {rl};
p := the middle of the segment [rl; rk];
if I am rl

then MoveTo(p,→);
endif

else if rl is not critical
then p := the middle of the segment [rl; c];

if I am rl

then MoveTo(p,→);
endif

else /* rl is critical and rl is on SEC*/
rk := the first non-critical robot starting from rl on SEC in clockwise.
if I am rk

then p := the middle of the segment [rk; c];
MoveTo(p,→);

In a leader configuration, we have the following corollary:

Corollary 23 [5] If the robots are in a leader configuration, then they can distinguish a unique leader
which is one of the closest robot to the center of the smallest enclosing circle of the configuration,
provided that they share the property of chirality.

So, from Corollary 23, we know that we can distinguish a unique robot rl, called the leader, which
is one of the robots closest to the center c of SEC(Q). However, according to Definition 18, if rl is
at the center of SEC(Q) or if rl is not the unique robot closest to the center of SEC(Q), Q is not an
agreement configuration. In that case, Procedure <Leader;Agreement> allows to transform the
leader configuration into an agreement configuration. Algorithm 2 describes Procedure <Leader;

Agreement>.
In Algorithm 2, we use two subsoutines: Leader(Q) and MoveTo(p,→). The former returns the

unique leader from a leader configuration Q. The latter allows a robot r to move towards the point
p, using a straight movement.

3.2.2 Procedure <Agreement;Pattern>.

Procedure <Agreement;Pattern> is shown in Algorithm 3.

The routine Nearest extra robot(C
Map(Q,P)
k+1 ,Q,Map(Q,P)) returns an extra robot r such that r

is the closest extra robot to C
Map(Q,P)
k+1 which is not located on C

Map(Q,P)
k+1 . If several candidats exists,

then the extra robots inside C
Map(Q,P)
k+1 have priority. Finally, if there is again several candidats then

these latter ones are located on the same concentric circle C centered at the center c of C
Map(Q,P)
k+1 and
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Algorithm 3 Procedure <Agreement;Pattern> for any robot ri in an agreement configuration

Q := the configuration where the robots currently lies;
P := the target pattern; /* P is the same for all the robots */
rl := Leader(Q);
s := the first non-critical position located on the smallest concentric enclosing circle of Map(Q,P);
if the robots do not form any (k,P)-partial pattern
then /*rl is not inside the smallest concentric enclosing circle of Map(Q,P) */

p := the middle of the segment [c; s];
if I am rl

then MoveTo(p,→);
endif

else /* the robots form a (k,P)-partial pattern */
if the center of SEC(Q) ∈ Map(Q,P)
then x := the center of SEC(Q);
else x := s;
endif

Final Positions := Map(Q,P) \ {x};
if all the positions in Final Positions are occupied
then if I am rl

then MoveTo(x,→);
endif

else k := the maximal k for which Q is a (k,P)-partial pattern;

if there is at least one extra robot not located on C
Map(Q,P)
k+1

then r := Nearest extra robot(C
Map(Q,P)
k+1 ,Q, Map(Q,P));

p := Nearest free point(C
Map(Q,P)
k+1 ,Q, r);

if I am r

then MoveTo(p,→);
endif

else Arrange(C
Map(Q,P)
k+1 , F inal Positions)

the routine returns the extra robot, located on C, which is the closest in clockwise to the intersection
between C and the half line [c, rl) (with rl the leader in Q).

Nearest free point(C
Map(Q,P)
k+1 ,Q, r) returns the nearest position from r which is located on

C
Map(Q,P)
k+1 and not occupied by any robot belonging to Q. If there is two nearest positions then the

routines returns the position which is the closest in clockwise to the intersection between C
Map(Q,P)
k+1

and the half line [c, rl) (with c the center of C
Map(Q,P)
k+1 and rl the leader).

MoveTo(p,C,�) allows a robot to move toward a position p located on the circle C by moving
along the boundary of C in clockwise. MoveTo(p,C,	) is similar but in counterclockwise.

Arrange(C
Map(Q,P)
k+1 , F inal Positions) allows all the robots on C

Map(Q,P)
k+1 to occupy all the po-

sitions in C
Map(Q,P)
k+1 ∩ Final Positions. The function is described by Algorithm 4 in which we use

the following notions:

Definition 24 (arc(p, p′, C,�)) Given a circle C and two points p and p′ located on it, arc(p, p′, C,�
) is the arc of circle C from p to p′ in the clockwise direction, p being excluded (p′ being included).

Definition 25 (P -arc(pi, pi+1, C,�)) Given a target pattern P and an agreement configuration Q,
we say that arc(pi, pi+1, C,�) is a P -arc(pi, pi+1, C,�) if, and only if the three following properties
holds:

9



1. C is one of the concentric enclosing circle of Map(P,Q)
2. pi and pi+1 belong to Final Positions
3. pi+1 = adjacent(pi, C,�)

Remark 26 From Definition 24, we know that pi is not located on P -arc(pi, pi+1, C,�).

In the remainder, we say that a P -arc is free if there is no robot located on it. In Figure 4, the
circles denote the positions to achive. The crosses depict the robots. The P -arc starting after f (f
excluded) and finishing at a is free.

x

x

x

x
x
x

x
x

a
f

e

d

c

b

SEC

Figure 4: An example showing a Deadlock Chain and a Deadlock Breaker.

Definition 27 (Deadlock Chain) A Deadlock Chain is a consecutive sequence of P -arc starting
from a free P -arc P0 and followed in the counterclockwise direction by a P -arc P1 such that:
1. P1 is a P -arc(p, p′, C,�) such that angle(p, c, p′,�) = 180o and there is only one robot r on it
and r is located at p′,
2. and P1 is followed in counterclockwise by a consecutive sequence (possibly empty) of
P -arc(p, p′, C,�) such that there is only one robot r on each of them and r is located at p′,

and that consecutive sequence (possibly empty) is followed by a P -arc(p, p′, C,�) such that there is
at least two robots on it and one of them is located at p′. This P -arc is called the last P -arc of the
deadlock chain.

In Figure 4, the segment staring from Position a (a included) to Position b (b excluded) forms a
deadlock chain.

Definition 28 (Deadlock Breaker) Let P -arc(p, p′, C,�) be the last P -arc of a deadlock chain.
The deadlock breaker is the robot located at p′.

In Figure 4, the robot located at Position c is the deadlock breaker.

3.2.3 Sketch of Correctness Proof of Algorithm 1

We first show that by executing Algorithm 1, the smallest enclosing circle SEC(Q) remains invariant—
Lemma 30. Next, we prove that if the robots form a leader configuration which is not a final pattern
P and not an agreement configuration, they eventually form an agreement configuration—Lemma 31.
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Algorithm 4 Arrange(C
Map(Q,P)
k+1 , F inal Positions) executed by robot ri on C

Map(Q,P)
k+1

/* I am ri */

p := the closest position in C
Map(Q,P)
k+1 ∩ Final Positions \ {ri} to ri in clockwise;

if C
Map(Q,P)
k+1 = SEC(Q)

then if there is no robot in arc(ri, p,C
Map(Q,P)
k+1 , �) or I am a deadlock breaker

then if I am a deadlock breaker
then t := the position such that angle(ri, c, t,�) = 1

2
angle(ri, c, p, �);

p := t;
endif

ri−1 := adjacent(ri, SEC, 	);
p′ := the position such that angle(ri−1, c, p

′, �) = 180o;
p′′ := the closest point to ri in clockwise in {p; p′};
if ri is not located at p′′

then MoveTo(p′′, SEC, �);
endif

endif

else if there is no robot in arc(ri, p,C
Map(Q,P)
k+1 , �)

then MoveTo(p,C
Map(Q,P)
k+1 , �);

endif

endif

Starting from such a configuration, Map(Q,P) remains invariant or the target pattern P is formed—
Corollary 33. It follows that from an agreement configuration which is not a (k,P)-partial pattern,
the robots eventually form a (0,P)-partial pattern—Lemma 34.

From this point on, note that according to Algorithm 3, Final Positions is equal to all the
positions in Map(P,Q) except:
1. either the center c of SEC(Q) if c ∈ Map(P,Q),
2. or the first non critical position located on the smallest concentric enclosing circle of Map(P,Q)
if c /∈ Map(P,Q)

Next, we show by induction that, from a configuration being a maximal (k,P)-partial pattern,
the robots eventually form a (k+1,P)-partial pattern or the target pattern P is formed—Lemmas 35
to 37. From Lemma 37 and by induction we deduce the following theorem:

Theorem 29 Starting from a leader configuration, Algorithm 1 allows to solve the pattern formation
problem in CORDA among a cohort of n ≥ 4 robots having chirality and devoid of any kind of sense
direction.

4 Conclusion

We studied the relationship between the arbitrary formation problem and the leader election problem
among robots having the chirality in CORDA. We gave an algorithm allowing to form an arbitrary
pattern starting from any geometric configuration wherein the leader election is possible. Combined
with the result in [9], we deduce that arbitrary pattern formation problem and Leader election are
equivalent, i.e., it is possible to solve the pattern formation problem for n ≥ 4 if and only if the
leader election is solvable too.

11



In a future work, we would like to investigate the same equivalence (1) for the case n = 3 and
(2) in the case without chirality.
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Missing Proofs.

Lemma 30 According to Algorithm 1, the smallest enclosing circle SEC(Q) remains invariant.

Proof. Assume by contradiction SEC(Q) does not remain invariant. From Corollaries 10 and 14
and Property 8, we deduce that can occurs if, and only if:

• Either a robot r moves outside SEC(Q). However, according to Algorithm 1, no robot moves
outside SEC(Q). That is a contradiction.

• Or an angle strictly greater than 180o appears between two adjacent robots ri−1 and ri, i.e.,
angle(ri−1, c, ri,�) > 180o with ri−1 = adjacent(ri, SEC,	). This subcase can occur if, and
only if

– Either a critical robot leaves SEC(Q). However, according to Algorithm 2 no critical
robot leaves SEC(Q) ( only the first non-critical robot on SEC in clockwise is sometimes
allowed to move). Furthermore, according to Algorithm 3 some robots are allowed to leave
SEC(Q) only if these latter ones are extra robots and Q is a (1,P)-partial pattern. That
implies some robots are allowed to leave SEC(Q) = CQ

1 only if these latter ones do not
occupy a position ∈ Map(Q,P)∩SEC(Q) and all the positions in Map(Q,P)∩SEC(Q)
are occupied by some robots. However, from Corollary 14 we know that for all couple
of positions ri and rj on Map(Q,P) ∩ SEC(Q) such that rj = adjacent(ri,�), we have
angle(ri, c, rj ,�) ≤ 180o. Consequently, when extra robots leaves SEC(Q), SEC(Q) is
not changed. So, no critical robot leaves SEC(Q). That is a contradiction.

– Or two adjacent robots ri−1 and ri, such that ri−1 = adjacent(ri, SEC,	), move along
SEC(Q) so that angle(ri−1, c, ri,�) > 180o. That might occur only by applying Al-
gorithm 4. However, if ri is allowed to move, it can only move in clockwise towards a
position p such that angle(ri−1, c, p,�) ≤ 180o. Furthermore, ri−1 is never allowed to
move in counterclockwise. So, angle(ri−1, c, ri,�) is always less than or equal to 1800.
That is a contradiction.

2

Lemma 31 If the robots form a leader configuration which is not a final pattern P and not an
agreement configuration, they form an agreement configuration in a finite number of cycles.

Proof. If the robots form a leader configuration which is not a final pattern P and not an
agreement configuration, then from Corollary 23 we have two cases to consider: either (1) the leader
rl is at the center c of SEC or (2) rl is not the unique robot closest to c.

• Case 1. rl is at the center of SEC. According to Procedure < Leader ; Agreement >, rl

moves away from c towards a position which is closer to the center than the second robot closer
to the center. Furthermore, from Lemma 30, the center c of SEC remains invariant even if
rl moves. So, rl remains the unique leader and, by fairness, we deduce that an agreement
configuration is formed in a finite number of cycles.

• Case 2. rl is not the unique robot closest to c. In that case, we have two subcases to consider:
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– Case 2.1. rl is not a critical robot. In this subcase, rl moves towards a position which
is located between c and itself (except c and itself). From Lemma 30, the center c of
SEC remains invariant even if rl moves. So, by fairness we know that an agreement
configuration is formed in a finite number of cycles.

– Case 2.2. rl is a critical robot. From Corollary 10, rl is on the circumference of SEC.
However, by assumption rl is also one of the robots closest to the center of SEC. So, we
deduce that all the robots are on SEC. Hence, by Lemma 15, we deduce there is at least
one non-critical robot on SEC because there are at least four robots on it (recall that we
assume the number of robot is greater than or equal to 4).

According to Procedure < Leader; Agreement> the first non-critical robot rk starting
from rl on SEC in clockwise is allowed to move toward a position located between itself
and c (except c and itself). From Lemma 30, the center c of SEC remains invariant even
if rk moves. So, by fairness rk becomes the unique robot closest to c and it is not located
at c.. So, the robots form an agreement configuration in a finite number of cycles.

2

Lemma 32 Starting from an agreement configuration Q, the robots remains in an equivalent agree-
ment configuration or the target pattern P is formed in a finite number of cycles.

Proof. According to Lemma 30, SEC(Q) and its center c remain invariant. Moreover,
according to Algorithm 1 and more precisely Algorithm 3 no robot is allowed to pass rl.

So, if rl is not allowed to move then, according to Definition 19 all the robots remain in an
equivalent agreement configuration.

If rl is allowed to move then, according to Algorithm 3 that can occur only in three cases:

• Case 1. The robots do not form any (k,P)-partial pattern. In that case, rl moves in straight
line towards the middle p of the segment [c, s] in order to get closer to the center c. However,
from Definition 20, we know that s is on the half line [c, rl). So, during the motion of rl, all
the robots clearly remain in an equivalent agreement configuration.

• Case 2. The center c of SEC(Q) is in Map(Q,P) and all the positions in Map(Q,P) are
occupied except c. In that case, rl chooses to move towards c in straight line (i.e., along [c, rl))
in order to occupy the last free position in Map(Q,P). Until rl has not reached c, the robots
remain in an equivalent agreement configuration because rl is still on the same half line [c, rl)
and it remains the unique robot closest to c. So by fairness, it reaches c in a finite number of
cycle and the pattern P is formed.

• Case 3. The center c of SEC(Q) is not in Map(Q,P) and all the positions in Map(Q,P) are
occupied except the first non critical position s located on the smallest concentric enclosing
circle. In that case, rl chooses to move towards s in order to occupy the last free position in
Map(Q,P). From Definition 20, we know that s is on the half line [c, rl) and thus, until rl has
not reached s the robots remain in an equivalent agreement configuration because rl is still on
the same half line [c, rl) and it remains the unique robot closest to c. So by fairness, it reaches
s in a finite number of cycle and the pattern P is formed.

2
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Corollary 33 From an agreement configuration, Map(Q,P) remains invariant or the target pattern
P is formed.

Lemma 34 From an agreement configuration which is not a (k,P)-partial pattern, the robots form
a (0,P)-partial pattern in a finite number of cycles.

Proof. From Definition 21, we know that if an agreement configuration is not a (0,P)-partial
pattern then, the leader rl is not inside the smallest concentric enclosing circle of Map(Q,P). From
Corollary 33 and according to Algorithm 3, rl is inside the smallest concentric enclosing circle of
Map(Q,P) in a finite number of cycles. 2

Lemma 35 Let P be a target pattern and let Q be a configuration which is a maximal (k,P)-partial

pattern such that 1 ≤ k < |SCP |. If all the extra robots are on C
Map(Q,P)
k+1 then, all the positions in

Final Positions ∩ C
Map(Q,P)
k+1 are occupied in a finite number of cycles.

Proof. If all the extra robots are on C
Map(Q,P)
k+1 and there exists at least one position in

Final Positions ∩ C
Map(Q,P)
k+1 which is not occupied then the robots apply the routine

Arrange(C
Map(Q,P)
k+1 , F inal Positions) (refer to Algorithm 4). Remark that by applying this routine,

no robot can collide another robot since any robot can move only in clockwise and any move of a

robot on C
Map(Q,P)
k+1 is only allowed in arc of circle containing no robot. Moreover, since k ≥ 1,

C
Map(Q,P)
k+1 6= SEC(Q) and thus, it is no need to prevent from creating an angle strictly greater than

180o between two adjacent robots. In the remainder of this proof, we denote by α the number of

extra robots located on C
Map(Q,P)
k+1 , β the number of P -arc on C

Map(Q,P)
k+1 and γ the number of free

P -arc on C
Map(Q,P)
k+1 . According to Algorithm 2, the acute reader noticed that the number α of extra

robots is greater than or equal to the number β of P -arc on C
Map(Q,P)
k+1 .

We consider two cases.

• All the P -arcs are not free. According to Algorithm 4, each last robot on each P -
arc(pi, pi+1, C,�) is allowed to move to pi+1 if it is not yet at this position. At the end of

these motions, all the positions in Final Positions ∩ C
Map(Q,P)
k+1 are occupied and remains

occupied.

• At least one P -arc is free. In that case we have 1 ≤ γ < β. According to Algorithm 4, if a
robot moves from a P -arc to another one then γ does not decrease because if robot r chooses
to move from a P1-arc to a P2-arc, that implies that P2-arc is free. However, if P1 becomes
free when r reaches P2 then the number of free P -arc remains unchanged.

We now assume by contradiction that γ never reaches the value β. So γ eventually remains
inchanged. From this point on, no robot of any P -arc containing more than one robot will
move towards a free P -arc. Following the algorithm, that implies that every P -arc P with
more than one robot is followed in clockwise by a non free P -arc infinitely often (at least each
time the last robot of P is awaked). Since the robots cannot move in counterclockwise, that
also implies that every P −arc with more than one robot is always followed by a non free P -arc
P ′. If this second P -arc P ′ also contains more than one robot then it is also followed by a non
free P -arc. However, if P ′ contains only one robot then it is also followed by a non free P -arc
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P ′′, since on the contrary, the robot of P ′ will eventually move to P ′′ and the last robot of P
will eventually move to P ′. A contradiction. So, step by step, it is clear that no P -arc can be
free and γ = β which contradicts our assumption. So γ will eventually reach the value β.

When γ = β we retrieve the case where all the P -arcs are not free and the lemma holds.

2

Lemma 36 Let P be a target pattern and let Q be a configuration which is a maximal (0,P)-partial
pattern. If all the extra robots are on SEC(Map(Q,P)) then, all the positions in Final Positions∩

C
Map(Q,P)
k+1 are occupied in a finite number of cycles.

Proof. If all the extra robots are on SEC(Map(Q,P)) and there exists at least one position in
Final Positions ∩ SEC(Map(Q,P)) which is not occupied then the robots apply the routine

Arrange(C
Map(Q,P)
k+1 , F inal Positions) (refer to Algorithm 4) for k = 1. Despite a more complicated

code, the case k = 1 can be seen as the case k > 1 with an additionnal constraint on the angles
and a particular statement for a deadlock configuration removal. We show (refer to last item of this
proof) that the deadlock removal generates a behavior that can finally be generated by Algorithm 4
for a concentric enclosing circle which is not SEC(Q). So the aim of the proof is to show that
Algorithm 4 has no deadlock. In the rest of this proof we say that a point p is a P -point if p ∈
Final Positions ∩ SEC(Map(Q,P)). So assume by contradiction that there exists a deadlock and
we consider the two following cases:

1. No P − arc is free but there exists at least one P -point which is not occupied by a robot.
Again, we distinguish two cases:

(a) At least one P -point is occupied by a robot. Let pi be one these P -point such that its
successor in clockwise p(i+1) is free. Clearly, angle(pi, c, p(i+1),�) ≤ 180 (even if the first
non critical s does not belong to Final Positions because, due to the fact s is not critical,
from Lemma13 its absence cannot create an angle > 180). So the last robot of the p(i+1)

P − arc can move to p(i+1). A contradiction.

(b) No P -point is occupied by a robot. Since there are at least three robots on SEQ, at
least one of them has a predecessor with an angle less than 180o. So it can move. A
contradiction.

2. There exists at least one free P − arc. Let i (0 ≤ i ≤ α − 1) be an integer such that the ith
P − arc is free and its predecessor (the ((i − 1)modα)th P − arc) is not. Let us call them A
and A′, respectively. We distinguish two cases:

(a) There exists (A′, A) such that A′ contains at least two robots. We call r the last robot of
A′ and r′ the predecessor of r on A′. In this case r can move to A (since angle(r′, c, r,�
) < angle(p(i−2)modα, c, p(i−1)modα,�) ≤ 180o). A contradiction.

(b) Every couple (A′, A) is such that A′ contains one robot only. In that case there exists
at least a couple (A′, A) such that the predecessor A′′ of A′ contains at least one robot
since there are at least as many robots as P − points on SEQ. Because the deadlock
assumption, the robot r on A′ cannot move to A so angle(r′, c, r,�) = 180o where r′ is
the last robot on A′′. Again, we distinguish two cases:
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i. r is not on p(i−1)modα. In this case r′ also is not on p(i−2)modα since angle(p(i−2)modα, c, r,�
) < 180. Since there is at least a third robot on SEQ, this robot r′′ is such that
angle(r′′, c, r′,�) < 180 so r′ can move toward p(i−2)modα. A contradiction.

ii. r is on p(i−1)modα. In this case r′ is also on p(i−2)modα and angle(p(i−2)modα, c, p(i−1)modα,�
) = 180. Since no robot can move, we can see that the configuration on SEQ is as
follows: A is the first P − arc of a chain starting from A in the conterclockwise such
that any P −arc of this chain but A contains a robot at its P -point, we call this chain
PC. The last P − arc of PC is followed by a free P − arc (A if there exists no other
free P − arc). Since no robot can move we can deduce that between this free P − arc
and A (in the conterclockwise) all theP − arcs are free. So all the robots are on PC
and there exists at least one P − arc of PC which contains at least two robots. Let
B be the first P − arc of the chain (starting from A in conterclockwise) such that B
contains at least two robots. Then the chain starting from A and ending to B is a
deadlock chain. By definition, the robot on the P -point of B is a deadlock breaker
and can move. A contradiction.
Now we just focus on the behavior of the successive deadlock breakers. The aim of
their behavior is to allow r to move toward the next P -point. It is easy to see that
this part of the algorithm just reverses the order of the deadlock breakers and r, but
once ony of these robots has started to move their behavior is the same as in the
internal circle part (still with angle constraint).

2

Lemma 37 Let P be a target pattern and let Q be a configuration which is a maximal (k,P)-partial
pattern. The robots form a (k + 1,P)-partial pattern or the target pattern is formed, in a finite
number of cycles.

Proof. We have to consider three cases.

• k = |SCMap(Q,P)|. In that case, C
Map(Q,P)
k+1 does not exist and

⋃|SCMap(Q,P)|
i=1 CQ

i ∩ Q =
⋃|SCMap(Q,P)|

i=1 C
Map(Q,P)
i ∩ Map(Q,P). That implies that it remains only one position p to

occupy and p is inevitably at the center of SEC(Q) (otherwise C
Map(Q,P)
k+1 would exist). Ac-

cording to Algorithm 2, leader rl moves toward c. From Corollary 33 and by fairness, we deduce
that the target pattern is formed in a finite number of cycles.

• k = |SCMap(Q,P)| − 1. In that case, we distinguish two subcases:

1. The center c of SEC(Q) is in Map(Q,P). In that subcase, all the positions in C
Map(Q,P)
k+1 ∩

Map(Q,P) must be occupy by all the extra robots even the first non critical position.

According to Algorithm 2, the extra robots move to the boundary of C
Map(Q,P)
k+1 by using

subroutines Nearest extra robot(C
Map(Q,P)
k+1 ,Q,Map(Q,P)) and

Nearest free point(C
Map(Q,P)
k+1 ,Q, r). These subroutines assure us that the extra robots

moves one by one toward a position on C
Map(Q,P)
k+1 which is not occupied by any robot. Of

course, if we are lucky, a (k + 1,P)-partial pattern is formed during this step. Otherwise,
the robots apply Algorithm 4 and, from Lemma 35 and 36, the (k + 1,P)-partial pattern
is formed in a finite number of cycles.

17



2. The center c of SEC(Q) is not in Map(Q,P). In that subcase, all the positions in

C
Map(Q,P)
k+1 ∩Map(Q,P) must be occupy by all the extra robots except the first non crit-

ical position on C
Map(Q,P)
k+1 which is booked for the leader. According to Algorithm 2, the

extra robots move to the boundary of C
Map(Q,P)
k+1 by using subroutines

Nearest extra robot(C
Map(Q,P)
k+1 ,Q,Map(Q,P)) and Nearest free point(C

Map(Q,P)
k+1 ,Q, r).

During this step, if we are lucky, all the positions in C
Map(Q,P)
k+1 ∩ Map(Q,P) are oc-

cupy by all the extra robots except the first non critical position on C
Map(Q,P)
k+1 . Oth-

erwise, the robtots apply Algorithm 4 and, from Lemmas 35 and 36 all the positions

in C
Map(Q,P)
k+1 ∩ Map(Q,P) are eventually occupied except the first non critical position.

From this point now, according to Algorithm 2 leader rl moves towards the first non criti-

cal position in C
Map(Q,P)
k+1 ∩Map(Q,P) and from Corollary 33 and fairness we deduce that

the target pattern is formed in a finite number of cycles.

• k < |SCMap(Q,P)| − 1. In that subcase, all the positions in C
Map(Q,P)
k+1 ∩ Map(Q,P) must

be occupy by all the extra robots. According to Algorithm 2, the extra robots move to the

boundary of C
Map(Q,P)
k+1 by using subroutines Nearest extra robot(C

Map(Q,P)
k+1 ,Q,Map(Q,P))

and
Nearest free point(C

Map(Q,P)
k+1 ,Q, r). If we are lucky, a (k + 1,P)-partial pattern is formed

during this step. Otherwise, the robots apply Algorithm 4 and, from Lemma 35 and 36, the
(k + 1,P)-partial pattern is formed in a finite number of cycles.

2
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