
�>���G �A�/�, �B�M�`�B���@�y�y�j�e�k�N�N�9

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�B�M�`�B���@�y�y�j�e�k�N�N�9

�a�m�#�K�B�i�i�2�/ �Q�M �R �J���` �k�y�y�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�?�`�B�K�T �l�b�2�` �:�m�B�/�2�X �� �6���b�i �J�2�b�? �_�2�M�m�K�#�2�`�B�M�; ���M�/
�.�Q�K���B�M �S���`�i�B�Q�M�M�B�M�; �J�2�i�?�Q�/

���/�`�B�2�M �G�Q�b�2�B�H�H�2�- �6�`�û�/�û�`�B�+ ���H���m�x�2�i

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���/�`�B�2�M �G�Q�b�2�B�H�H�2�- �6�`�û�/�û�`�B�+ ���H���m�x�2�i�X �a�?�`�B�K�T �l�b�2�` �:�m�B�/�2�X �� �6���b�i �J�2�b�? �_�2�M�m�K�#�2�`�B�M�; ���M�/ �.�Q�K���B�M
�S���`�i�B�Q�M�M�B�M�; �J�2�i�?�Q�/�X �(�h�2�+�?�M�B�+���H �_�2�T�Q�`�i�) �_�h�@�y�j�e�k�- �A�L�_�A���X �k�y�y�N�- �T�T�X�k�8�X �I�B�M�`�B���@�y�y�j�e�k�N�N�9�=

https://hal.inria.fr/inria-00362994
https://hal.archives-ouvertes.fr

appor t

 techn ique

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
36

2-
-F

R
+

E
N

G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

ShrimpUser Guide.
A Fast Mesh Renumbering and
Domain Partionning Method

Adrien Loseille and Frédéric Alauzet

N° 0362

February 19, 2009

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Shrimp User Guide.
A Fast Mesh Renumbering and

Domain Partionning Method

Adrien Loseille� and Fr�ed�eric Alauzet y

Th�eme NUM | Syst�emes num�eriques
Projet Gamma

Rapport technique n° 0362 | February 19, 2009 | 25 pages

Abstract: This technical note describes the main features ofShrimpz, a software that
renumbers mesh entities and splits mesh domain and handle the parallelization of adaptive
mesh generators. The aim of the software, the input and the output �les and the list of
options are given in this document.

Shrimp has been developed within the GAMMA research project at INRIA Paris-Rocquen-
court.

This document describes the features of the current version: releaseV1.0 (January 2009).

Key-words: Domain splitting, Mesh renumbering, Parallel computing, Parallel mesh
adaptation.

� Email : Adrien.Loseille@inria.fr
y Email : Frederic.Alauzet@inria.fr
z This software was registered with the APP under n � IDDN.FR.001.070013.000.S.P. 2009.000.10000 on

february 10, 2009

Shrimp Guide de l'utilisateur.
Une m�ethode de renum�erotation de maillage

et de partitionnement de domaine rapide

R�esum�e : Ce rapport technique d�ecrit les principales fonctions deShrimpx, un logiciel qui
renum�erote et partitionne/d�ecompose des maillages et g�ere la parall�elisation des mailleurs
adaptatifs. Les fonctionnalit�es du logiciel, les formats des �chiers d'entr�ee/sortie et les
options sont donn�es dans ce document.

Shrimp a �et�e d�evelopp�e au sein de l'�equipe projet GAMMA �a l'INRIA Paris-Rocquencourt.

Ce document d�ecrit les fonctionnalit�es de la version courante : versionV1.0 (Janvier 2009).

Mots-cl�es : Partitionneur de domaine, renum�eroteur de maillage, Calcul parall�ele, Adap-
tation de maillage parall�ele.

x Ce logiciel a �et�e enregistr�e �a l'APP sous le num�ero n � IDDN.FR.001.070013.000.S.P. 2009.000.10000 le
10 f�evrier 2009

An introduction to Shrimp 3

Contents

1 Shrimp overview 4
1.1 Context . 4
1.2 Main features . 4
1.3 Languages and platform . 5
1.4 Software integration . 5
1.5 Distribution . 5

2 Input and output data 6
2.1 Mesh speci�cation . 6
2.2 Solution or metric speci�cation . 7

3 Shrimp Howto 10

4 Modules and options overviews 13

5 Some application examples 15
5.1 A few words about Hilbert curves . 15
5.2 Speeding up serial codes . 16
5.3 Parallel mesh adaptation . 17
5.4 User de�ned mesh partitioning . 24

RT n ° 0362

4 A. Loseille and F. Alauzet

1 Shrimp overview

1.1 Context

The e�cient use of computer hardware is crucial in scienti�c computing to achieve high-
perfomance computing. However clever an algorithm may be, it has to run e�ciently on the
available computer hardware. Each type of computer, from a PC to the fastest massively
parallel machine, has its own shortcomings that must be accounted for when developing
both the algorithms and the simulation code. Fortunately, some of the main issues can be
addressed by external code, asShrimp, in order to achieve good performance on the most
common types of computers.

1.2 Main features

The main issues addressed byShrimp are the reduction of cache misses by mesh renumbering,
the improvement of shared memory parallel machine by mesh renumbering and domain
splitting for parallel runs on distributed memory parallel machine. All the algorithms are
based on space �lling curves. It also handles parallel mesh adaptation associated with a
compatible mesh generator. Currently, it is coupled with Mmg3d1 and gamanic2. Shrimp
deals with 2D triangular, 3D tetrahedra and 3D triangular surface meshes.

Mesh reordering for serial code. The Hibert-based algorithm used for mesh parti-
tioning is very fast and gives impressive results in the speed up of serial codes. With this
option, Shrimp aims at reducing cache misses and thus increases the serial speed of a code.
A speed up of 3 is generally observed for our in-house �nite volume solverWolf [2] in serial
on strongly anisotropic meshes. A speed-up up to 10 is observed on the adaptive mesh
generator Mmg3d[3]. Of course, all these speed-ups include the mesh rerenumbering time.

Mesh partitionning for parallel mesh adaptation. Two options are available:

1. Hilbert-based partitionning. Mesh partitioning with Shrimp is very fast as compare to
graph based algorithms. However, these two approaches aim at very di�erent goals.
The �rst one is speci�cally designed to perform mesh adaptation in parallel. In this
case, the load balancing is directly performed byShrimp and does not depend on the
size of the interface. On the contrary, graph-based methods usually try to minimize
the surface of the interface in order to minimize inter-cpu communications. For parallel
adaptation, Shrimp can be used both on distributed and shared memory architectures.

2. User-based partitionning. Shrimp can handle user de�ned paritition by reading speci�c
reference associated with each tetrahedron. For instance, this mode can separate
boundary layers from a the volume mesh. The boundary layer mesh can be kept while

1Contact frey@ann.jussieu.fr, free for non commercial purpose
2Contact Paul-Louis.George@inria.fr

INRIA

An introduction to Shrimp 5

the volume mesh is adapted. This mode can be used to ease the visualization of huge
mesh by splitting the domain or by creating a partition around areas of interest. If
needed,Shrimp corrects the user-de�ned partitions in order to ensure that all parts
are connex.

The following documentation is an introduction to Shrimp. Several examples are ex-
plained.

1.3 Languages and platform

The program is entirely written in C (C89 ANSI norm). The current version consists of
about 13 000 lines of optimized source code. The code is free of any external libraries. It
uses pthread for parallelization. Hence, the code is very portable and has been successfully
compiled and tested on all major computer architectures (i.e., HP, IBM, Intel- based PC,
etc.) and operating systems (Unix/Linux, WindowsNT, Mac OS).

Notice that Shrimp is not supplied with a mesh generator.

1.4 Software integration

If Shrimp is integrated in a software package, only the input and output routines need to
be modi�ed, for e�ciency and compatibility purposes. In this context, no more than a few
routines need to be modi�ed and adapted to support the user �le formats.

1.5 Distribution

An evaluation copy of Shrimp software for a limited period of time can be obtained by
contacting the authors at INRIA :

Fr�ed�eric ALAUZET
INRIA, Domaine de Voluceau
BP 105, 78153 Le Chesnay cedex, France
Email: frederic.alauzet@inria.fr

Adrien LOSEILLE
INRIA, Domaine de Voluceau
BP 105, 78153 Le Chesnay cedex, France
Email: adrien.loseille@inria.fr

RT n ° 0362

6 A. Loseille and F. Alauzet

2 Input and output data

Shrimp requires the speci�cation of meshes and possibly solution �elds. It ouputs split or
renumbered meshes and solution �elds. The speci�cation of the discrete support,i.e. the
mesh, is done by themeshformat. 2D meshes, 3D surface meshes and 3D meshes can be
speci�ed. As regards solution �elds, they are speci�ed with the sol format.

2.1 Mesh speci�cation

Meshes are described using themesh�le format. The meshformat describes precisely meshes
and also the surface features. This format is composed of a single (ASCII or binary) �le,
xxx.mesh or xxx.meshb. This �le contains all the information needed to describe entirely
the mesh.

Its structure is organized as a series of �elds identi�ed by keywords. The blanks, "new-
line" or < CR> and tabs are considered as item separators. A comment line starts with the
character # and ends at the end of the line. The comments are placed exclusively between
the �elds. The mesh �le must start with the descriptor :

MeshVersionFormatted 2
Dimension 3 # or 2 in 2D

The other required �elds for Shrimp correspond to the geometry (i.e., the coordinates)
and to the topology description (i.e., the mesh entities). In the following tables, the term vi

indicates a vertex index, i.e., the it h vertex in the vertices list. The vertices are de�ned by
their coordinates either in simple or in double precision. The reference is an integer attached
to the vertex. For instance, it can represent a tag for boundary conditions or the tag of
a partition. The elements inside the domain or on the boundary are de�ned by their list
of vertices where each vertex id is given thanks to an integer. The reference is an integer
attached to the element.

3D meshes:

Keyword Card. Syntax Range
Vertices nv x i yi zi vref i f i = 1 ; nvg
Tetrahedra nt v 1

i v2
i v3

i v4
i tref i f i = 1 ; ntg

Triangles nf v 1
i v2

i v3
i f ref i f i = 1 ; nf g

2D meshes:

Keyword Card. Syntax Range
Vertices nv x i yi vref i f i = 1 ; nvg
Triangles nt v 1

i v2
i v3

i tref i f i = 1 ; ntg
Edges ne v1

i v2
i eref i f i = 1 ; neg

Finally, the data structure must end with the keyword:

End

INRIA

An introduction to Shrimp 7

Let us give an example:

MeshVersionFormatted 2
Dimension 2

Set of mesh vertices (x,y,ref)
Vertices
581
0.1 1. 0
0.333 12.125 0
.........

Set of mesh triangles (v1,v2,v3,ref)
Triangles
1162
1 28 521 0
23 45 77 0
.........

Set of mesh edges (v1,v2,ref)
Edges
212
1 28 3
28 34 3
.........

End

2.2 Solution or metric speci�cation

Solution �elds are described using thesol �le format. The sol format describes several
types of solutions (scalar, vector, tensors,...) which can be linked to di�erent mesh entities.
This format is composed of a single (ASCII or binary) �le, xxx.sol or xxx.solb .

Its structure is organized as a series of �elds identi�ed by keywords. The blanks, "new-
line" or < CR> and tabs are considered as item separators. A comment line starts with the
character # and ends at the end of the line. The comments are placed exclusively between
the �elds. The sol �le must start with the descriptor :

MeshVersionFormatted 2
Dimension 3 # or 2 in 2D

The solutions �elds for Shrimp are associated with the vertices of the given mesh and are

RT n ° 0362

8 A. Loseille and F. Alauzet

de�ned by the keyword SolAtVertices . This keyword is followed by the number of entities
(here vertices) supporting the solution, the number of types and the list of solution types.
The type of solutions handled by Shrimp can be scalar, vector or tensor �elds. They are
de�ned as follow depending on the dimension

3D solution type:

Field Type Syntax Range
Scalar 1 f i f i=1,nv g
Vector 2 f 1

i f 2
i f 3

i f i=1,nv g
Tensor 3 f 1

i f 2
i f 3

i f 4
i f 5

i f 6
i f i=1,nv g

2D solution type:

Field Type Syntax Range
Scalar 1 f i f i=1,nv g
Vector 2 f 1

i f 2
i f i=1,nv g

Tensor 3 f 1
i f 2

i f 3
i f i=1,nv g

where the convention for tensors is

M 2D =
�

f 1
i f 2

i
f 2

i f 3
i

�
and M 3D =

0

@
f 1

i f 2
i f 4

i
f 2

i f 3
i f 5

i
f 4

i f 5
i f 6

i

1

A

Finally, the data structure must end with the keyword:

End

Let us give an example for each solution type:

Scalar Vector Tensor

MeshVersionFormatted 2 MeshVersionFormatted 2 MeshVersionFormatted 2

Dimension 2 Dimension 2 Dimension 2

SolAtVertices SolAtVertices SolAtVertices
581 581 581
1 1 1 2 1 3
1. 0. 0. 70.8852 0 70.8852
0.125 0.3945 2.55264e-05 72.6135 0 72.6135
0.125 0.245741 1.14493e-05 63.7954 0 63.7954
............
End End End

INRIA

An introduction to Shrimp 9

and a �nal example for several solution types associated to mesh vertices. There are three
solution types. The �rst type is a scalar, the second a vector and the third one a scalar.
In the �le, the �rst column corresponds to the �rst scalar solution �eld. The second and
the third columns correspond to the vector solution �eld. And the last column is associated
with to the second scalar solution �eld.

MeshVersionFormatted
2

Dimension
2

SolAtVertices
25282
3 1 2 1
1 0 0 2.5
0.125 0 0 0.25
0.125 0 0 0.25
1 0 0 2.5
0.425971 0.3945 2.55264e-05 0.941469
............
End

RT n ° 0362

10 A. Loseille and F. Alauzet

3 Shrimp Howto

The following questions/answers give a complete overview ofshrimp .

1. How I reorder a mesh ?

shrimp -O 1 -in name -out name.reor

Shrimp reads name.mesh[b], and if it exists, shrimp reads name.sol[b] and creates
name.reor.mesh[b] and name.reor.sol[b] according to the input and the corre-
sponding solution �le. Binary �les are always read �rst. If name.meshand name.meshb
exist, then name.meshbis read.

2. How do I split a mesh into 8 parts ?

shrimp -O 2 -in name -ncut 8 -out part

From name.mesh[b] and solution �le name.sol[b] (if it exists), shrimp createspart.1.
mesh[b] , . . . , part.8.mesh[b] , plus solutions �les part.1.sol[b] , . . . , part.8.sol[b] .
Two options are available for this module:

-nordm cancels the randomization for the partitioning.
-nocor avoids the correction of the �nal partitions.

Be careful, with the latter option, partitions may be non-connex. Without corrections
and without random, the call becomes:

shrimp -O 2 -in name -ncut 8 -out part -nordm -nocor

3. I have a mesh with di�erent references on tetrahedra, how I create a partition corre-
sponding to each tag ?

shrimp -O 2 -in name -ncut 8 -out part -tref

The partitions indices are ordered in an increasing order with respect to the references.
In this case, the option -nocor may also be used to avoid corrections.

4. How do I gather partitions ?

shrimp -O 3 -in part -ncut 8 -out final

Readspart.1.mesh[b] , . . . , part.8.mesh[b] , plus if solutions �les exist part.1.sol[b] ,
. . . , part.8.sol[b] . Then, it writes final.mesh[b] and if solution �les have been
read final.sol[b] .

INRIA

An introduction to Shrimp 11

5. To adapt the mesh with Mmg3d, I use a single command line. Can I replace it with
a single command line ofShrimp to run it in parallel on a shared memory parallel
machine?
The answer is Yes. If theMmg3dcommand line looks like:

mmg3d -O 1 -in name final -m 512 -bucket 512

Then, the equivalent Srimp command line to run Mmg3din parallel on a shared memory
parallel machine is

shrimp -O 5 -in name -out final -mem 512 -bucket 512 -ncut 8
-nproc 8 -sref

Notice that the options -bucket and -memare directly transfered to the mesh gener-
ator. The option -sref is used to re-encode triangle (edge in 2D) references on short
integer. This option is mandatory for codes compatibility when the entity references
are stored with a short int in the mesh generator. In that case, a ascii hash table of
reference is outputted. It is re-read while gathering partitions.

When the working directory is shared or exported, it may have di�erent names ac-
cording to the server (e.g. /net/...). To deal with this case, the option -dir modi�es
the remote directory name:

shrimp -O 5 -in name -out final -mem 512 -bucket 512
-ncut 8 -dir /net/form/Users/lolo/working

whereas the commandpwdcould locally answerworking only.

6. To adapt the mesh with Mmg3d, I use a single command line. Can I replace it with a
single command line ofShrimp to run it in parallel on distributed architectures ?
The answer is Yes. The equivalentShrimp command line is

shrimp -O 5 -in name -out final -mem 512 -bucket 512
-ncut 8 -host -sref

You must create a �le named host.dat that contains the machines names along with
their number of CPUs. An example of �le host.dat is:

2
form.inria.fr 2
morue.inria.fr 4

The �rst line is the number of machines followed by the host names and their number
of CPUs. You can use the option-w to write an example of host.dat �le:

RT n ° 0362

12 A. Loseille and F. Alauzet

shrimp -O 5 -in name -out final -mem 512 -bucket 512
-ncut 8 -host -sref -w

The communications are done using SSH2. Consequently, the user may connect to all
the listed machines inhost.dat . To do so, one may use the following:

Connect without password with ssh2
On the client host, saying picarel, type:

lolo@picarel>ssh-keygen -t rsa
lolo@picarel>cd .ssh
lolo@picarel>chmod go-r id_rsa.pub
lolo@picarel>cp id_rsa.pub authorized_keys
You need to do that once. (whatever the number of targeted servers).

On the server machine, saying form, type:
lolo@form>cd .ssh
lolo@form>chmod go-r authorized_keys2
lolo@form>echo "fingerprint" >> authorized_keys2
where fingerprint is just a cat of id_rsa.pub (of client host)
Now, you can log without password try lolo@picarel>ssh lolo@form

7. How I can optimize the �nal outputted adapted mesh ?

When, the mesh is split in several parts for adaptation in parallel, the mesh generator
preserve the interfaces. In consequence, the regions of the mesh at the interfaces of
each partition are not adapted. There are two ways to optimize those mesh regions:

ˆ run several times the adaptation in order to cancel the non-adaptation of the
interfaces. To this end, the following call is used:

shrimp -O 5 -in name -out final -mem 512 -bucket 512 -ncut 8
-nproc 8 -sref -nloop 2

-nloop states the number of optimization step for the whole adaptive algorithm.
After each adaptation the mesh is gathered and then re-split for a new adaptation.

ˆ One may separate the point insertion phase from the mesh optimization phase
in the adaptive process. In order to separate these phases, the option-soptim is
used. The full command line becomes:

shrimp -O 5 -in name -out final -mem 512 -bucket 512 -ncut 8
-nproc 8 -sref -nloop 2 -soptim

INRIA

An introduction to Shrimp 13

4 Modules and options overviews

To executeShrimp the following syntax is used:

shrimp

With no parameter, Shrimp prints the standard command line help message:

usage: shrimp -O [n] [-v[n]] [-h] [opts..] -in filein[.mesh] [-sol filesol[.sol]] [-out fileout[.sol]]

** Module options :
-O 1 : Reorder mesh : Cache misses reduction, optimized indirect addressing
-O 2 : Split mesh : for parallel runs
-O 3 : Gather meshes : collect meshes for serial runs
-O 4 : Parallel mesh adaptation
-O 5 : Perform modules 2 --> 4 --> 3 nloop times

** Inline options :
-ncut : number of components for the splitting
-nordm : no random for the splitting
-nocor : no correction to ensure connex partition
-nloop : number of iteration for module 5

** Options passed to mesh generator :
-mem ival : memory
-bucket ival : bucket
-soptim : Split mesh generation/optimization

Use module 1 before optimization step

** Options for parallel runs
-dir sval : remote directory (default is current directory)
-host : read file host.dat and use hosts to run in parallel

** Generic options :
-sref : Re-code references on short int
-tref : Use existing tetrahedra reference for partition
-f : Save fileout in ascii
-f32/-f64 : Force 32 or 64 bits real numbers
-h : Print this message
-bsc : output mesh in bsc format
-w : Write host.dat file
-v ival : Tune level of verbosity
-o ival : Tune level of outputs

-in string : in file name
-out string : out file name
-sol string : initial solution file name

RT n ° 0362

14 A. Loseille and F. Alauzet

The standard use of the di�erent modules has been explained in the section Howto. We give
now the list of generic options related to the I/O that have not been described:

-f Save output �les in ascii. By default, Shrimp write the output �les in
binary format.

-f32 Save output �les in 32-bits real number. By default, Shrimp write in
64-bits (double precision).

-f64 Force Shrimp to save output �les in 64-bits real number.
-h Print the help in the terminal.
-o [int] Tune the �les output level.
-v [int] Tune the level of verbosity
-w Write the host.dat �le.

The input �les names and the output �les are given with the following option:
-in [char] Specify the input �le names for the mesh and the solution.
-sol [char] Specify the solution input �le name, if it is di�erent from the mesh

�le name.
-out [char] Specify the output �le name for the mesh and the solution. If not

speci�ed, the output �le name is the input �le name concatenated
with " .o ".

Let us give some examples:

shrimp -O 1 -in name

It reads name.mesh[b] and name.sol[b] . It writes name.o.mesh[b] and name.o.sol[b] .

shrimp -O 1 -in name -sol solname

It reads name.mesh[b] and solname.sol[b] . It writes name.o.mesh[b] and name.o.sol[b] .

shrimp -O 1 -in name -sol solname -out outnam

It reads name.mesh[b] and solname.sol[b] . It writes outname.mesh[b] and outname.sol[b] .

INRIA

An introduction to Shrimp 15

5 Some application examples

5.1 A few words about Hilbert curves

Hilbert Curves is an example of space �lling curves introduced in the last century to study
cardinality properties of real spaces. More precisely, they were used to prove that the
cardinality of a square is equal to the cardinality of one of its sides. Examples of curves
approximating the continuous Hilbert curve are depicted by Figure 1. In numerical applica-
tions, a 3D computational domain need to be map onto the memory of a computer which is
one-dimensional. Hilbert curves are one method to achieve this mapping. Hilbert curves are
used in shrimp for two di�erent tasks that aims at achieving high performance computing:

ˆ reduce cache misses and increase speed of serial code,

ˆ perform adaptive parallel mesh adaptation by providing a simple, fast and robust mesh
partitioning strategy for anisotropic meshes.

Cache misses are due to indirect addressing, see Figure 2 (left). They occur when data
are required for a computation and those data are not available in the current cache line.
It is worth mentioning that the cost of a cache miss is far more important that classical
operations used in numerical applications: mutilply, divide, multadd, . . . Figure 2 (right)
depicts the CPU cycles of a cache miss compared to the cost of classical operations. As
regards cache misses reduction, we use some compactness properties of Hilbert curves. It
mainly ensures that points closed in the space are also closed on the curve, and consequently,
closed in the memory after reordering, cf. Figure 1.

As a mapping exists from a 3D domain onto this curve, splitting the 1D domain is
equivalent to split the 3D domain. This simple idea is at the basis of the mesh partitioning
strategy derived in Shrimp. On simple geometries that are uniformly meshed, this strategy
leads to very natural partitions, see Figure 3. This is no more the case when dealing with
highly anisotropic meshes, see Figure 4.

Figure 1: Several discrete Hilbert curves of a cube. The yellow line represents the path of
the Hilbert curve. The limit to these curves is the continuous Hilbert curve that �lls the
cube.

RT n ° 0362

16 A. Loseille and F. Alauzet

Edges

Vertices
MissMiss Miss

for(i=1; i<=NbrEdg; ++i){
// ... compute Flu
Edg[i]->Ver[0] -= Flu
Edg[i]->Ver[1] += Flu

}

0

50

100

150

200

sqrt
div

mult
cache miss

Figure 2: Left, example of a typical indirect addressing loop. The edge loop requires vertices
information to pursue the computation. When the required vertices is not directly available,
a cache miss occurs. Right, comparison of required CPU cycles between classical numerical
operations and a cache miss on a Mac Intel 64bits architecture.

Figure 3: Example of Hilbert-based partition of a cube into 4 parts.

All the presented examples below are in the context of mesh adaptation. Therefore,
a small theoretical background on error estimates, unit mesh, and metric tensor, may be
needed for comprehensiveness. Details about mesh adaptation can be found in the following
references [1, 5]. The examples described hereafter come from our local benchmark data
base. Some of the test cases are depicted in Figure 5. The data base is composed of
uniform, adapted isotropic and adapted anisotropic meshes. The range of the number of
vertices varies from 10 000 to 10 000 000.

5.2 Speeding up serial codes

We consider some examples of numerical simulations. Speed-ups are given for the
ow solver
Wolf and for the local adaptive mesh generatorMmg3d. All the timings include of course the

INRIA

An introduction to Shrimp 17

Figure 4: Several Hilbert-based partitions arising from an initial highly anisotropic mesh.

Entities sort 1:3 to 1:5
+ Hilbert sort 2:5 to 3

Table 1: Range of speed-ups obtained forWolf with only the entities sorted and with the
entities sorted coupled with the Hilbert renumbering. These speed-ups include reordering
time.

time for reordering. All runs are done in serial. This section only involves the module 1 of
Shrimp.

In most of the test cases, the serial codes are at least twice faster when the Hilbert
renumbering strategies is used, see Figures 6 and 7. The impact is even stronger on the
mesh generator. If we compare the number of vertices inserted by second, one may see the
bene�t of the Hilbert reordering, see Figure 8. Indeed, when the mesh generator inserts
new points, the proximity in space and in memory can vary, especially if the new points are
stored at the end of the vertices array.

5.3 Parallel mesh adaptation

Shrimp is used conjointly with Mmg3don a daily basis to perform parallel adaptive mesh
generation. A bunch of examples can be found in [5]. These examples involve the module 5
that corresponds to a sequential call of modules 2� 4 � 3 n-times, where n is set with the
option -nloop . For the input, we assume that we have a mesh supplied with a metric �eld

RT n ° 0362

18 A. Loseille and F. Alauzet

Figure 5: Some examples of meshes used to provide quantitative information on the per-
formance ofShrimp. Examples are quoted from [1, 5].

INRIA

An introduction to Shrimp 19

0

1

2

3

4

5

3Dcity
SSBJ600M

SSBJ1200M
SSBJ2400M

falcon2000M

Figure 6: Speed-ups obtained for the
ow solverWolf with the Hilbert renumbering for
each test case of the benchmark data base. In each case, the renumbered version of the
serial code is at least twice faster that the original serial code. These speed-ups include the
reordering time.

0

2,5

5,0

7,5

10,0

falcon500Mfalcon1000M
SSBJ500M

SSBJ800M
SSBJ1000M

Figure 7: Speed-ups obtained for adaptive mesh generatorMmg3dwith the Hilbert renum-
bering for each test case of the benchmark data base. In each case, the renumbered version
of the serial code is at least twice faster that the original serial code. These speed-ups include
the reordering time.

RT n ° 0362

20 A. Loseille and F. Alauzet

0

750

1500

2250

3000

falcon500M
falcon1000M

SSBJ500M
SSBJ800M

SSBJ1000M

Figure 8: Number of vertices inserted per second for adaptive mesh generatorMmg3dwithout
(blue) and with (green) the Hilbert renumbering for each test case of the benchmark data
base. The bene�t of the Hilbert reordering is clearly illustrated.

de�ned at its vertices. We aim at generating a unit mesh with respect to the input metric
tensors �eld. All the examples are run on a Mac personal computer equipped with a Intel
Core 2 at 2:8 GHz and 15Gb of memory.

First example. We consider a supersonic
ow around a spike. The case comes from
an experimental simulation [4] carried out at NASA Langley. The partitioning algorithm is
timed on the �nal anisotropic adapted mesh composed of 8 069 621 vertices, 182 286 boundary
triangles and 48 045 800 tetrahedra, see Figure 9. The timings of each step of the domain
decomposition algorithm are:

ˆ Reading input data: 61.136s

ˆ Create an initial Hilbert partition: 107.617s

ˆ Create neighboring structure: 33.329s

ˆ Hashing boundary faces: 0.009s

The outputted partitions are well weighted if we look at the number of tetrahedra:

INRIA

An introduction to Shrimp 21

Partition 1 6 005 546
Partition 2 6 005 699
Partition 3 6 006 002
Partition 4 6 005 590
Partition 5 6 005 721
Partition 6 6 005 802
Partition 7 6 005 681
Partition 8 6 005 759

The time to create the 8 connex partitions and to write the corresponding meshes is about
116s. The maximal memory allocated in this case is about 5:6Gb. The complete step is
done in 280s. The mesh partition size variation is less than 0:008%.

As regards the partitions gathering, the algorithm is very low memory consuming as
only the interfaces of the meshes are stored. For this example, the complete gathering step
requires 40s and 65Mb of memory.

Second example. A supersonic
ow around a complex aircraft is considered. The geom-
etry of the aircraft is depicted in Figure 10. The mesh is composed of 9 083 531 vertices,
555 650 boundary triangles and 53 884 863 tetrahedra. Note that this example has a large
number of facets contrary to the previous spike geometry. The timings of each step of the
domain decomposition algorithm are:

ˆ Reading input data: 58.922s

ˆ Create an initial Hilbert partition: 99.777s

ˆ Create neighboring structure: 37.311s

ˆ Hashing boundary faces: 0.029s

The outputted partitions are well weighted if we look at the number of tetrahedra:

Partition 1 6 734 843
Partition 2 6 736 148
Partition 3 6 735 775
Partition 4 6 735 544
Partition 5 6 736 143
Partition 6 6 725 021
Partition 7 6 745 562
Partition 8 6 735 827

The time to create the 8 connex partitions and to write the corresponding meshes is about
120.488s. The maximal memory allocated in the case is about 6:3Gb. The complete step
is done in 280s. The mesh partition size variation is less than 0:15%. It is higher than the
previous example. In fact, the good balancing of partitions depends on the complexity of
the geometry.

The complete gathering step requires 30s and 80Mb of memory.

RT n ° 0362

22 A. Loseille and F. Alauzet

Figure 9: Anisotropic mesh and �nal solution for the spike test case. Top right, iso-values
of the Mach number.

INRIA

An introduction to Shrimp 23

Figure 10: Final anisotropic adapted mesh and solution for the supersonic aircraft.

RT n ° 0362

24 A. Loseille and F. Alauzet

Figure 11: ONERA M6 wing geometry (left) and initial surface mesh (right).

5.4 User de�ned mesh partitioning

Mesh partitioning can also be monitored by the user. Shrimp handles references at tetra-
hedra to create and to correct (if needed or requested) the partitions. It corresponds to the
module 2 where the option-tref is activated through the command line.

As an example, we consider a transonic viscous
ow around an ONERA M6 wing, see
Figure 11. In this kind of application, the
ow features impose to have two distinct parts
in the mesh: the boundary layer and the inviscid mesh. Generally, metric-based mesh
adaptation for the inviscid part is perfomed in order to capture accurately shocks. However,
keeping a semi-structured boundary layer mesh is necessary to capture the viscous e�ect of
the
ow in the boundary layer. In that case, Shrimp can be used to separate the viscous
mesh from the inviscid one. The Euler mesh can be then adapted separately. This domain
decomposition based on tetrahedron references (tags) is exempli�ed Figure 12.

INRIA

An introduction to Shrimp 25

Figure 12: Top, initial mesh where the lower part of the boundary layer mesh is tagged
di�erently. Bottom, the two �nal partitions: left, the wing surface and the corresponding
layers of semi-structured mesh, right, the inviscid mesh.

References

[1] F. Alauzet. Adaptation de maillage anisotrope en trois dimensions. Application aux
simulations instationnaires en M�ecanique des Fluides. PhD thesis, Universit�e Montpellier
II, Montpellier, France, 2003.

[2] F. Alauzet and A. Loseille. High order sonic boom modeling by adaptive methods.
RR-6845, INRIA, February 2009.

[3] C. Dobrzynski and P. J. Frey. Anisotropic delaunay mesh adaptation for unsteady
simulations. In Proc. of 17th Int. Meshing Rountable, pages 177{194. Springer, 2008.

[4] H. W. Carlson and R. J. Mack and O. A. Morris. A wind-tunnel investigation of the
e�ect of body-shape on sonic-boom pressure distributions. TN. D-3106, Nasa, 1965.

[5] A. Loseille. Adaptation de maillage 3D anisotrope multi-�echelles et cibl�e �a une fonction-
nelle. Application �a la pr�ediction haute-�d�elit�e du bang sonique. PhD thesis, Universit�e
Pierre et Marie Curie, Paris VI, Paris, France, 2008.

RT n ° 0362

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scienti�que
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-0803

	Shrimp overview
	Context

	Input and output data

