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Abstract. In this paper we present atimedextension of theAltaRica formalism. Following previous
works, we first extend the semantics ofAltaRica with time and definetimed componentsandtimed
nodes. Moreover we lift thepriority featuresof AltaRica to the timed case. We obtain a timed
version ofAltaRica, calledTimed AltaRica. Finally we give a translation of aTimed AltaRica
specification into a usual timed automaton. These are the semantic foundations of a high-level
hierarchical language for the specification of timed systems.
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1. Introduction

Context. The development of complex and safety-critical systems requires the use of formal methods
and tools for system design and specification. In the case ofdiscretesystems the so-calledreactive lan-
guages[1, 2, 3, 4] have been used for almost a decade to specify industrial systems. They give a rigourous
and elegant basis for the structured development of reactive systems withthe use ofcompositionandhier-
archical specifications for instance. On those specifications such techniques likemodel-checkingcan be
applied to check for some properties on the designed systems.

The need for a counterpart specification language in the case oftimed specificationsarose recently
as timing information can now be dealt with while verifying a system with tools likeUPPAAL [5],
CMC [6], KRONOS [7] or HyTech [8]. We give here the theoretical foundations of such a high-level
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specification language for timed systems. We extend theAltaRica [9, 10, 11] formalism withtiming
features.

AltaRica is a high-level specification formalism that allows one to specifyconstraint automata[9]
with the following features:

• a componenthas its own variables (internal or external), plus some others it can only read (flow
variables) that are shared by the others;

• components can be defined hierarchically and composed together by a general synchronization
mechanism. Such a general component is called anode. One can express broadcast communica-
tion, give priority among some transitions, etc.

MoreoverAltaRica has an unambiguous semantics [11, 10] defined in terms of (interfaced) transition
systems. From this semantic model, it is possible tocompileAltaRica to lower level formalisms for
different verification purposes: fault-trees to perform reliability analysis [12], Petri nets, Markov graphs
or finite state automata (that can be analysed with the toolMEC [13, 14, 15, 16] for instance).

Nevertheless one cannot specify real-time constraints inAltaRica and of course this becomes crucial
when some timing information contributes to the modelling and correctness of the system. Moreover
there is no real high-level specification language for timed and hybrid systems. This makesAltaRica
a good candidate to fill this gap. Once the language has been extended with timing constraints, we can
take advantage of the work carried out these last years about timed systems: it is now well-known how to
deal with the verification oftimed automata[17] andhybrid automata[18, 19] and many efficient tools
are now available [8, 7, 20]. This adds a new feature to theAltaRica toolbox.

Our Contribution. Our work consists in extending theAltaRica formalism withreal-time constraints
and define a timed version ofAltaRica calledTimed AltaRica. We thus extend the theoretical founda-
tions ofAltaRica: we enhance the semantic model ofAltaRica, the interfaced transition system (ITS),
into timed interfaced transition system (TITS)and give the semantics ofTimed AltaRica in terms of
TITS. We proceed by shifting all the theoretical results obtained forAltaRica (e.g. interface bisimula-
tion homomorphism, rewriting of a node into a component, . . . ) to the timed case: thisis important as it
givesTimed AltaRica goodcompositional properties that are needed in practice. Finally we present an
algorithm to compileTimed AltaRica specifications into timed automata (which can be then analyzed
with UPPAAL [5]).

Outline of the paper. In the next section, we remind the basics aboutAltaRica and introduce a running
example: the Train-Gate-Controller example. Section 3 is the core of the paper and presentsTimed
AltaRica the timed extension ofAltaRica. In sections 4 and 5 we respectively give (i) the algorithm for
translatingTimed AltaRica components into timed automata and (ii) an example of the use of priorities
for timed specifications. We conclude by some perspectives in section 6.

The proofs of the theorems are given in the appendices (pages 1035– 1042).

2. An Overview of theAltaRica Language

In this section we recall some basics ofAltaRica [10, 11] and give an example of anAltaRica specific-
ation:the train-gate-controller [21]. In this example, the aim is to keep the gate closed when a train is in
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a critical section. We will use threeAltaRica components to model the system and describe how they
synchronize.

2.1. Specifying Reactive Systems inAltaRica

A specification inAltaRica is anode. A node is ahierarchicaldescription. It can be built from sub-nodes
and so on. A node that contains no sub-nodes is acomponent. A node is basically composed of:

• thevariables definitions(type, range, . . . ), andevents definitions,

• thetransition relation,

• the initial constraintandglobal constraint.

1: node TRAIN

2: flow N : [0,1]; // These are the flow variables
3: event approach, in, exit;

4: state etat : [0,2]; n : [0,1];

5: trans
6: etat=0 |- approach ->

7: etat := 1, n := 1;

8: etat=1 |- in -> etat := 2;

9: etat=2 |- exit -> etat := 0, n := 0;

10: init
11: etat:=0, n:=0;

12: assert
13: N=n;

14: edon

(a) Spec. of the Train inAltaRica

Far Before

On

approach,n := 1

in
exit,n := 0

Far ≡ etat = 0

Before ≡ etat = 1

On ≡ etat = 2

(b) Spec. of the Train as an Automaton

Figure 1. Specification of a Train

2.1.1. Components

In the example of Fig. 1, we define a component1 train to model the behaviour of a train in two equivalent
manners in order to ease the understanding: anAltaRica description (see Fig. 1(a)) and a standard
automaton (see Fig. 1(b)). A train is eitherFar of the critical section, orBeforeor On meaning it is
respectively near or inside the critical zone. In theAltaRica specification, the variableetat (line 4)
ranging in [0, 2] represents the locationsFar, Before, On of the train. The events of the component
TRAIN areapproach, in andexit (line 3). We also use a state variablen (line 4) to denote that the train is
in {Before, On}. Initially the component is in configurationetat=0,n=0,N=0 (line 11), written(0, 0, 0)
for short. When a transition occurs the values of the state variables change accordingly as well as the

1In AltaRica the keywordnode in used for components (nodes with no sub-nodes) as well as for hierarchical nodes; indeed a
component is a special case of node with no sub-nodes.
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value of the flow variable in order to satisfy the assertion (line 13). For instance, when eventapproach
occurs in(0, 0, 0) the configuration(1, 1, 1) is reached.

2.1.2. Interfaces

The component’s state variables are not visible from outside of the component. Their scope is thus
the component itself just as for usual programming languages. To allow sharing of information and
synchronization on variables of other components one can useflowvariables. Flow variables can be read
by other nodes. The part of the component which is visible by other components is called theinterface.
It consists in the events of the components and the flow variables.

The flow variableN is in the interfaceof the nodeTRAIN (line 2). This means that other nodes can
read it and use the value ofN. The value of the flow variableN is constrained to be equal ton at anytime
(see theassert line 13) and the purpose ofN is to make the value ofn available outside.

Assume another node for the controller is given by theAltaRica specification of Fig. 2(a). A trans-
ition of the formetat = 1 |- approach -> ; (line 9) means thatapproach does not bring about
any change in the state variables values (but not this is a deadlock!). In the componentCONTROLLER the
purpose of the flow variableN (referred to asCONTROLLER.N from now on) is to count the total number
of trains in the region{Before, On} (if we assume there are many train components). Depending on the
value of the flowCONTROLLER.N the controller will make the gate go up on anexit signal (if the value is
1, line 8) or will leave the gate closed ifCONTROLLER.N > 1 (line 7).

The value ofCONTROLLER.N may change on any discrete transition and be assigned any integer as no
assertion constrains this flow in the nodeCONTROLLER. Apart from the events listed in the component’s
events section (line 3), we assume a special discrete eventε for synchronization purposes. This event is
enabled in any configuration and does not change the values of variables of typestate. Nevertheless
flow variables can be updated onε transitions with values satisfying the assertion. As the assertion of the
nodeCONTROLLER is implicitely true the variableCONTROLLER.N may be assigned any integer value on
anε transition. This somewhat strange behavior will become clear when we introduce hierarchical nodes
and constraints among flows of different nodes (seeassert line `main−assert on Fig. 3).

As for the nodeGATE (Fig. 2(b)) it consists in receiving orders from the controller (eventsGo_up and
Go_down) and after a while2 to actually go up or down (eventsup anddown).

2.1.3. Hierarchy and Synchronization

As emphasized in the introduction, one can describe a system by composing and building new nodes
from sub-nodes. For example we can define a nodeMain (see Fig. 3) specifying the train-gate-controller
with two trains. Indeed nodes can be instantiated and used as templates to build higher-level nodes.
The node of Fig. 3 is composed of four instantiated sub-nodes (t1, t2, g andc, see Fig. 3, lines 2–
5) which interact in two ways: flow coordination and synchronization of events. The synchronization
constraint (after keywordsync, lines 6–14) reads as follows: if a component does not appear in a syn-
chronization vector, it is assumed to do theε action. Note that eventsup anddown are not synchronized
and thus they will be assumed to be synchronized withε transitions of the other components. Finally
the global assertion, line 15, constrains the flow variables so thatN of the nodeMAIN is always equal

2We will see later how this can be made precise using timing constraints to make atimed version of the controller and the gate
in Fig. 5.
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1: node CONTROLLER

2: flow N : [0,p];

3: event approach, exit, Go_up, Go_down;

4: state etat : [0,2];

5: trans
6: etat=0 |- approach -> etat := 1;

7: etat=0 & N>1 |- exit -> ;

8: etat=0 & N=1 |- exit -> etat := 2;

9: etat = 1 |- approach -> ;

10: etat = 1 |- exit -> ;

11: etat=1 |- Go_down -> etat := 0;

12: etat=2 |- Go_up -> etat := 0;

13: etat=2 |- approach -> etat := 1;

14: init etat := 0, z := 0;

15: edon

(a) The Controller

node GATE

event Go_down, Go_up, down, up;

state etat : [0,3];

trans
etat=0 |- Go_up -> ;

etat=0 |- Go_down -> etat := 1;

etat=1 |- Go_down -> ;

etat=1 |- down -> etat := 2;

etat=1 |- Go_up -> etat :=3;

etat=2 |- Go_down -> ;

etat=2 |- Go_up -> etat := 3;

etat=3 |- Go_up -> ;

etat=3 |- Go_down -> etat := 1;

etat=3 |- up -> etat := 0;

init etat:=0;

edon

(b) The Gate

Figure 2. AltaRica Specifications for the Controller and the Gate

to the number of trains on the critical section. A joint move of the componentst1,t2,g,c can be
<t1.approach,t2.approach,c.approach> (see line 7) in which case the variablec.N will be up-
dated on theε move of componentc to satisfy the assertion of nodeMAIN i.e. c.N=t1.N+t2.N. This
is why we need to have the possibility to update flow variables onε transitions. Anyway a meaningful
specification should be such that all flow variables are constrained at least in the outermost node. Note
that some constraints could be unsatisfiable: for instance if we addt1.N=2+t2.N to theassert line, this
clearly can not be satisfied and the resulting system has no configuration.It is also possible to constrain
the state space: if we uset1.N=t2.N we impose that the two trains issueapproach at the same time and
leave the critical section at the same time (eventexit). This is due to the fact that no configuration with
t1.N not equal tot2.N is satisfiable hence no transition with only oneapproach event can be fired.

1: node MAIN

2: sub
3: t1,t2 : TRAIN;

4: g : GATE;

5: c : CONTROLLER;

6: sync
7: <t1.approach,t2.approach,c.approach>;

8: <t1.approach,c.approach>;

9: <t2.approach,c.approach>;

10: <t1.exit,t2.exit,c.exit>;

11: <t1.exit,c.exit>;

12: <t2.exit,c.exit>;

13: <g.Go_down,c.Go_down>;

14: <g.Go_up,c.Go_up>;

15: assert c.N=t1.N+t2.N;

16: edon

Figure 3. Hierarchical Node
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2.2. Formal Semantics ofAltaRica

The semantics ofAltaRica specifications is given by Interfaced Transition Systems. For a detailed
presentation of these notions the reader is referred to [11, 10].

2.2.1. Interfaced Transition Systems

Definition 2.1. (Interfaced Transition system [10])
An interfaced transition system(ITS) is a tupleA = 〈E, F, S, π, T 〉 with:

1. E = E+ ∪ {ε} is a finite set ofeventssuch thatε 6∈ E+;

2. F is a set offlow values;

3. S is the set ofstates;

4. π : S → 2F associates to each states in S all the admissible flow valuesin s. We assume
∀s ∈ S, π(s) 6= ∅.

5. T ⊆ S × F × E × S is thetransition relationand satisfies:

(a) (s, f, e, s′) ∈ T ⇒ f ∈ π(s)

(b) ∀s ∈ S, ∀f ∈ π(s), (s, f, ε, s) ∈ T

A configurationof an ITS is a pair(s, f) ∈ S × F such thatf ∈ π(s). Every tuple(s, f, e, s′) ∈ T
corresponds to the set of transitions((s, f), e, (s′, f ′)) between configurations s.t.f ′ ∈ π(s′).

Remark 2.1. In AltaRica, if a transition(s, f, e, s′) is firable then there exists a configuration(s′, f ′)
(as item 4 of Def. 2.1 assumesπ(s) is not empty fors ∈ S). This remark will carry overtimedITS. The
setF may be considered as a set of properties (or observations) associatedto the states by the mapping
π. Also note thatT is a shorthand for the explicit transition relationT ′ between configurations with
T ′ ⊆ S × F × E × S × F and(s, f, e, s′, f ′) ∈ T ′ ⇐⇒ (s, f, e, s′) ∈ T ∧ f ′ ∈ π(s′).

2.2.2. Priorities

In AltaRica we can constrain the behaviours of a system by giving priorities to some transitions when
more than one is possible. For instance, this concept is classical in scheduling [22]. Formally, a priority
relation< is a strict partial order over the events. A transition labellede can be fired from a configuration
(s, f) if it is maximal, i.e. no other transitione′ such thate < e′ is firable in(s, f).

Definition 2.2. (Priority relation [10])
A priority relation overE is a strict partial order overE such that∀v ∈ E+, v 6< ε andε 6< v (with
E+ = E \ {ε}).

Definition 2.3. (Priority Restriction Operator)
Let A = 〈E, F, S, π, T 〉 be an ITS and< a priority relation overE. We define thepriority restriction
operator¹ for the transition relationT ⊆ S × F × E × S and the priority relation< by: (s, f, e, s′) ∈
T¹< ⇐⇒ (s, f, e, s′) ∈ T ∧

(
∀e′ ∈ E , (∃s′ ∈ S | (s, f, e′, s′) ∈ T ) =⇒ e 6< e′

)
.
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2.2.3. Formulas and Expressions

We consider hereafter theexpressionsE(X) built over the variables in a setX. These expressions can
be either integer terms, boolean terms etc. The only thing we assume is that the variables inX take their
values in a setD. A valuationν of a set of variablesX is a mappingν : X → D and the set of valuations
of X is denotedDX . Thevalueof an expressione ∈ E(X) in the contextν : X → D is denotede(ν).
Given a setE(X) we can define the setF(X) of first order formulasover E(X) using some suitable
predicates (e.g.≤, = in the case of integer expressions) and the existential and universal quantifiers. For
f ∈ F(X) we denotefree(f) the set of free variables inf . We assume thattt (true) andff (false) which
are predicates of arity0 belong toF(X). In the sequel we often omit the base setX when we useF(X)
as only the free variables used in a formulaf ∈ F(X) are relevant.

The interpretationJfK of a formulaf ∈ F(X) with free(f) ⊆ X ′ is a subset ofDX′

: JfK ⊆ DX′

.
Also we haveJttK = DX andJffK = ∅.

An assignmentfor the variables inX is a mappinga : X → E(X). Intuitively an assignment of the
form x := y + z + 2 will be defined bya(x) = y + z + 2. Given a valuationν : X → D, we denote
by a(ν) the valuation defined bya(ν)(x) = a(x)(ν). We denote byId the identityassignment such that
∀x, Id(x) = x.

Now we define an abstract syntax for theAltaRica components and nodes again taken from [10].

2.2.4. AltaRica Components

AltaRica components give an abstract syntax for the basic systems (no hierarchy) introduced in the
previous section.

Definition 2.4. (Component)
A componentis a tupleC = 〈VS , VF , E, A, M, <〉 with:

1. VS , VF are finite sets for respectivelystatevariables,flow variables, with the property of being 2
by 2 disjoint. We denoteVT = VS ∪ VF ;

2. E = E+ ∪ {ε} is a finite set of events and as usualε is the empty action;

3. A ∈ F is anassertionsuch thatfree(A) ⊆ VC ;

4. M ⊆ F×E×E(VC)VS is amacro-transitionrelation such that(tt, ε, Id) ∈ M and every(g, e, a) ∈
M satisfies:

(a) g ∈ F is aguardsuch thatfree(g) ⊆ VC ,

(b) e ∈ E+ is theeventof the transition,

(c) a : VS → E(VC) is anassignmentfor the variables inVS ,

5. < is a priority relation.

Remark 2.2. In [10], another set of flow variables is defined: it corresponds tounobservable flow vari-
ablesthat can be used as intermediary variables. We omit them in this work as they donot increase the
expressiveness of the language. Indeed they can be defined as existentially quantified flow variables in
the assertion of a node.
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Now we can define the semantics of a component to be an ITS. For the semanticdefinitions, we
assume that all variables inVS ∪ VF have a common domainD.

Definition 2.5. (Semantics of Components)
Let C = 〈VS , VF , E, A, M, <〉 be a component. Thesemanticsof C is the interfaced transition system
JCK = 〈E, F, S, π, T 〉 constructed in the following way:

1. F = DVF ;

2. S = {s ∈ DVS | ∃f ∈ DVF | (s, f) ∈ JAK};

3. π : S → 2F such thatπ(s) = {f | (s, f) ∈ JAK};

4. T ⊆ S × F × E × S is given byT = JMK¹< with:

(a) lett = (g, e, a) ∈ M , thenJtK = {(s, f, e, s′) | (s, f) ∈ JA ∧ gK ∧ s′ = a(s, f)},

(b) JMK = ∪t∈M JtK.

Note that because of item 4 above the requirementπ(s) 6= ∅ for ITS is always fulfilled.

2.2.5. AltaRica Nodes

A nodeis built fromn nodes. The purpose of nodes is to give a semantics to hierarchical definitions and
synchronization inAltaRica.

Definition 2.6. (Node)
A nodeis a tupleN = 〈VF , E, <,N0, · · · ,Nn, V 〉 with:

1. VF is a set offlow variables,

2. E = E+ ∪ {ε} is a finite set of events,

3. < is a priority relation overE,

4. for all i ∈ [1, n], Ni is a component or a node;VFi
is the set of flow variables ofNi andEi the set

of events. We assume∀i 6= j ∈ [1, n], VFi
∩ VFj

= ∅,

5. N0 is a special component called thecontrol component. The set of events ofN0 is E0 = E
and the priority relation ofN0 is the empty relation. The set of flow variables ofN0 is VF0 =
VF ∪ VF1 ∪ VF2 ∪ · · · ∪ VFn ,

6. V = Vd ∪ Vimp is the set ofspecifiedsynchronization vectors:

• Vd ⊆ E?
0 × · · · × E?

n × 2[0,n+1] whereE?
i = Ei ∪ {?e|e ∈ Ei+}; we defineEi

d by: e ∈
Ei

d if ∃〈· · · , xi, · · · 〉 ∈ Vd with xi ∈ E?
i ; Ei

d corresponds to the set of events of nodei
that are synchronized;Vd induces a set of synchronization vectors (see below). The last
component in2[0,n+1] constrains the sets of “?”-events in the nodes that need to participate
in the synchronization (see below).

• Vimp ⊆ E0 × · · · × En × {∅} is the set ofimplicit synchronization vectors with:
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– 〈ε, · · · , ε, ∅〉 ∈ Vimp,

– ∀i ∈ [0, n],∀ei ∈ Ei \ Ei
d, 〈ε, · · · , ei, · · · , ε, ∅〉 ∈ Vimp.

Vimp contains all the synchronization vectors with non synchronized events.

An example of howVd generates synchronization vectors can be given by the nodeMAIN of Fig. 3.
Assume in this node, we replace the line 7by<t1.approach?,t2.approach?,c.approach> >= 1.
The meaning of this new specification is that it induces the set of synchronization vectors in which
more than1 (given by the>=1 constraint) event qualified with a “?” appears. Thus<c.approach>

is not an allowed vector whereas<t1.approach,c.approach>, <t2.approach,c.approach> and
<t1.approach,t2.approach,c.approach> are allowed. Theunfoldingof the following constrained
vector<t1.approach?,t2.approach?,c.approach> >= 1 contains only the three allowed vectors
defined above. Note that our definition involving subsets of[0, n + 1] allows us to specify more precise
vectors than the one given by the number of “?”-events that have to be present. The synchronization set
V generates a set of synchronization vectors ofE0 × E1 × · · · × En together with a priority relation on
them3. As already mentioned, a vector of the form<t1.approach?,t2.approach?,c.approach> >=

1 generates all the synchronization vectors containing at least one eventthe name of which is qualified
by a “?”. The priority relation for those vectors corresponds to giving priority to the one with the max-
imal number of “?”-events occurring in the vector: in the previous case<t1.approach,c.approach>

and <t2.approach,c.approach> are both strictly lower (have less priority) than the 3-component
vector<t1.approach,t2.approach,c.approach>. In this case, each time botht1.approach and
t2.approach are simultaneously enabled this priority relation imposes they are fired at the same time.
Thus this specification rules out the behaviours where only one of these transitions is fired whereas the
other is enabled. We do not want to constraint the system in such a way andapproach events cannot
be constrained in the specification. This is why we have given three distinctsynchronization vectors
involving eventapproach and they are independant from each other.

Finally, the setVimp consists of all the events that are not involved in any synchronization: they must
occur on their own, hence the synchronization vectors of the form〈ε, · · · , e, · · · , ε〉 (eventsup anddown
of componentsGate of Fig. 2(b)).

For a formal definition of how to generate the synchronization vectors corresponding toV the reader
is referred to [10]. We only need here to consider the set of synchronization vectors and the priority
relation generated byV .

In the definition of thetimed nodes(section 3.6) we will focus on timed features and will consider
thatV has been “unfolded” into the set of synchronization vectorsṼ it generates and the priority relation
<eV

it induces,i.e. we will useṼ ⊆ E0 × E1 × · · · × En and<eV
instead ofV .

There is a fundamental result about nodes: they can be rewritten (syntactically) into components that
preserve their semantics [10].

Theorem 2.1. ([10, 11])
If N is anAltaRica node,CN its rewriting into a component (as defined in [10]), thenJN K andJCN K are
bisimilar.

In the next section we focus on extending ITS,AltaRica components and nodes with time. We define
our timed extension on these objects. Also we show that the results obtained in the untimed case [10, 11]

3how this is done is defined in [10].
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still hold (e.g. Theorem 2.1).

3. Timed Extension ofAltaRica

Our aim is to build a timedextensionof AltaRica, which means we need to keep the framework defined
for the untimed case: ITS, priorities and components. First we extend ITS into Timed ITS(see Def. 3.1)
and definetimedpriorities. Then we add timing constraints to components (i.e. clock variables) and give
the semantics of timed components into TITS. Finally we definetimed nodes, give their semantics and
prove that they can be syntactically rewritten into an equivalent (timed bisimilar)component.

3.1. Preliminaries about Timed Systems

Before definingTimed AltaRica we recall some basics about timed systems [23]. More precisely we
use the framework of timed automata [17] and the associated usual notations.The real-valued variables
will be clocks: a clock is a positive real valued variable, and it evolves at a constant rate w.r.t. physical
time.

Clock valuations and assignments. A clock valuationfor the clocks in a setX is a mappingv : X 7→
R≥0 that assigns a positive real value to each clock inX. A clock assignmentis a mappinga : X →
E(X). For decidability reasons, we will restrict the allowed assignment expressions in section 4.4 to
simple assignments given by table 2, page 1030. We denote byA(X) the set of clock assignments.
As defined in subsection 2.2.3, for a clock valuationv and an assignmenta, we denotea(v) the clock
assignmenta(v)(x) = a(x)(v). Fort ∈ R≥0 the clock valuationv+t is defined by∀x ∈ X, (v+t)(x) =
v(x) + t.

The set ofclock constraintsB(X) over a setX of clocks is defined inductively by:

g := x v r| x − y v r |g ∧ g |g ∨ g (1)

with x, y ∈ X, v∈ {<, <, >,≥, =}, r ∈ Q. Also we denote byBC(X) the subset ofB(X) that defines
convex clock constraints. A clock constraintg is a particular formula and evaluates either tott or ff :
JgK ⊆ RX

≥0 andg(ν) = tt ⇐⇒ ν ∈ JgK.

Timed Transition Systems and Timed Automata. A timed transition system[23] (TTS) is a tuple
(Q, E, Q0,→), whereQ is set of locations,E is the set of actions,Q0 is the set of initial states,→⊆
Q × (E ∪ R≥0) × Q. A timed automaton[17] is a tuple(L, L0, E, X, I, T ) such thatL is a (finite) set
of locations, X is a finite set ofclocks, L0 is s.t.JL0K ⊆ L × RX

≥0 is a predicate that defines the set of
initial states,E is a finite set ofactions, T ⊆ L × (B(X) × E × A(X)) × L is thetransition relation,
I : L → BC(X) is theinvariant constraint.

The semantics of a timed automaton(L, L0, E, X, I, T ) is given by a TTS(L × RX
≥0, E, Q0, →)

whereQ0 = JL0K and∀(l, v) ∈ L × RX
≥0 the transition relation→ is defined by: i)discretesteps of the

form (l, v)
e
−→ (l′, v′) if ∃(l, g, e, a, l′) ∈ T, such thatg(v) = tt, v′ = a(v), v′ ∈ JI(l′)K, ii) continuous

steps of the form(l, v)
δ
−→ (l, v′), δ ∈ R≥0 if ∀δ′ ≤ δ, v + δ′ ∈ JI(l)K.
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A very useful result about timed automata (actuallyupdatabletimed automata [24]) is that reachab-
ility is decidable [17, 24] for this class of timed systems. Hence automatic verification tools have been
designed to analyse timed automata, and among themUPPAAL [5], KRONOS [7] andCMC [6]. We
will give in the last section a translation from aTimed AltaRica specification into a timed automaton.
This will allow us to useUPPAAL [5] or KRONOS [7] or CMC [6] to check timed properties on the
designed systems.

In the sequel, we defineTimed Interfaced Transition Systems(TITS) that are extended TTS. The
timed extension ofAltaRica components aretimed componentsthat are the counter parts of timed auto-
mata: the semantics of timed components is given by TITS.

3.2. Timed Interfaced Transition Systems

Timed Interfaced Transition Systems are an extension of ITS with real-valued variables and flows.

Definition 3.1. (Timed Interfaced Transition System)
A timed interfaced transition system(in the sequel TITS) ofcontinuous dimension(n, m) and time
domain4 T is a tupleA = 〈Et, Ft, St, π, T 〉 with:

1. Et = E+ ∪ {ε} ∪ T whereE+ is a finite set ofeventssuch thatε 6∈ E+ ∪ T andE+ ∩ T = ∅;

2. Ft ⊆ F ×Rm is the set offlowvalues, whereF is the set ofdiscrete flowvalues andRm is the set
of continuous flowvalues;

3. St ⊆ S×Rn is the set ofstateswhereS is the set ofdiscrete statesandRn is the set ofcontinuous
states;

4. π : St → 2Ft associates to each stateq ∈ St all the admissibleflow values inq. We assume
∀q ∈ St, π(q) 6= ∅.

5. T ⊆ St × Ft × Et × St × Ft is thetransition relationand satisfies:

(a) (q, g, e, q′, g′) ∈ T ⇒ g ∈ π(q) ∧ g′ ∈ π(q′)

(b) ∀q ∈ St,∀g, g′ ∈ π(q) we have(q, g, ε, q, g′) ∈ T

(c) ∀q ∈ St,∀g ∈ π(q) we have(q, g, 0, q, g) ∈ T

A configurationof a TITS is a pair((s, ν), (f, µ)) ∈ St × Ft such that(f, µ) ∈ π(s, ν).

Remark 3.1. Compared to item 5 of Def. 2.1, we need to be more precise when defining the set of
transitions of a TITS. Indeed we want to enforce discrete variables to remain unchanged when time
elapses. Assume we define the transition relationT in the same way as it was in defined item 5 of
Def. 2.1: T ⊆ St × Ft × Et × St. Then we will not be able to leave discrete flow values unchanged
during a delay transition when we define the semantics ofAltaRica timed components (Def. 3.7): in the
target configuration, we can only constrain the state variables inSt and not the flow variables inFt. Thus
we prefer to defineT overSt ×Ft ×Et ×St ×Ft which enables us to refer to the source and target flow
values of a transition as in item 5.(c) of Def. 3.1.

4we assume0 ∈ T andT = N or Q≥0 or R≥0 or {0}.
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Also note the following properties: ifn = 0 andm = 0 andT = {0} we obtain the definition of
ITS. Indeed as pointed out in remark 2.1, we can give the definition of the transition relation of an ITS
in terms of transitions between configurations. Ifm = 0 and we add an initial state to the TITS then
we obtain the definition of TTS:F is to be interpreted as the set of atomic properties. It is possible to
consider an integer time domain,T = N. Notice that in this case even if we allow only integer time steps
in the TITS, the values of the clocks can be inR≥0. For a dense time domainT = Q≥0 is suitable. For
a continuous time domain one can takeT = R≥0. In the following we assume the time domain isR≥0

when we deal withTimed AltaRica nodes.

3.3. Timed Bisimulations

In the sequel we will use the notion oftimed bisimulationsbetween timed systems. We define it for TITS
extending the definition ofinterfaced bisimulationof [10]:

Definition 3.2. (Timed Interfaced Bisimulation)
Let A1 = 〈Et, Ft, S1t , π1, T1〉 andA2 = 〈Et, Ft, S2t , π2, T2〉 be two TITS. Atimed interfaced bisimu-
lation relationfor A1 andA2 is a relationR ⊆ S1t × S2t that satisfies4 conditions:

1. ∀q1 ∈ S1t ,∃q2 ∈ S2t s.t. (q1, q2) ∈ R and∀q2 ∈ S2t ,∃q1 ∈ S1t s.t. (q1, q2) ∈ R,

2. ∀(q1, q2) ∈ R, π1(q1) = π2(q2),

3. ∀(q1, g, e, q′1, g
′
1) ∈ T1, ∀q2 ∈ S2t such that(q1, q2) ∈ R then ∃(q2, g, e, q′2, g

′
2) ∈ T2 s.t.

(q′1, q
′
2) ∈ R,

4. ∀(q2, g, e, q′2, g
′
2) ∈ T2, ∀q1 ∈ S1t such that(q1, q2) ∈ R then ∃(q1, g, e, q′1, g

′
1) ∈ T1 s.t.

(q′1, q
′
2) ∈ R.

Two TITS aretimed bisimilariff there exists a timed interfaced bisimulation relation on their set of states.

In the sequel we use the term timed bisimulation instead of timed interfaced bisimulation. Like in the
untimed case, an interfaced bisimulation can be expressed as an homomorphism between two TITS.

Definition 3.3. (Timed Interfaced Bisimulation Homomorphism)
Let A1 = 〈Et, Ft, S1t , π1, T1〉 andA2 = 〈Et, Ft, S2t , π2, T2〉 be two TITS. Atimed interfaced bisimu-
lation homomorphismh : A1 → A2 is a mappingh : S1t → S2t such that:

1. h is surjective,

2. ∀q1 ∈ S1t , π1(q1) = π2(h(q1)),

3. ∀(q1, g, e, q′1, g
′
1) ∈ T1,∃g′2 such that(h(q1), g, e, h(q′1), g

′
2) ∈ T2,

4. ∀q1 ∈ S1t ,∀q′2 ∈ S2t s.t. (h(q1), g, e, q′2, g
′
2) ∈ T2 then∃q′1 ∈ S1t such thath(q′1) = q′2 and

∃g′1 ∈ π1(q
′
1) such that(q1, g, e, q′1, g

′
1) ∈ T1.

We use the term timed bisimulation homomorphism as a shorthand for timed interfacedbisimulation
homomorphism.

The following theorem is an extension to TITS of previous results on ITS and follows from [10, 25]:
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Theorem 3.1. Two TITS A1 andA2 are timed bisimilar if and only if there exists a TITSB and two
timed interfaced bisimulation homomorphismsh1 : A1 → B andh2 : A2 → B.

The proof is given in Appendix A.1.

3.4. Timed Priorities

In the untimed version ofAltaRica, priorities among events play an important role [10]: they allow the
easy modeling of priorities among concurrently enabled transitions. It is natural in a timedsetting to try
and introducetimed priorities i.e.priorities among transitions involving some timing information. Again
we want to extend the existingAltaRica specification language and add timed priorities.

Timed priorities in timed systems have been introduced for timed automata [26] and acomprehensive
study of timed priorities can be found in [27, 28, 29]. The most common timed priority is urgency[30]:
basically, it says that if a transition is enabled in a timed automaton, time can not elapse and this transition
must be fired immediately. Without loss of expressiveness we defineurgent events: if an event in aTimed
AltaRica specification isurgentthen all the transitions labelled by this event are urgent. We then extend
Def. 2.2 to allow priority between time labels (inT) and discrete events:

Definition 3.4. (Simple Timed Priority Relation)
A simple timed priority relation< overE is a strict partial order overE∪{time} such that< is a priority
relation overE and a strict partial order overEtime

+ with Etime
+ = E+ ∪ {time} and∀v ∈ E+, v 6< time.

Then a > time means5 that eventa is urgent and has to be fired immediately when enabled (a
semantic definition of priorities will appear later in this section in Def. 3.6). Also note that ifa > time
andb > a thenb > time: the urgency of eventa entails urgency of greater events.

This allows us to model what is calledeagernessin [30]: aneagertransition is one that forbids time
elapsing if it is enabled. In the papers [27, 28] other notions of priorities are defined: (i) adelayable
transition is one that can be fired when its guard is true and before a certaindeadline; (ii) a lazytransition
is one that has no deadline (it may or may not be fired). We will add in Def. 3.7(time) guardsinto Timed
AltaRica components which will enable us to definelazytransitions. It is proved in [28] that a delayable
transition can be encoded using lazy an eager transitions. As we already know (Def. 3.4) how to define
eager transitions, we are able to express the three types of priorities proposed in [30].

More elaborate ways of prioritising transitions are given in [27]. The aim isto express priority
between events when several are enabled by using timing information. It is an extension of the priority
relation notion: we want to express thate < e′ only if e′ will not be enabled in some future. Intuitively,
we will write e <5 e′ for: the transition labellede′, if enabled within5 time units, has priority overe.
We now extend the notion of simple timed priority relation:

Definition 3.5. (Timed Priority Relation)
A timed priority relation< over E is a 3-ary relation inEtime

+ × (N ∪ {∞}) × Etime
+ satisfying the

following conditions (we denotea1 <k a2 for (a1, k, a2) ∈<):

• the binary relation<0 is a simple timed priority relation,

5We rule outtime > a as the purpose of a priority relation is to add a sort of liveness in the systemby forcing some discrete
actions to be taken.
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• a <k b ∧ a = time=⇒ k = 0,

• ∀k ∈ N, <k is a strict partial order,

• a1 <k a2 =⇒
(
∀k′ < k, a1 <k′ a2

)
.

Remark 3.2. Notice that in [27], another condition can be imposed on< (a transitivity condition). This
condition is related to the building oflive timed systemsand is not relevant in our setting. It is aimed at
preserving liveness in the systems and can then add new behaviors. We do not want to build live timed
systems but only to provide a restriction operator (by giving priorities) thatrestricts the set of behaviors
of the system. Note also we restrict the bounds toN which in theory is enough for specifying timed
systems.

The static priority ofAltaRica coincides with the particular timed priority where all the delays are equal
to zero,i.e. k = 0.

As in section 2.2.2, we define the timed priority restriction operator.

Definition 3.6. (Timed Priority Restriction Operator)
Let A = 〈Et, Ft, St, π, T 〉 be a TITS of continuous dimension(m, n), time domainT and< a timed
priority relation overE. We define thetimed priority restriction operator¹ for the transition relation
T ⊆ St × Ft × Et × St × Ft and the timed priority relation< by:

(q, g, e, q′, g′) ∈ T ¹<⇔ (q, g, e, q′, g′) ∈ T ∧





if e = t ∈ T,∀t′ ∈ T, t′ < t, if (q, g, t′, q′′, g′′) ∈ T

then∀e′ ∈ E+, (q′′, g′′, e′, q′′′, g′′′) ∈ T =⇒

time 6<0 e′.

otherwise if(q, g, t, q′′, g′′) ∈ T, t ∈ T, t ≤ k,

then∀e′, (q′′, g′′, e′, q′′′, g′′′) ∈ T =⇒ e 6<k e′.

We denoteA¹< = 〈Et, Ft, St, π, T ¹<〉.

Remark 3.3. Again, if T = {0}, we obtain the definition of the priority relation restriction (Def. 2.3).

We can lift the following theorem for ITS stated in [10] to TITS:

Theorem 3.2. (Priority and Timed Bisimulation)
Let A1 = 〈Et, Ft, S1t, π1, T1〉 andA2 = 〈Et, Ft, S2t, π2, T2〉 be two TITS and< a timed priority
relation overE. If h : A1 −→ A2 is a timed bisimulation homomorphism thenh : A1¹< −→ A2¹< is
also a timed bisimulation homomorphism.

The proof is given in appendix A.2.

3.5. Timed Components

Timed AltaRica components are the timed extensions ofAltaRica components (see Def. 2.4). Our
extension consists in addingclocks to AltaRica components. Hence our model is closely related to
the timed automaton model. Adding real-valued variables instead of clocks is quitestraightforward:
the resulting model is then close to the hybrid automaton model. In this paper we focus on the timed
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extension and the addition of clocks. We consider the formulasF, expressionsE and set of valuesD
settled in section 2.2.3.

Definition 3.7. (Timed Component)
A timed componentis a tupleT = 〈VS ∪ CS , VF ∪ CF , E, A, M, <〉 with:

1. VS , VF are finite sets for respectivelystatevariables,flow variables with the property of being
disjoint. We denoteVT = VS ∪ VF ; CS , CF are finite sets for respectivelyclock variables,real
flow variables with the property of being disjoint. We denoteCT = CS ∪ CF ; also we assume
VT ∩ CT = ∅;

2. E = E+ ∪ {ε} whereE+ is a finite set of events and as usualε is the empty action;

3. A = AVT
∩ ACT

∈ F is anassertionsuch thatfree(A) ⊆ VT ∪ CT ; AVT
∈ F, free(AVT

) ⊆ VT .
ACT

=
∧

k∈K Pk =⇒ Ik whereK is a finite set of indices,Pk ∈ F, free(Pk) ⊆ VT , Ik ∈ F,
free(Ik) ⊆ CT andIk defines a convex region ofRp if |CT | = p;

4. M ⊆ (F × B(CT )) × E × (E(VT )VS × A(CT )) is a macro-transitionrelation such that every
((g, γ), e, (a, R)) ∈ M satisfies:

(a) (g, γ) is aguardsuch thatg ∈ F andfree(g) ⊆ VT ; γ ∈ B(CT );

(b) e ∈ E is theeventof the transition;

(c) a : VS → E(VT ) is anassignmentfor the variables inVS . R ∈ A(CT ) is theclock assign-
mentof the transition;

5. < is a timed priority relation.

Remark 3.4. Item 3 of Def. 3.7 allows us to specify constraintsC between clock variables and real-
valued flow variables (e.g.Y = x whereY is a flow variable andx is clock variable): it suffices to use
tt =⇒ C whereC ∈ F(CT ) (e.g.tt =⇒ Y = x).

Notice that the semantics ofA is a subset of(DVS × Rn) × (DVF × Rm) as well as the semantics of a
guard(g, γ).

Example 3.1. (The Train)
In Fig. 4 the time features of componentTRAIN appear on line 7 where a clock (state) variablet is
declared; it is used to constrain the guards of the transitions (see lines 9 to 11) and on some of themt
is reset; also the assertion (lines 16–17) implies that when in stateetat= 1 (resp.2) time cannot elapse
aftert has reached30 (resp.20).

Definition 3.8. (Semantics of Timed Components)
Let T = 〈VS ∪ CS , VF ∪ CF , E, A, M, <〉 be a timed component. Let|CS | = n and|CF | = m. The
semanticsof T over the time domainT is the timed interfaced transition systemJT K = 〈Et, Ft, St, π, T 〉
of dimension(n, m) constructed in the following way:

1. Et = E ∪ T,

2. Ft = DVF × Rm,
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1: node TRAIN

2: flow N : [0,1];

3: event approach, in, exit;

4: state
5: etat : [0,2];

6: n : [0,1];

7: t : clock ; // Definition of aclockvariable
8: trans
9: t >= 70 & etat=0 |- approach -> etat := 1, t := 0, n := 1;

10: 20 <= t <= 30 & etat=1 |- in -> etat := 2, t := 0;

11: 10 <= t <= 20 and etat=2 |- exit -> etat := 0, t := 0, n := 0;

12: init
13: etat=0,n=0,t=0;

14: assert
15: N=n;

16: (etat=1) => (t<=30); // Time assertions
17: (etat=2) => (t<=20);

18: edon

Figure 4. Specification of a Train as a Timed Component

3. St = {(s, ν) ∈ DVS × Rn
≥0|∃(f, µ) ∈ DVF × Rm | ((s, ν), (f, µ)) ∈ JAK},

4. π : St → 2Ft such thatπ(q) = {(f, µ)| (q, (f, µ)) ∈ JAK},

5. T ⊆ St × Ft × Et × St × Ft andT = JMK¹< with:

(a) lett = ((g, γ), e, (a, R)), defineJtK by:

((s, ν), (f, µ), e, (s′, ν ′), (f ′, µ′)) ∈ JtK if





((s, ν), (f, µ)) ∈ JA ∧ g ∧ γK

∧s′ = a(s, f)

∧ ν ′ = R(ν, µ)

∧ (f ′, µ′) ∈ π(s′, ν ′)

with R(ν, µ) the new clock assignment after resetting the variables inR.

(b) let δ ∈ T, defineJδK by:

((s, ν), (f, µ), δ, (s, ν ′), (f, µ′)) ∈ JδK if





((s, ν), (f, µ)) ∈ JAK

∧ν ′ = ν + δ ∧ ((s, ν ′), (f, µ′)) ∈ JAK

∧∀δ′ ≤ δ, ∃µδ′ | (ν + δ′, µδ′) ∈ JI(s, f)K

with I(s, f) =
∧

k∈K|(s,f)∈Pk
Ik.

(c) JMK = ∪t∈M JtK
⋃
∪δ∈TJδK.

Remark 3.5. Note thatJI(s, f)K is a convex set as it is a conjunction of convex sets. We have not used
this property ofI(s, f) in the semantics of components as it is not required in this definition. Anyway in
the sequel we will need this assumption and this is why we have put it in Def. 3.7of timed components.

The delay transitions in the semantics of a timed components leave the “continuous” flows free
to take any value as long as the invariantI(s, f) is satisfied. This is rather permissive as the values
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encountered along a delay transition could even be non continuous. For instance a constraint on a flow
like x ≤ Y ≤ x+2 wherex is a clock andY a continuous flow would allowY to take any value between
x andx + 2 at each time point. If we define flow to be clock we constrain the set of equations we can
write in the assertion. Indeed equations likeY = 2x could not be defined with a “clock”Y . So far we
stick to this permissive definition and we will tackle later which kind of flows can be “implemented” (see
section 4.4).

Finally in the caseCF = ∅ we obtain the definition of timed automata (again if we add an initial
state); the semantics of such a timed component is then a TTS (againVF is to be interpreted as some
properties or observations on each state.)

As for the untimed case we have the following lemma:

Lemma 3.1. Let T = 〈VS ∪CS , VF ∪CF , E, A, M, <〉 be a timed component and< is a timed priority
priority relation. ThenJ〈VS ∪ CS , VF ∪ CF , E, A, M, <〉K = J〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉K¹<.

The proof is straightforward from Def. 3.6 and Def. 3.8.

3.6. Timed Nodes

Timed nodes are straightforward extensions of nodes. Indeed, if we assume as stated in Def. 2.6 of a
node, that the synchronization constraint is expanded, the new constraint added by the time transitions is
trivial: the synchronized time transitions forn nodes are of the form(δ, δ, · · · , δ), δ ∈ T whereT is the
time domain and they do not need to be specified.

Definition 3.9. (Timed Node)
A timed nodeis a tupleN = 〈VF , CF , E, <,N0, · · · ,Nn, (Ṽ , <eV

)〉 with:

1. VF is a set offlow variables,

2. CF is the set ofreal flowvariables,

3. E = E+ ∪ {ε} is a finite set of events,

4. < is a timed priority relation overE,

5. for all i ∈ [1, n], Ni is a timed component or a timed node; the interface of the node is composed
of (i) VFi

∪ CFi
, the set of discrete flows and real flows ofNi and (ii) Ei the set of events ofNi.

We assume∀i 6= j ∈ [1, n], VFi
∩ VFj

= CFi
∩ CFj

= ∅,

6. N0 is a special timed component called thecontrol component. The set of events of this node is
E0 = E and the priority relation ofN0 is the empty relation. The set of (discrete) flow variables
of N0 is VF0 = VF ∪ VF1 ∪ VF2 ∪ · · · ∪ VFn , and the set of real flow variables isCF0 = CF ∪
CF1 ∪ CF2 ∪ · · · ∪ CFn ,

7. Ṽ ⊆ E0 ×E1 × · · · ×En is an expanded synchronization set together with a priority relation<eV
.

(see Def. 2.2).
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Remark 3.6. Notice that<eV
is a priority relation and not a timed priority relation. This is because

(Ṽ , <eV
) expresses the discrete synchronization constraint.

Example 3.2. (Hierarchical Specification of the Train-Gate-Controller)
A timed version of the train-gate-controller is given in Fig. 5. Notice that the gate is a component, the
train is the component given by Fig. 1, but the nodeMAIN embeds theCONTROLLER node and plays the
role ofN0.

node GATE

event Go_down, Go_up, down, up;

state etat : [0,3];

y : clock ;

trans
etat=0 |- Go_up -> ;

etat=0 |- Go_down -> etat:=1, y:=0;

etat=1 |- Go_down -> ;

etat=1 & y <= 10 |- down -> etat:=2;

etat=1 |- Go_up -> etat:=3, y:=0;

etat=2 |- Go_down -> ;

etat=2 |- Go_up -> etat:=3, y:=0;

etat=3 |- Go_up -> ;

etat=3 |- Go_down -> etat:=1, y:=0;

etat=3 & y <= 10 |- up -> etat:=0;

init
etat:=0, y:=0;

assert
(etat =1) => (y <= 10);

(etat =3) => (y <= 10);

edon

(a) The Timed Gate

node MAIN

flow N : [0,p];

event approach, exit, Go_up, Go_down;

priorities Go_up (<,k) approach;

state etat : [0,2];

z : clock ;

trans
etat=0 |- approach -> etat:= 1, z:=0;

etat=0 & N>1 |- exit -> ;

etat=0 & N=1 |- exit -> etat:= 2, z:=0;

etat = 1 |- approach -> ;

etat = 1 |- exit -> ;

etat=1 & z<=10 |- Go_down -> etat:=0;

etat=2 & z <= 10 |- Go_up -> etat:=0;

etat=2 |- approach -> etat:= 1, z:=0;

sub t1, t2 : TRAIN, g : GATE;

sync <t1.approach,t2.approach,approach>;

<t1.approach,approach>;

<t2.approach,approach>;

<Go_down,g.Go_down>;

<t1.exit,t2.exit,exit>;

<t1.exit,exit>;

<t2.exit,exit>;

<Go_up,g.Go_up>;

init
etat := 0, z := 0;

assert
N=t1.N+t2.N;

(etat =1) => (z <10);

(etat =2) => (z <= 10);

edon

(b) The Timed Controller

Figure 5. Timed AltaRica Specifications for the Controller and the Gate

Syntactically there is not much changes between timed and untimed nodes. The differences appear
in the semantics where the timed transitions are synchronized:

Definition 3.10. (Semantics of Timed Nodes)
Let N = 〈VF , CF , E, <,N0, · · · ,Nn, (Ṽ , <eV

)〉 be a timed node andJNiK = 〈Eit , Fit , Sit , πi, Ti〉
of dimension(ni, mi) for i ∈ [0, n]. The semantics ofN is the timed interfaced transition system
JN K = 〈Et, Ft, St, π, T 〉 of dimension(

∑n
k=0 ni, |CF |) defined by:
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1. Et = E ∪ T,

2. Ft = DVF × Rm, with m = |CF |,

3. for qi ∈ Sit , let q = (q0, q1, · · · , qn), then

π(q) = {(f, µ) ∈ DVF × Rm | ∀i ∈ [1, n],∃ηi ∈ πi(qi) | ((f, µ), η1, η2, · · · , ηn) ∈ π0(q0)}

4. St = {q ∈ S0t × S1t × · · · × Snt |π(q) 6= ∅};

5. T ⊆ St × Ft × Et × St × Ft is defined by:

(a) let<0 be the timed priority relation defined by:

(e0, e1, · · · , en) <0 (e′0, e
′
1, · · · , e′n) ⇐⇒ e0 < e′0

(b) let e = (e0, e1, · · · , en) ∈ E0 × · · · × En ∪ {(δ, · · · , δ)}, s = (s0, s1, · · · , sn) ands′ =
(s′0, s

′
1, · · · , s′n). DefineTN by:

〈s, f, e, s′, f ′〉 ∈ TN ⇐⇒





∃f0 = (f, f1, · · · , fn) ∈ π0(s0)

∃f ′
0 = (f ′, f ′

1, · · · , f ′
n) ∈ π0(s

′
0)

∀i ∈ [0, n], (si, fi, ei, s
′
i, f

′
i) ∈ Ti

(c) thenT =
(
TN¹<Ṽ

)
¹<0.

We have the node version of lemma 3.1:

Lemma 3.2. Let N = 〈VF , CF , E, <,N0, · · · ,Nn, (Ṽ , <eV
)〉 be a timed node andJN K its semantics.

ThenJN K = J〈VF , CF , E, ∅,N0, · · · ,Nn, (Ṽ , <eV
)〉K¹<.

The proof is straightforward from Def. 3.9 and Def. 3.10.

The semantics of nodes is compositional with respect to timed bisimulation:

Theorem 3.3. LetN = 〈VF , CF , E, <,N0, · · · ,Nn, (Ṽ , <eV
)〉 andN ′ = 〈VF , CF , E, <,N ′

0, · · · ,N ′
n,

(Ṽ , <eV
)〉 be two timed nodes such that∀i ∈ [0..n] there is a timed homomorphismhi from JNiK to JN ′

i K.
Then there exists a timed homomorphismh from JN K to JN ′K.

The proof is given in appendix A.3.

Timed AltaRica is a hierarchical modeling language so that each timed node can be expressed by a timed
component. The timed priorities and the synchronization are directly encoded into the resulting timed
component. LetN = 〈VF ∪CF , E, <,N0, · · · ,Nn, (Ṽ , <Ṽ )〉 be a timed node, we present the construc-
tion (extending the one given in [10]) of a timed componentCN = 〈VS ∪ CS , VF ∪ CF , E, A, M, <〉
which has the same semantics.

First we associate to each timed node a timed component defined as follows:
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Definition 3.11. (Symbolic Semantics)
If N = 〈VF ∪ CF , E, <,N0, · · · ,Nn, (Ṽ , <Ṽ )〉 is a timed node, withNi = 〈VFi

∪ CFi
, Ei, <i

,Ni0 , · · · ,Nin , (Ṽi, <Ṽi
)〉 for 0 ≤ i ≤ n, we denote byCN = 〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉 the

timed component constructed as follows:

1. ∀0 ≤ i ≤ n

(a) if Ni is a timed component, then we defineN ′
i = Ni¹<i and the timed priority is syntactically

encoded inN ′
i as defined later in section 3.7.2;

(b) if Ni is a timed node, then we defineN ′
i = CNi

the rewriting ofNi into a timed component
and encode timed priority syntactically as defined in section 3.7.2;

(c) we denoteN ′
i = 〈V ′

Si
∪ C ′

Si
, V ′

Fi
∪ C ′

Fi
, E′

i, A
′
i, M

′
i , ∅〉;

2. VS = V ′
S0

∪ · · · ∪ V ′
Sn

andCS = C ′
S0

∪ · · · ∪ C ′
Sn

;

3. A = (∃i=1..n(V ′
Fi

∪ C ′
Fi

)).
∧

i=0..n A′
i;

where the notation∃i=1..n(Wi).φ stands for:∀i,∃ηi ∈ Wi such thatφ(ηi). For ((s, ν), (f, µ)) ∈
DVS × RCS ×DVF × RCF we define:

• ((s, ν), (f, µ)) ∈ JAK ⇐⇒ ∀i ∈ [1..n],∃ηi ∈ D
V ′

Fi × R
C′

Fi s.t. ((s, ν), (f, µ), η1, · · · , ηn))
∈ J

∧
i=0..n A′

iK,

• ∀i ∈ [1..n], ((s, ν), (f, µ), η1, · · · , ηn)) ∈ JA′
iK ⇐⇒ ((si, νi), ηi) ∈ JA′

iK.

4. the set of macro-transitionsM ⊆ (F×B(CT ))×E×(E(VT )VS×A(CT )) is defined byM = (M ′¹

<eV
)¹<0, where<0 is the timed priority relation specified in Def. 3.10, and((g, γ), e, (a, R)) ∈ M ′

if and only if:

• ∀0 ≤ i ≤ n, there is a transition((gi, γi), ei, (ai, Ri)) ∈ M ′
i such that:

– g = (∃i=1..nVFi
).g0 ∧ · · · ∧ gn,

– γ = (∃i=1..nCFi
) .γ0 ∧ · · · ∧ γn,

• ∀x ∈ VS ∩ V ′
Si

we havea(x) = ai(x) and∀c ∈ CS ∩ C ′
Si

we haveR(c) = Ri(c),

• e = (e0, e1, · · · , en) ∈ Ṽ .

Theorem 2.1 (see page 1009) for untimed nodes carries over to timed nodes:

Theorem 3.4. Let N be a timed node. ThenN can be rewritten into a timed componentCN such that
JN K andJCN K are timed bisimilar.

The proof is given in appendix A.4.
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3.7. Syntactical Timed Priority

In [27] the authors show that it is possible to encode a priority relation by strengthening the guards of a
component: this way one can syntactically encode the priority relation.

We tackle this problem in the timed case. LetT = 〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉 be a timed
component and< be a timed priority relation. We first assume6 that < contains no urgent eventsi.e.
∀e ∈ E, time 6< e. Our aim is to compute the transition relationM¹< syntacticallyi.e. by finding new
guards that defineM ¹<. We first rewrite our timed component so that we are sure that when a guard
evaluates to true, the corresponding transition can indeed be fired,i.e. the resulting new state satisfies
assertionA. This is done by adding weakest precondition (section 3.7.1) into the existingguards. Then
we show how to encode timed priority (section 3.7.2) again by strengthening theguards. Finally we
detail how urgency is handled in section 3.7.3.

3.7.1. Weakest Precondition

The key point is to know if a transition((g, γ), e, (a, R)) can really be fired, and the fact that the guard
evaluates to true is not sufficient: a new state can be reached from((s, ν), (f, µ)), only if after the assign-
ments given by(a, R) π(a(s, f), R(ν, µ)) 6= ∅, i.e. there are some admissible flow values. This latter
condition depends on assertionA of the timed component and can be seen as aweakest precondition.

First assume we have an untimed component (Def. 2.4). Lett = (g, e, a) be a transition of this
component, andA the assertion. ForQ ⊆ S × F , we definePret(Q) = {(s, f) | ∃f ′ | (a(s, f), f ′) ∈
Q}. AssumePret(JAK) can be defined by a formulaφt ∈ F, and free(φt) ⊆ VT . Now if we take
t′ = (g ∧ φt, e, a), we are sure that wheng ∧ φt evaluates to true the transitiont can be fired as(s, f) ∈
Jg ∧ φtK =⇒ π(a(s, f)) 6= ∅.

We can extend this to the timed component. Fort = ((g, γ), e, (a, R)) we definePret(Q) =
{((s′, ν ′), (f ′, µ′)) | ∃f ′′, µ′′ | ((a(s′, f ′), R(ν ′, µ′)), (f ′′, µ′′)) ∈ Q}. AssumePret(JAK) can be writ-
ten asφt ∧ θt with free(φt) ⊆ VT andfree(θt) ⊆ CT .

Then if we definet′ = ((g ∧ φt, γ ∧ θt), e, (a, R)), we can ensure that if the guard oft′ evaluates to
true,t can be fired.

Now we show how to encodePret(JAK) into guards of the form(g, γ) with g ∈ F, free(g) ⊆ VT

andγ ∈ B(CT ). AssumeA = p1 ∧ p2 ∧ · · · ∧ pn ∧ (q1 =⇒ i1) ∧ · · · ∧ (ql =⇒ il). Assume
Pret(JAK) is a conjunction of the form7 p′1 ∧ p′2 ∧ · · · ∧ p′k ∧ (q′1 =⇒ i′1) ∧ · · · ∧ (q′m =⇒ i′m). Let
P ′ = p′1 ∧ p′2 ∧ · · · ∧ p′k. We can rewritePret(JAK) as8:

∨

J∪I=[1..m]

I∩J=∅

P ′
∧

∧j∈J¬q′j
∧

∧r∈Iq
′
r︸ ︷︷ ︸

GI,J

∧
∧r∈Ii

′
r︸ ︷︷ ︸

ΓI,J

This is a formula of the form
∨

p=1..s Gp ∧ Γp with Gp ∈ F, free(Gp) ⊆ VT andΓp ∈ B(CT ). Now we
creates transitions fromt = ((g, γ), e, (a, R)) defined by:

∀p ∈ [1..s], tp = ((g ∧ Gp, γ ∧ Γp), e, (a, R))

6Urgency is dealt with in section. 3.7.3 and requires additional assumptions and definitions.
7Quantifier elimination inPret(JAK) can only be done under some conditions (e.g. the discrete domain is finite). We do not
discuss this in this paper and assume we can actually find a quantifier-freeexpression forPret(JAK).
8This expression is equivalent to the one given in [10], Def. 9.2.3 (Priorités Syntaxiques), page 85.
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It remains to replacet by thetp, p ∈ [1..s] to build a new timed component andt can be fired in the
original component if and only if one of thetp can be fired in the new component (leading to the same
values for the state variables.) In the sequel we assume guards have been strengthened so that if a guard
evaluates to true then the transition can actually be fired.

3.7.2. Encoding Timed Priority

The Simple Case. Let t = ((g, γ), e, (a, R)) ∈ M . Assumee <k e′ and there is only one transition
t′ = ((g′, γ′), e′, (a′, R′)) ∈ M labelled withe′. Thent can be fired from a configurationq only if (g, γ)
is true inq and:

1. eitherg′ is not true inq,

2. org′ is true inq andγ′ will not be true withink time units.

First we deal with the discrete part of the guard and split the transitiont into t1 andt2 with:

• t1 = ((g ∧ ¬g′, γ), e, (a, R)) which corresponds to item 1 above;

• t2 = ((g∧g′, γ), e, (a, R)) which corresponds to item 2 above althoughγ needs to be strengthened
to meet the requirements of item 2 above.

We now show how to strengthenγ in t2. A useful operator was introduced in [28, 29] for this purpose:

Definition 3.12. (Modal Operator [28, 29])
Let X = {x1, x2, · · · , xn}. Letν ∈ Rn andk ∈ N. Letφ ∈ B(X) andT be the time domain. We define
the (state) predicate3kφ by:

(3kφ)(ν) ⇐⇒ ∃t ∈ T, t ≤ k, φ(ν + t)

Now we strengthen the guardγ in t2 and definet′2 = ((g ∧ g′, γ ∧ (¬3kγ
′)), e, (a, R)). According

to [28, 29], it is possible to eliminate the existential quantifier in3kγ
′ and to obtain a quantifier-free

formula (we will not get into the details and refer the reader to [28, 29]).

General Case. In the general case there could bep transitionst′i = ((g′i, γ
′
i), ei, (a

′
i, R

′
i)) s.t. e <k1

e1, · · · , e <kp
ep. Then we splitt into 2p transitionstF = ((gF , γF ), e, (a, R)) with F ⊆ [1..p]:

gF = g ∧
∧

i∈[1..p]\F

¬g′i ∧
∧

i∈F

g′i (2)

γF = γ ∧
∧

i∈F

¬3ki
γ′

i (3)

Remark 3.7. As stated in remark 3.2, page 1014, we do not modify theinvariantsof the system.

According to [27], the formula3kγ can be written as simple formula inB(CT ). If we denote byM¹<
the transition relation obtained by:

1. strengthening the guards by the weakest precondition forfireability as defined in section 3.7.1,
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2. strengthening the guards to encode the timed priority relation as defined above in this subsection,

we obtain a new timed componentT ¹<= 〈VS ∪ CS , VF ∪ CF , E, A, M¹<, ∅〉 such that:

Lemma 3.3. (Syntactical Priority)
JT ¹<K = JT K¹<.

Lemma 3.3 follows from Def. 3.10 and Def. 3.12. From lemma 3.1, we obtain the following corollary:

Corollary 3.1. J〈VS ∪ CS , VF ∪ CF , E, A, M, <〉K = J〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉¹<K

This completes the syntactical encoding of timed priority without urgency for timed components.

3.7.3. Encoding Urgency

Urgency consists in preventing time elapsing when a discrete transition is enabled. In this section we
assume the time domain isR≥0. Also we assume time determinism and denoteν−t the valuation defined
by (ν−t)(x) = ν(x)−t (time non determinism is more technically involved but can be handled as well).
Our work is based on previous papers by S. Bornot, J. Sifakis and S. Tripakis [28, 29, 27]. The authors
define the notion ofrising edgeof a guard that plays a central role:

Definition 3.13. (Rising Edge [27])
Let X = {x1, x2, · · · , xn}, ν ∈ Rn andγ ∈ B(X). Therising edgeof γ, denotedγ↑ is the predicate
defined by:

γ↑ (v) =
(
γ(v) ∧ ∃t > 0 , ∀0 < t′ ≤ t, ¬γ(v − t′)

)
∨

(
¬γ(v) ∧ ∃t > 0,∀0 < t′ ≤ t, γ(v + t′)

)
(4)

We assume that each guard of a transition labelled by an urgent event is such thatJγ ↑K ⊆ JγK.
Indeedx > 10 is not a relevant guard for an urgent transition as there is nofirst instantat which the
guard becomes true: the transition becomes urgent strictly after10 which is a fuzzy instant and this is
in contradiction with urgency. Note that in this case(x > 10)↑≡ (x = 10) which gives the same
rising edge as forx ≥ 10 but the latter has a first instant for which it is true. This problem is well-
known and is already discussed in [29]. Note that in this case equation (4)of Def. 3.13 simplifies in
γ↑ (v) =

(
γ(v) ∧ ∃t > 0 , ∀0 < t′ ≤ t, ¬γ(v − t′)

)
. We also assume that a guardγ of an urgent

transition is convex and this implies thatγ↑ is convex as well.

Urgency as an assertion The semantics of urgency (see Def. 3.6) implies that when a transition be-
comes urgent (i.e. its guard is true) time elapsing is forbidden and this is the semantics proposed in [29].
It does not imply that the urgent transition is fired. Also this notion is different from the notion of urgency
in UPPAAL [20] which only constrains processes to synchronize on common channels (synchronized
events) whenever they can.

To be more precise assume we have a componentU with an urgent transitioneu as defined on
Fig. 6(a).

Start in configuration(s = 0, x = 0). At some pointf can occur. If it occurs beforex = 10 it is
possible to let some time elapse untilx = 10 reaching(s = 1, x = 10). At this point the urgent transition
prevents time from elapsing. Anyway a new occurrence off could occur and sets to 0 again: in this
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1: node U

2: state
3: s : [0,1];

4: x : clock ;

5: event
6: e_u > time , f

7: trans
8: s=1 & 10<= x<=20 |- e_u -> s:=0;

9: |- f -> s:=0;

10: |- f -> s:=1;

11: init s:=0, x:=0 ;

12: edon

(a) NodeU with eventeu urgent

1: node U_Y

2: flow Y ; // the flow variableY
3: state
4: s : [0,1];

5: x : clock ;

6: event
7: e_u, f

8: trans
9: s=1 & 10<=x<=20 |- e_u -> s:=0;

10: |- f -> s:=0;

11: |- f -> s:=1;

12: init s:=0, x=0 ;

13: assert
14: (s=1) => (10<x<=20 => Y=0)

15: edon

(b) Urgency as an assertion

Figure 6. Encoding Urgency

configuration the urgent eventeu is no more enabled and time can elapse. Thus to use our notion of
urgency to force a transition to occur, one must ensure that once an urgent transition is enabled (x = 10)
no other transition can disable it (to achieve this, one could change the enabling conditionTrue of line `9

of nodeU to x<10).
To encode urgency, we use an additional real flow variableY (see line 2 of Fig. 6(b)). This flow

variable is assumed to be reset to0 on each discrete transition and evolves at rate1 (synchronous with
physical time) on delay transitions. How this will be achieved will be dealt with later in this section.
The syntactical encoding of urgency consists in adding a timed invariant (line 14 of nodeU_Y, Fig. 6(b))
to constrain time elapsing. Note that this assertion impliesY = 0 only whenx > 10 (and notx ≥
10). Intuitively, assume we reach a configuration(s = 1, x < 10). Then time can elapse from this
configuration untilx = 10. Indeed(s = 1, x = 10) satisfies Def. 3.6 as for each strictly preceding
instant the assertion is true. From this configuration on time cannot elapse asY > 0 and the assertion
forbids it. Now if we reach(s = 1, 10 ≤ x ≤ 20) by firing a discrete transition,Y is set to0 and time
elapsing is also forbidden. This achieves urgency (in the sense that time elapsing is prevented).

Some limitations of our encoding is that we do not know how to deal with urgent transitions with
sharpurgent guards asx = 5. This is why we require an additional assumption on guards for urgent
transitions: the (temporal) guardγu must satisfy∃ε > 0 , ν ∈ Jγu↑K =⇒ ∀ε′ ≤ ε ν + ε′ ∈ JγuK. We
refer to this latter property asγu is not sharp.

Correctness of the encoding Let T = (VS ∪CS , VF ∪CF , E, A, M, <) be a timed component where
< consists in one element:eu > time (eu is urgent). Assume there is one urgent transitiontu =
((gu, γu), eu, (au, Ru)), γu is not sharp, and there is a flow variableY that is reset on each discrete
transition and evolving at rate1 on delay transitions.

Define the timed componentTu = (VS ∪ CS , VF ∪ CF , E, A ∧ ϕu, M, ∅) with ϕu
def
= gu =⇒(

(γu ∧ ¬(γu↑)) =⇒ Y = 0
)
. Note that we assumeY is aninvisible variablethat does not belong to

CF . This is just for the sake of clarity as otherwise we need to define a new notion of timed bisimilarity
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for timed interfaced transition systems that do not have the same sets of flow variables (remind that
Def. 3.2 imposes the two systems to have the same interface).

Theorem 3.5. JT K andJTuK are timed bisimilar.

The proof is given in appendix A.5.

Implementation of the encoding To implement our encoding and add a fresh flow variableY , we
proceed as follows:

1. create nodeU_Y from nodeU, as described by Fig. 6(b),

2. build a new nodeYY (Fig. 7(a)) that manages a variableY that satisfies the assumptions we needed
before: Y is reset on each discrete transition and evolves at rate1 on delay transitions. Each
discrete event of other components will be synchronized with eventu of YY;

3. build a parent nodeUU that synchronizesU_Y andYY; this node is given in Fig. 7(b).

node YY

flow Y;

event u;

state
y : clock ;

trans
|- u -> y:=0 ;

init y:=0;

assert Y=y

edon

(a) NodeYY

node UU

event e_u,f;

sub CU_Y:U_Y; C_YY:YY;

sync
<f,C_YY.u,CU_Y.f>;

<e_u,C_YY.u,CU_Y.e_u>;

assert
CU_Y.Y=C_YY.Y

edon

(b) NodeUU

Figure 7. Hierarchical Modeling of Urgency

This scheme can be carried out for multiple urgent events. We do not detailthis in this paper as it is
just a technical exercise.

Now that we know how to encode timed priority syntactically and how to flatten a node into a
component. We proceed with a translation of timed components into timed automata. This will enable
us to check various timed properties.

4. From Timed Nodes to Timed Automata

In this section, we present a translation ofTimed AltaRica specifications to timed automata [17]. This
way we can extract a timed automaton from aTimed AltaRica specification and carry out some veri-
fication of temporal properties using tools for analysing timed systems likeUPPAAL [5], CMC [6] or
KRONOS [31]. Notice that thanks to theorem 3.4 we only need to define the translation for timed
components.
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4.1. FromTimed AltaRica Components to Timed Automata

Let T = 〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉 be a timed component with|CS | = n and|CF | = m (thanks
to lemma 3.3, we can assume the timed priority relation ofT is the empty relation). From Def. 3.7, the
assertion of a timed component consists in two parts:

• AVT
which gives a constraint on the discrete variables,

• ACT
which associates atime invariantto a predicate on the discrete variables.

Thus we writeACT
=

∧p
j=1(Pj =⇒ Ij) with free(Pj) ⊆ VT andfree(Ij) ⊆ CT .

As we want to build a timed automaton (which is timed bisimilar to the original node) froma timed
component, we need to define the locations of this timed automaton. They are builtfrom the assertion on
the discrete variables, and must be labelled with a timed invariant. We define the translation of a timed
component with no flow variables and explain later how we deal with componentswith flow variables.

We writeG ] L = [1..p] as a shorthand forG, L ⊆ [1..p], G ∩ L = ∅, G ∪ L = [1..p] i.e. G andL
form a partition of[1..p].

Definition 4.1. (Timed Automaton Associated with a Timed Component)
LetT = 〈VS∪CS , VF∪CF , E, A, M, ∅〉 be a timed component withVF = CF = ∅. LetA = AVT

∧ACT

with free(AVT
) ⊆ VT , ACT

=
∧p

j=1(Pj =⇒ Ij) and free(Pj) ⊆ VT and free(Ij) ⊆ CT . Given
G ⊆ [1..p], L ⊆ [1..p], we define:

rL
G =

(
∧j∈GPj

)
∧

(
∧j∈L¬Pj

)
(5)

lLG = AVT
∧ rL

G (6)

The timed automaton9 A(T ) = (L, L0, E, X, I, T ) associated withT is defined by:

• L = {lLG |G ] L = [1..p] ∧ JlLGK 6= ∅} is the set of locations10,

• L0 = L is the set of initial states (actually in realTimed AltaRica specifications, a set of initial
states is given as in the example of Fig. 5(b); assume this set is defined by a predicateinit then
L0 = init),

• E is the set of events,

• X = CT is the set of clocks,

• the invariantI is defined by:I(lLG) =

{
∧k∈GIk if G 6= ∅

tt otherwise

• the transition relationT is defined by: letlLG, lL
′

G′ ∈ L such thatJlLG ∧ gK 6= ∅ anda(JlLG ∧ gK) ∩
JlL

′

G′K 6= ∅ (the source location intersects the discrete guard and the target location intersects the
discrete part of the state space) andt = ((g, γ), e, (a, R)) ∈ M , then

(lLG, (g ∧ Pret(l
L′

G′) ∧ γ, e, (a, R)), lL
′

G′) ∈ T

9see section 3.1 for the definition of a timed automaton
10Thus the number of locations is exponential in the number of predicates ofACT

. Notice that this definition gives a partition
of the set of states defined byAVT

and thatJlLGK ⊆ St × Ft.
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Remark 4.1. As we have imposed that theIk denote convex sets, the invariantsI(lLG) are allowed by
the definition of timed automaton (section 3.1).

In the previous definition we assume we can give constraints on the discretevariables in the guards,
and allow assignments of the discrete variables on a transition, which is not formally allowed by the
definition of timed automata of section 3.1, but this definition can trivially be extended to include this
(timed automata ofUPPAAL [5] allow the use of such features). Also if we do not make any assumption
on the domain of the discrete variables of aTimed AltaRica specification the number of locations may
be infinite. Anyway we can define the translation of a timed component into a timed automaton (with
potentially an infinite number of locations):

Theorem 4.1. Let T = 〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉 be a timed component withVF = CF = ∅.
ThenJT K andJA(T )K are timed bisimilar.

The proof is given in appendix A.6.

4.2. The Train Example

We now apply the previous translation to the train example of Fig. 8.

1: node TRAIN

2: // flow N : [0,1]; commented out
3: event approach, in, exit;

4: state
5: N : [0,1]; // N is now a state variable
6: etat : [0,2];

7: n : [0,1];

8: t : clock ;

9: trans
10: t >= 70 & etat=0 |- approach -> etat := 1, t := 0, n := 1, N:=1;

11: 20 <= t <= 30 & etat=1 |- in -> etat := 2, t := 0;

12: 10 <= t <= 20 and etat=2 |- exit -> etat := 0, t := 0, n := 0, N:=0;

13: init
14: etat:=0;n:=0;N:=0;t:=0;

15: assert
16: // N=n; commented out
17: (etat=1) => (t<=30);

18: (etat=2) => (t<=20);

19: edon

Figure 8. Train Timed Component with no Flow Variables

The flow variableN is first assumed to be a state variable (line 5) and an assignment is given forN on
lines 10–12. We assume that this enables us to get rid of the assertion onN (i.e. line 16 is commented
out). Table 1 gives the locations and invariants of the corresponding timed automaton.

The next step consists in computing the graph structure: the result for the train component of Fig. 8 is
given on Fig. 9. Notice that we compute an abstract timed automaton in the sensethat discrete variables
are not interpreted: as a result the number of locations of the timed automaton where the discrete variables
are interpreted might be larger than the number of locations of this abstract timed automaton, even could
be infinite.
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G ] L rL
G lLG I(lLG)

∅ ] {1, 2} etat= 0 etat= 0 tt

{1} ] {2} etat= 1 etat= 1 t ≤ 30

{2} ] {1} etat= 2 etat= 2 t ≤ 20

{1, 2} ] ∅ ff ff –

Table 1. Locations and Invariants of the Train Component

l1,2
∅

l21
t ≤ 30

l12
t ≤ 20

t ≥ 70 ∧ etat= 0

approach

(etat,n,N,t):= (1, 1, 1, 0)

20 ≤ t ≤ 30 ∧ etat= 1

in

(etat,t):= (2, 0)

10 ≤ t ≤ 20 ∧ etat= 2

exit

(etat,n,N,t):= (0, 0, 0, 0)

Figure 9. Translation of the Train component
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4.3. Discussion of our Translation

The assumption that flow variables become clock state variables of the timed component means that the
flows evolution rates and resets must follow the evolution rules of a clock in a timed automaton. This
imposes restriction on the type of equations one can write in the assert part of aTimed AltaRica program.
We will not go into details about it and the reader is referred to [32] for anexhaustive presentation.
Nevertheless such constraints likeY = x, Y = x + 1 etc. (whereY is a flow andx a clock) can be
dealt with in the translation into timed automata. More complex equationsY = 2x + y can be handled
usinghybrid automata[18]. Constraints likex + 1 ≤ Y ≤ 2y + x cannot be encoded into linear hybrid
automata as the slope ofY is unbounded. In the sequel we assume that only assertions of the simple
typeY = x or Y = x + c, c ∈ N are used so that we can encode them into timed automata constraints.
Computing the assignments of the flow variables that have become state variables is in this case easy and
detailed in Table 3.

The other choices we have made can be accounted for by the following reasons:

• we do not want to have an expensive computation to produce the timed automaton; our translation
scheme is easy to implement and does not require extensive computation;

• also, we do not want to deal with clocks in the translation as it is the purpose of the tools for
analysing timed systems to do some computation on continuous time domains; we only perform
syntactical rewriting;

• we do not want to constrain the discrete variables to be in a finite domain before doing the trans-
lation: indeed this could be the case that the variables are in a finite domain only because of the
timing constraints. Thus we do not want to compute the domain of the variables in our translation.
This is why the locations are predicates on the discrete variables and transitions constrain updates
of these variables. Notice also that this could be the case that the timed automatonassociated
with a timed component has a finite bisimilar quotient whereas the untimed componenthas no
finite bisimilar quotient (e.g. if a transition contains an update of the formx := x + 1). With
our translation, we do not need to assume that the untimed component admits a finite bisimilar
quotient.

4.4. Reachability Issues forTimed AltaRica Components

Timed AltaRica components are translated into timed automata as described previously. If the domain
of the discrete variables is finite, we obtain a timed automaton with a finite number of discrete states.
Reachability is decidable for timed component if the translation of a timed component belongs to a class
of timed automata for which reachability is decidable. This problem has been extensively studied and an
exhaustive set of results was given in [24]. We recall (see section 3.1) that the set ofclock constraints
B(X) over a setX of clocks is defined inductively by the grammar (see equation 1):

g := x v r| x − y v r |g ∧ g |g ∨ g

with x, y ∈ X, v∈ {<, <, >,≥, =}, r ∈ Z. The set ofdiagonal-freeconstraintsBdf (X) is defined by
the sub-grammar:

g := x v r|g ∧ g |g ∨ g
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with x ∈ X, v∈ {<, <, >,≥, =}, r ∈ N. Table 2 gives a summary of the results in [24] (an assignment
of the formx :< c means thatx is assigned any value less thanc) concerning the decidability of the
reachability problem for timed automata: decidability depends on the type of guards of the automata and
on the type of assignments allowed.

Deterministic Assignment Guards inBdf (X) Guards inB(X)

x := c (1)

x := y (2) Decidable

x := x + 1 (3) Decidable

x := y + c (4) Undecidable

x := x − 1 (5) Undecidable

Non-Deterministic Assignment Guards inBdf (X) Guards inB(X)

x :< c (6) Decidable

x :> c (7) Decidable

x :v y + c (8) Undecidable

y + c <: x :< y + d (9)

y + c <: x :< z + d (10) Undecidable

Table 2. Decidability Results for Reachability in Timed Automata (from [24])

In our setting, the decidability of reachability depends on the type of guardsand assignments of the
timed component as well as on the type of assertions used to constrain the continuous flow variables. If
we allow only assertions on the continuous flow variables of the formY = x+c′ whereY is a continuous
flow variable,x is a clock state variable andc′ ∈ N then the updating ofY on discrete transitions can
be encoded as a clock assignment according to the encoding described inTable 3: in the case of non-
deterministic assignments (6–10) ofx we encode the assignment forY with anε-transition that occurs
right after the one assigningx without any time elapsing (can be implemented bycommittedlocations in
UPPAAL for instance).

Combining Tables 2 and 3 we obtain that for an assertion containing only constraints of the form
Y = x + c′ with Y a flow variable andx is a clock variable,c′ ∈ N:

• if all the guards on the clock and continuous flow variables are inBdf (X), reachability is decidable
in case the assignments of the clock state variables are not of type (5) nor (10);

• if all the guards on the clock and continuous flow variables are inB(X), reachability is decidable
only if the assignment of the clock state variables are of the form (1) or (2)andc′ = 0 (Y = x and
x := y allowed).

5. A Case Study Using Timed Priorities

In this section we give an example of the use of time priorities inTimed AltaRica and the modeling
power they give. We consider again the train-gate-controller introducedin section 2:
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Type of Assignment forx Type of Assignment forY

x := c (1) Y := c + c′ (1)

x := y (2) Y := y + c′ (4)

x := x + 1 (3) Y := Y + 1 (3)

x := y + c (4) Y := y + c + c′ (4)

x := x − 1 (5) Y := Y − 1 (5)

x :< c (6)

x :> c (7)

x :v y + c (8) ε-trans.Y := x + c′ (4)

y + c <: x :< y + d (9)

y + c <: x :< z + d (10)

Table 3. Encoding Flow VariableY constrained byY = x + c′

• there are two tracks crossing at the gate,

• the trains can come from any side on these two tracks,

• the aim is to ensure propertyP stating “the gate is closed when at least one train is on the near
section”. Also we do not want to open the gate if a train is crossing and another is going to cross
in a near future (this is where the priorities will be used).

Let k ∈ N be a parameter, we fix some timed priorities among the two eventsapproach andGo_up
within a delayk. First, we translate this system in timed automata by applying the translation developed
in the previous section 4. Second, we analyse the system usingUPPAAL [5] (note in this case we do
have to instantiatek with a value inN before using the tool).

5.1. Translation of the Train-Gate-Controller into Timed Automata

The components Train-Gate-Controller have been given in Fig. 1, page 1003 and Fig. 5, page 1018.
From those components we can build timed automata using the algorithm defined in section 4.1.

For this particular case of a hierarchical node with sub-components we can use an alternative way for
building the timed automatonA(Main): it is the synchronized product of the three automata obtained
by translating each component into a timed automaton. The timed automata for nodesTRAIN andGATE
are given in Fig. 10. The timed automaton11 corresponding to nodeMAIN is given in Fig. 11.MAIN.N.

On the synchronized product of the threeUPPAAL timed automata, propertyP is given by the
UPPAAL-style property:

A[]((TRAIN1.s2 or TRAIN2.s2) imply GATE.etat==2)

We can check thatP is satisfied for any fixed value ofk.

11To deal with priority, we use the algorithms given in section 3.7 and we obtaina priority free component.
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s0

s1

t<=30

s2

t<=20

t>=10,t<=20, etat ==2

etat :=0, n :=0,t:=0

exit!
t >= 70, etat ==0

etat :=1,n:=1,t:=0

approach!

t>=20,t<=30, etat ==1

etat :=2,t:=0
in!

s0

s1

y<=10

s2

y<=10

etat ==0

etat :=1,y:=0

Go_down!

etat ==0
Go_up!

etat ==2

Go_down!

etat ==1

etat :=3,y:=0
Go_up!

etat ==2

etat :=3,y:=0

Go_up!

y<=10, etat ==1

etat :=2

down!

etat ==3

etat :=1,y:=0

Go_down!
 etat ==3

Go_up!

y<=10, etat ==3

etat :=0

up!

Figure 10. Train and Gate Automata inUPPAAL

s0

s1

z<10

s2

z<=10

etat ==0,X2 >= 70

etat :=1,z:=0, N :=0
approach!

 etat ==0,X2 >= 70

 etat :=1,z:=0, N :=1

approach!

 etat ==0,X2 >= 70

 etat :=1,z:=0, N :=2

approach!

etat ==1,X1 >= 70
approach!

N:=2

etat ==1,X1 >= 70

approach!
N:=0

etat ==1,X1 >= 70

approach!
N:=1

etat ==1,X2 >= 70
approach!

N:=1
etat ==1,X2 >= 70
approach!

N:=2

etat ==1,X2 >= 70

approach!

N:=0

etat ==1

exit!

N:=0

etat ==1
exit!

N:=2etat ==1

exit!
N:=1

etat ==0, N >1

exit!
N:=2

etat ==0, N >1

exit!

N:=1

etat ==0, N >1

exit!

N:=0

etat ==0, N >1

exit!

N:=2

etat ==0, N >1

exit!

N:=1

etat ==0, N >1

exit!

N:=0

 etat ==2,X1 >= 70

 etat :=1,z:=0, N :=0

approach!

etat ==2,X1 >= 70

etat :=1,z:=0, N :=1
approach!

etat ==2,X1 >= 70

etat :=1,z:=0, N :=2
approach!

z<=10, etat ==1

 etat :=0, N :=0

Go_down!

z<=10, etat ==1

 etat :=0, N :=1

Go_down!

z<=10, etat ==1

 etat :=0, N :=2

Go_down! z<=10, etat ==2,X1<70-k,X2<70-k

 etat :=0, N :=0
Go_up!

z<=10, etat ==2,X1<70-k,X2<70-k

 etat :=0, N :=1
Go_up!

z<=10, etat ==2,X1<70-k,X2<70-k

 etat :=0, N :=2

Go_up!

Figure 11. Controller Automata inUPPAAL
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5.2. Influence of Timed Priorities

Timed priorities constrain the system and one of the first questions that arises is what kind of behaviour
do we forbid. The priority we have given in Fig. 5(b), page 1018 means that we do not want to raise the
gate if a new train can enter the near section within less thank time units. As intended, there should be
a threshold valuek0 for k such that for allk ≥ k0, the gate remains closed forever. We can express this
as the property12 A[](GATE.etat==2) and it is satisfied fork0 = 40.

Another interesting problem concerns the liveness of the system. As statedin remark 3.2, page 1014,
some deadlock may occur when prioritising the system. The train-gate-controller without priority is
deadlock free and looses this property as soon ask > 0.

6. Conclusion

We have shown how to add clocks toAltaRica and build a timed extension of this formalism:Timed
AltaRica. This timed extension has the same features as the untimed ones and we were able to prove all
the results obtained for the untimed case:

• two timed bisimilar timed interfaced transition systems remain timed bisimilar when we apply a
timed priority restriction (theorem 3.2),

• a timed component with timed priorities can syntactically be rewritten into a timed component
without timed priorities and has the same semantics (lemma 3.3),

• the synchronised product (for nodes) is compositional with respect to timed bisimulation (the-
orem 3.3),

• a timed node can be rewritten into a timed component that has the same semantics (theorem 3.4).

Moreover we have defined a translation of timed components into usual timed automata (section 4)
so that we can use tools for analysing timed automata (likeUPPAAL) to carry out our verification.

Moreover the implementation of our translation calledTimed AltaRica-Compiler is currently being
added to theAltaRica toolbox.

Our future work is many-fold:

• complete the extension ofAltaRica by adding features allowing the user to specifyhybrid sys-
tems[18]; the main problem is to deal with time priorities in this case. The work we havepresen-
ted in this paper is correct forclock variables but additional work is needed for systems where
variables may have arbitrary integer slopes;

• study the problem of preserving liveness when using priorities (followingthe framework of [27]),

• use ourTimed AltaRica-compiler on real industrial case studies,

• investigate in alternative ways of checking the correctness ofTimed AltaRica specifications: this
amounts to design some hierarchical model-checking algorithms taking advantage of the structure
of Timed AltaRica specifications.

12Actually to prove this property with the restricted TCTL set ofUPPAAL we have to change the initial set of states to check
this property.
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A. Appendices

A.1. Proof of Theorem 3.1

Theorem A.1. Two TITSA1 andA2 are timed bisimilar if and only if there exists a TITSB and two
timed interfaced bisimulation homomorphismsh1 : A1 → B andh2 : A2 → B.

Proof:
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If part. Assume there exist two homomorphismsh1 : A1 −→ B andh2 : A2 −→ B and denote
B = 〈Et, Ft, St, π, T 〉. Define the relationR ⊆ S1t × S2t by: R(s, s′) ⇐⇒ h1(s) = h2(s

′) We show
thatR is a timed interfaced bisimulation by proving it satisfies the four points of Def. 3.2.

1. Let q1 ∈ S1t et s = h1(q1) ∈ St. Sinceh2 is surjective there existsq2 ∈ S2t s.t. h(q2) = s =
h(q1).

2. Let (q1, q2) ∈ R. Then h1(q1) = h2(q2). By item 2 of Def. 3.3 it follows thatπ1(q1) =
π(h1(q1)) = π(h2(q2)) = π2(q2).

3. Let(q1, g, e, q′1, g
′
1) ∈ T1. By item 3 of Def. 3.3 there existsg′ ∈ s.t. (h1(q1), g, e, h1(q

′
1), g

′) ∈ T .
Let q2 ∈ S2t s.t. (q1, q2) ∈ R. Thenh2(q2) = h1(q1) and by item 4 of Def. 3.3 we have i) there
existsq′2 ∈ S2t s.t. h2(q

′
2) = h1(q

′
1) i.e. (q′1, q

′
2) ∈ R and ii) there existsg′2 ∈ π2(q

′
2) s.t.

(q2, g, e, q′2, g
′
2) ∈ T2. As the two TITSA1 andA2 play a symmetric role we obtain both items 3

and 4 of Def. 3.2.

Only if part The idea is as follows: there is a largest bisimulation≡1 for A1 and≡2 for A2 and those
two largest bisimulations give two transition systemsA1/≡1

andA2/≡2
that are isomorphic. Moreover

each bisimulation≡i can be made a function and we can build two homomorphisms from these functions.
The scheme is depicted in Fig. 12.

A1 A2

A1/≡1
A2/≡2

R

h1 h2

φ

Figure 12. Building a Timed bisimulation Homomorphism

Let V ⊆ X1 × X2 andU ⊆ X2 × X3 be two binary relations. We denoteV.U ⊆ X1 × X3 the
relation s.t.(q, q′) ∈ (V.U) ⇐⇒ ∃q2 ∈ X2 s.t. (q, q2) ∈ V and(q2, q

′) ∈ U . For a binary relation
L ⊆ X × X denoteL−1 = {(q, q′)|(q′, q) ∈ L} andL∗ = ∪n∈NLn with L0 = Id andLi+1 = L.Li.
Note that(L.L−1)∗ is an equivalence relation.

AssumeA1 andA2 are timed bisimilar and denoteR a bisimulation relation onS1t × S2t .

The relations≡1
def
= (R.R−1)∗ ⊆ S1t × S1t and≡2

def
= (R−1.R)∗ ⊆ S2t × S2t are both equivalence

relations. We define the quotientA1/≡1
andA2/≡2

and the functionshi : Ai −→ Ai/≡i
by: hi(s) = [s]

([s] denotes the equivalence class fors). It is easy to see thathi is a timed bisimulation homomorphism.
Also define the mappingφ by:

φ : A1/≡1
−→ A2/≡2

[s] 7−→ [s′] ⇐⇒ (s, s′) ∈ R
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φ is a (timed bisimulation) isomorphism. Now leth′
1 = φ◦h1. h′

1 is a timed bisimulation homomorphism
(composition of an isomorphism and homomorphism). This completes the proof.

ut

A.2. Proof of Theorem 3.2
Theorem A.2. (Priority and Timed Bisimulation)
Let A1 = 〈Et, Ft, S1t, π1, T1〉 andA2 = 〈Et, Ft, S2t, π2, T2〉 be two TITS and< a timed priority
relation overE. If h : A1 −→ A2 is a timed bisimulation homomorphism thenh : A1¹< −→ A2¹< is
also a timed bisimulation homomorphism.

Proof:
Let h : A1 −→ A2 be a timed bisimulation homomorphim. We show thath is also a timed bisimulation
homomorphim fromA1¹< ontoA2¹<.

For points 1 and 2 of Def. 3.3 just notice that< only restricts the transition relation and does not
involve the set of states and the mappingπi=1,2.

Now for point 3, let(q1, g, e, q′1, g
′) ∈ T1 ¹<, then (h(q1), g, e, h(q′1), g

′) ∈ T2. Assume that
(h(q1), g, e, h(q′1), g

′) /∈ T2¹<, then according to Def. 3.6 there are two possibilities:

1. eithere = t ∈ T and∃e′ >0 time, t′ < t, (h(q1), g, t′, q′′2 , g′′) ∈ T2 ∧ (q′′2 , g′′, e′, q′′′2 , g′′′) ∈ T2.
Sinceh is an homomorphism and(h(q1), g, t′, q′′2 , g′′) and (q′′2 , g′′, e′′, q′′′2 , g′′′) are inT2, there
existsq′′1 , q′′′1 ∈ S1t s.t. h(q′′1) = q′′2 , h(q′′′1 ) = q′′′2 ∧ (q1, g, t′, q′′1 , g′′) and(q′′1 , g′′, e′, q′′′1 , g′′′) are in
T1. Hence(q1, g, e, q′1, g

′) cannot be inT1¹< which contradicts the first assumption.

2. otherwisee ∈ E+ and∃e′|e <k e′ and∃t ≤ k|(h(q1), g, t, q′′2 , g′′) ∈ T2 and(q′′2 , g′′, e′, q′′′2 , g′′′) ∈
T2. Sinceh is an homomorphism and(h(q1), g, t, q′′2 , g′′) and(q′′2 , g′′, e′, q′′′2 , g′′′) are inT2, there
existsq′′1 , q′′′1 ∈ S1t |h(q′′1) = q′′2 , h(q′′′1 ) = q′′′2 and(q1, g, t, q′′1 , g′′) and(q′′1 , g′′, e′, q′′′1 , g′′′) are in
T1. This contradicts again the fact that(q1, g, e, q′1) ∈ T1¹<. This ends the proof of point 3.

Now let q1 ∈ S1t , q
′
2 ∈ S2t such that(h(q1), g, e, q′2, g

′) ∈ T2¹<. Then∃q′1 ∈ S1t |h(q′1) = q′2 and
(q1, g, e, q′1, g

′) ∈ T1. Again assume that for allq′1 s.t.h(q′1) = q′2, we have(q1, g, e, q′1, g
′) /∈ T1¹<:

1. if e ∈ T, this means that∃t1 < t, (q1, g, t1, q
′′
1 , g′′) ∈ T1 and∃e′ >0 time that is firable from

(q′′1 , g′). Then from item 4 of the Def. of homomorphism we get(h(q1), g, t1, h(q′′1), g′′) ∈ T2 ∧
(h(q′′1), g′′, e′, q′′′2 , g′′′) ∈ T2 and it contradicts(h(q1), g, e, q′2, g

′) ∈ T2¹<.

2. Otherwisee ∈ E+ and there existse′ ∈ E+ andt ≤ k s.t. e <k e′, (q1, g, t, q′′1 , g′′) ∈ T1 and
(q′′1 , g′′, e′, q′′′1 , g′′′) ∈ T1. It follows that (h(q1), g, t, h(q′′1), g′′), (h(q′′1), g′′, e′, h(q′′′1 ), g′′′) ∈ T2

which again contradicts the hypothesis(h(q1), g, e, q′2) ∈ T2¹<. This ends the proof of point 4 and
of the theorem.

ut

A.3. Proof of Theorem 3.3

Theorem A.3. LetN = 〈VF , CF , E, <,N0, · · · ,Nn, (Ṽ , <eV
)〉 andN ′ = 〈VF , CF , E, <,N ′

0, · · · ,N ′
n,

(Ṽ , <eV
)〉 be two timed nodes such that∀i ∈ [0..n] there is a timed homomorphismhi from JNiK to JN ′

i K.
Then there exists a timed homomorphismh from JN K to JN ′K.
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Proof:
Let JNiK = 〈Et, Fit , Sit , πi, Ti〉 andJN ′

i K = 〈Et, Fit , S
′
it
, π′

i, T
′
i 〉 be the TITS that give the semantics of

the timed nodes. First we assume< is the empty relation.
Defineh by:

h : St −→ S′
t

q = (q0, . . . , qn) 7−→ h(q) = (h0(q0), . . . , hn(qn))

We prove thath is timed bisimulation homomorphism fromN toN ′.

1. h is obviously surjective,

2. assumem = |CF | andf = (f, µ). Forπ(q) we get:

π(q) = {f ∈ DVF × Rm | ∀i ∈ [1, n], ∃ηi ∈ πi(qi) | (f, η1, . . . , ηn) ∈ π0(q0)}

= {f ∈ DVF × Rm | ∀i ∈ [1, n], ∃ηi ∈ π′
i(hi(qi)) | (f, η1, . . . , ηn) ∈ π′

0(h0(q0))}

= π(h(q))

3. if (q, g, e, q1, g
′) ∈ T since< is the empty relation and by definition ofT (see Def. 3.10) it follows

that(h(q), g, e, h(q1), g
′) ∈ T ′,

4. let q = (q0, q1, . . . , qn) ∈ St andq′ = (q′0, q
′
1, . . . , q

′
n) ∈ S′

t s.t. (h(q), g, e, q′, g′) ∈ T ′. Assume
e = (e0, . . . , en). Then by definition ofT ′ (Def. 3.10) we have:





∃f0 = (g, f1, . . . , fn) ∈ π′
0(h0(q0))

∃f ′
0 = (g′, f ′

1, . . . , f
′
n) ∈ π′

0(q
′)

s.t.∀i ∈ [0, n] (hi(qi), fi, ei, q
′
i, f

′
i) ∈ T ′

i

As eachhi is an homomorphism we get:∃q′′i ∈ Sit s.t. hi(q
′′
i ) = q′i and f ′

i ∈ πi(q
′′
i ) and

(qi, fi, ei, q
′′
i , f ′

i) ∈ Ti. This means:





∃f0 = (g, f1, . . . , fn) ∈ π0(q0)

∃f ′
0 = (g′, f ′

1, . . . , f
′
n) ∈ π′

0(q
′′
0)

s.t.∀i ∈ [0, n] (qi, fi, ei, q
′′
i , f ′

i) ∈ Ti

Takeq′′ = (q′′0 , . . . , q′′n). We haveh(q′′) = q′ and∃f ′
0 ∈ π(q′′) s.t. (q, g, e, q′′, g′) ∈ T .

Now assume< is not the empty relation. LetN∅ = 〈VF , CF , E, ∅,N0, · · · ,Nn, (Ṽ , <eV
)〉 and

N ′
∅ = 〈V ′

F , C ′
F , E, ∅,N ′

0, · · · ,N ′
n, (Ṽ , <eV

)〉. With the previous proof in the case of an empty priority
relation we get that there exists an homomorphismh from N∅ to N ′

∅. Applying theorem 3.2 we obtain
thath is also an homomorphism fromN toN ′. This completes the proof.

ut
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A.4. Proof of Theorem 3.4

Theorem A.4. Let N be a timed node. ThenN can be rewritten into a timed componentCN such that
JN K andJCN K are timed bisimilar.

Proof:
We prove theorem 3.4 by induction. LetN = 〈VF ∪ CF , E, <,N0, · · · ,Nn, (Ṽ , <Ṽ )〉 and JN K =
〈Et, Ft, St, π, T 〉. Let CN = 〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉 as given by Definition 3.4, andJCN K =
〈Et, Ft, S

′
t, π

′, T ′〉.

Base Step For the base step assume all theNi are timed components:Ni = 〈VSi
∪ CSi

, VFi
∪

CFi
, Ei, Ai, Mi, ∅〉 (note the priority relation is empty as we can use the syntactical encoding of timed

priorities defined in section 3.7) andJNiK = 〈Eit , Fit , Sit , πi, Ti〉.

We prove thatN andCN are timed bisimilar. Take equality as a candidate to be a bisimulation
relation.

1. checking that equality is a total relation onSt×S′
t amounts to checking that∀q ∈ St, π(q) = π′(q)

and this is done in the second point,

2. letq = (q0, q1, · · · , qn) andf = (f, µ);

π(q) = {f ∈ DVF × Rm | ∀i ∈ [1..n],∃ηi | ηi ∈ πi(qi) ∧ (f, η1, · · · , ηn) ∈ π0(q0)}

= {f ∈ DVF × Rm | ∀i ∈ [1..n],∃ηi | (qi, ηi) ∈ JAiK ∧ (q, f , η1, · · · , ηn) ∈ JA0K}

= {f ∈ DVF × Rm | ∀i ∈ [1..n],∃ηi | (q, f , η1, · · · , ηn) ∈ J∧i=0..nAiK}

= {f ∈ DVF × Rm | ∀i ∈ [1..n],∃ηi | (q, f) ∈ J∃i=1..n(VFi
∪ CFi

). ∧i=0..n AiK}

= {f ∈ DVF × Rm | ∀i ∈ [1..n],∃ηi | (q, f) ∈ JAK}

= π′(q)

3. let 〈(q0, q1, · · · , qn), f, e, (q′0, q
′
1, · · · , q′n), f ′〉 ∈ T We denoteq = (q0, q1, · · · , qn) and q′ =

(q′0, q
′
1, · · · , q′n). Note thatTi = JMiK as for allNi the priority relation is empty.

• if e = (e0, e1, · · · , en) with ei 6∈ T then by Def. 3.10:

∃f0 = (f, f1, · · · , fn) ∈ π0(q0)

∃f ′
0 = (f ′, f ′

1, · · · , f ′
n) ∈ π0(q

′
0)

}
such that∀i ∈ [0..n], (qi, fi, ei, q

′
i, f

′
i) ∈ JMiK

This entails that(q, f) ∈ JAK. Also by Def. 3.8∀i ∈ [0..n] there exists a transition
((gi, γi), ei, (ai, Ri)) ∈ Mi s.t. (qi, fi) ∈ JAi ∧ gi ∧ γiK and q′i = (ai, Ri)(qi, fi) and
(q′i, f

′
i) ∈ JAiK. This implies that(q′, f ′) ∈ JAK. It remains to find a transition inM s.t.

the transition from(q, f) to (q′, f ′) is fireable inCN . Take((g, γ), e, (a, R)) in CN given
by g = (∃i=1..nVFi

).g0 ∧ · · · ∧ gn, γ = (∃i=1..nCFi
).γ0 ∧ · · · ∧ γn anda(x) = ai(x) for

x ∈ VS ∩V ′
Si

andR(c) = Ri(c) for c ∈ CS ∩C ′
Si

. As∀i ∈ [0..n] (qi, fi) ∈ JAi∧gi∧γiK we
have(q, f) ∈ J∃i=1..nVFi

).g0∧· · ·∧gn
∧

γ = (∃i=1..nCFi
).γ0∧· · ·∧γnK and as(q, f) ∈ JAK

we get(q, f) ∈ JA ∧ g ∧ γK. As we already mentioned(q′, f ′) ∈ JAK. Moreover(q′, f ′) =
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(a, R)(q, f) and by Def. 3.8 this means that〈(q0, q1, · · · , qn), f, e, (q′0, q
′
1, · · · , q′n), f ′〉 ∈

T ′. The converse is straightforward and we finally have〈(q, f), e, (q′, f ′)〉 ∈ T ⇐⇒
〈(q, f), e, (q′, f ′)〉 ∈ T ′ for e = (e0, e1, · · · , en) with ei 6∈ T.

• if e = (δ, δ, · · · , δ) with δ ∈ T the have to ensure that all long the way fromq to q′ the time
constraint (invariant) holds. This is straightforward by pointing out that if(q, f), δ, (q′, f ′) ∈
T then∀δ′ ≤ δ we have(q, f), δ′, (q′′, f ′′) ∈ T for some(q′′, f ′′). Then using Def. 3.8 we
easily get the result that(q0, q1, · · · , qn), f, δ, (q′0, q

′
1, · · · , q′n), f ′〉 ∈ T ′. Again the converse

holds and we end up withT = T ′.

Induction Step Let N = 〈VF ∪ CF , E, <,N0, · · · ,Nn, (Ṽ , <Ṽ )〉 and assume all theNi can be re-
written into timed componentsCNi s.t. Ni andCNi are timed bisimilar. LetN ′ = 〈VF ∪ CF , E, <
, CN 0, · · · , CN n, (Ṽ , <Ṽ )〉. Then using the base step proof we conclude there exists a timed component
CN ′ that is bisimilar toN ′. By theorem 3.3 we also have thatN ′ andN are timed bisimilar and hence
CN ′ andN are timed bisimilar.

This completes the proof.
ut

A.5. Proof of Theorem 3.5

Theorem A.5. Let T = (VS , CS , VF , CF , E, A, M, <) be a timed component where> consists in one
element:eu > time (eu is urgent). Assume there is one urgent transitiontu = ((gu, γu), eu, (au, Ru))
andγu is not sharp. Define the timed componentTu = (VS , CS , VF , CF , E, A ∧ ϕu, M, ∅) with

ϕu
def
= gu =⇒

(
(γu ∧ ¬(γu↑)) =⇒ Y = 0

)
(7)

Assume the flow variableY is reset on each discrete transition and evolves at rate1 on delay transitions.
ThenJT K andJTuK are timed bisimilar.

Proof:
First note that asγu is not sharpJγu ∧ ¬(γu↑)K 6= ∅. Indeed for allε > 0 the setWε = {ν + ε′ | ν ∈
Jγu↑K andε′ ≤ ε} is included in¬(γu↑). Hence ifJγu ∧ ¬(γu↑)K = ∅ it must be the case that for all
ε > 0 the setWε ∩ JγuK is empty and contradicts the fact thatγu is not sharp.

Secondγu ∧ ¬(γu↑) is past-opened i.e.if ν ∈ Jγu ∧ ¬(γu↑)K then there isε > 0 such that∀ε′ ≤ ε
we haveν − ε′ ∈ Jγu ∧ ¬(γu↑)K. This follows from the constraint that the guard of an urgent transition
has a first instant for which it becomes true.

Again we assumeY is not part of the configuration of the system and it is a global variable updated
by an oracle. This enables us to use our notion of timed bisimilarity (Def. 3.2). Otherwise we would
have to define timed bisimilarity for timed components with different sets of (clock)flows.

JMK¹< is the transition relation ofJT K and we denoteJMuK the transition relation ofTu.

First part: JMK¹<⊆ JMuK. Remark that discrete transitions are unchanged and we only need to prove
that each delay transition inJMK¹< is a transition inJMuK.

Assume(s, ν), (f, µ), δ, (s, ν ′), (f, µ′) ∈ JMK¹< with δ > 0. By Def. 3.8, item 4.(c) it implies that
i) (s, ν), (f, µ), δ, (s, ν ′), (f, µ′) ∈ JMK and by Def. 3.6 that ii)∀t′ < t s.t. ((s, ν), (f, µ), t′, (s, ν +
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t′), (f, µ + t′)) ∈ JMK, if ((s, ν + t′), (f, µ + t′), e, q′, g′) ∈ JMK then e 6> time. By i) we know
that∀δ′ ≤ δ if ((s, ν), (f, µ), δ′, q′, g′) ∈ JMK then(q′, g′) ∈ JAK. Now if (s, f) ∈ JguK we need to
prove that(ν ′, µ′) ∈ ϕu. δ > 0 impliesY > 0. Hence(γu ∧ ¬(γu↑)) must be false at(s, ν ′), (f, µ′).
Assume it is true at(s, ν ′), (f, µ′). Then as(γu ∧ ¬(γu ↑)) is past-opened there must beε > 0 s.t.
∀ε′ ≤ ε , ((s, ν ′ − ε′), (f, µ′ − ε′)) ∈ J(γu ∧ ¬(γu↑))K. This contradicts ii). Thus(γu ∧ ¬(γu↑)) is not
satisfied for anyδ′ ≤ δ andA ∧ ϕu holds all along the delay transition(s, ν), (f, µ), δ, (s, ν ′), (f, µ′)
which implies this transition is inJMuK.

Second part:JMuK ⊆ JMK¹<. Assume(s, ν), (f, µ), δ, (s, ν ′), (f, µ′) ∈ JMuK andδ > 0. By Def. 3.8
this means that all long the path from(s, ν), (f, µ) to (s, ν ′), (f, µ′) assertionA ∧ ϕu holds. In case
(s, f) 6∈ JguK clearly the transition is inJMK¹<. If (s, f) ∈ JguK then(γu ∧ ¬(γu↑)) =⇒ Y = 0 must
hold all along the way. Again asY > 0 (becauseδ > 0) it must be the case that(γu∧¬(γu↑)) is false for
all 0 < t′ ≤ δ i.e. ¬γu ∨ γu↑ holds. Either∀0 < t′ < δ, γu is false and in this case no urgent transition
can be fired on the way from(s, ν), (f, µ) to (s, ν ′), (f, µ′) and(s, ν), (f, µ), δ, (s, ν ′), (f, µ′) ∈ JMK¹<.
Or γu holds for some0 < t′′ < t. Thenγu↑ must hold att′′. By the fact thatγu ∧ γu↑ is not single
we know that there is at′′ < t′′′ < t s.t. γu holds att′′′ as well as¬(γu↑)). HenceY must be equal
to zero att′′′ which cannot be the case. Hence there cannot be anyt′′ < δ s.t. tu is fireable and again
(s, ν), (f, µ), δ, (s, ν ′), (f, µ′) ∈ JMK¹<.
This completes the proof.

ut

A.6. Proof of Theorem 4.1

Theorem A.1. Let T = 〈VS ∪ CS , VF ∪ CF , E, A, M, ∅〉 be a timed component withVF = CF = ∅.
ThenJT K andJA(T )K are timed bisimilar.

Note that we have shifted the clock flows into the state variables of the component and we allow only
flows that are clock-definable.

Proof:
We denoteJT K = 〈Et, Ft, St, π, T 〉 with Ft = {tt } (Ft cannot be empty because of the definition of
TITS) andπ is constant and equal toπ(q) = tt. A(T ) = (L, L0, E, X, I, T ) and the semantics ofA(T )
is a TTS (see section 3.1)(Q, E,→). Thus it is also TITS〈E′

t, F
′
t , S

′
t, π

′, T ′〉 of dimension(|X|, 0),
with E′

t = E ∪ R≥0, Ft = {tt }, S′
t = {(l, ν) | ν ∈ Jinv(l)K }, π(q) = tt (always non empty) andT ′

is given by→. We omitf is configuration like(s, f) as it always amounts to(s, tt).Now we prove that
JT K andJA(T )K are timed bisimilar: as a candidate for a timed bisimulation relation we take equality of
the states.

1. Letq = (s, ν) ∈ St. We apply Def. 3.8:

(s, ν) ∈ St ⇐⇒ (s, ν) ∈ JAVT
∧ ACT

K

⇐⇒ s ∈ JAVT
K ∧ (s, ν) ∈ JACT

K

⇐⇒ s ∈ lLG, G ] L = [1..p](lLG form a partition ofAVT
) andν ∈ J∩k∈GIkK

⇐⇒ s ∈ lLG ∧ ν ∈ JInv(lLG)K

⇐⇒ (s, ν) ∈ S′
t
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2. π andπ′ are constant and equal tott, so they agree for each state,

3. let (s, ν) ∈ St. Then(s, ν) ∈ S′
t by item 1 above. Assume((s, ν), e, (s1, ν1)) ∈ T with e ∈ E+.

We have to prove that((s, ν), e, (s1, ν1)) ∈ T ′. As ((s, ν), e, (s1, ν1)) ∈ T there is a transition
t = (g, γ), e, (a, R)) ∈ M such that i)(s, ν) ∈ JA ∧ g ∧ γK, ii) s1 = a(s) and iii) ν1 = R(ν).
This implies that inA(T ) there is a transition of the form(lLG, g ∧ Pret(l

L1
G1

) ∧ γ, e, (a, R), lL1
G1

).

By iii) we get that(s, ν) ∈ JPret(l
L1
G1

)K. By i) (s, ν) satisfiesg ∧ γ ∧ lLG. So in the semantics
of A(T ) a transition of the form((s, ν), e, (s′, ν ′)) can be taken. As we use(a, R) to update
the values of the state variables and(a, R) are deterministic we obtain(s′, ν ′) = (s1, ν1). Now
assume((s, ν), δ, (s1, ν1)) ∈ T with δ ∈ R≥0. By definition (s, ν) ∈ JAK and(s1, ν1) ∈ JAK
and as we have time determinism for the flow variables∀0 ≤ δ′ ≤ δ, (s, ν + δ′) ∈ I(s) with
I(s) = ∩k|s∈Pk

Ik. s ∈ lLG fo someG ] L = [1..p] and the invariant forlLG is Inv(lLG) = ∩k∈GIk.
Inv(lLG) andI(s) coincides and thus((s, ν), δ, (s1, ν1)) ∈ T ′.

4. the converse of item 3 above is straightforward and proved exactly asitem 3.

This completes the proof. ut


