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Abstract. In this paper we presentimedextension of théltaRica formalism. Following previous
works, we first extend the semanticsAifaRica with time and defindimed componentandtimed
nodes Moreover we lift thepriority featuresof AltaRica to the timed case. We obtain a timed
version ofAltaRica, calledTimed AltaRica. Finally we give a translation of @imed AltaRica
specification into a usual timed automaton. These are tharsmfoundations of a high-level
hierarchical language for the specification of timed system
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1. Introduction

Context. The development of complex and safety-critical systems requires thd tmenal methods
and tools for system design and specification. In the casiésofetesystems the so-callegdactive lan-
guagedl, 2, 3, 4] have been used for almost a decade to specify industsiglnsg. They give a rigourous
and elegant basis for the structured development of reactive systenthevitbe otompositiorandhier-
archical specifications for instance. On those specifications such techniquesditkel-checkingan be
applied to check for some properties on the designed systems.

The need for a counterpart specification language in the casmed specificationarose recently
as timing information can now be dealt with while verifying a system with tools WEPAAL [5],
CMC [6], KRONOS [7] or HyTech [8]. We give here the theoretical foundations of such a high-level
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specification language for timed systems. We extendAlteRica [9, 10, 11] formalism withtiming
features.

AltaRica is a high-level specification formalism that allows one to specifstraint automat$9]
with the following features:

e acomponenhas its own variables (internal or external), plus some others it can cedlytew
variables) that are shared by the others;

e components can be defined hierarchically and composed together byelggynchronization
mechanism. Such a general component is calladde One can express broadcast communica-
tion, give priority among some transitions, etc.

MoreoverAltaRica has an unambiguous semantics [11, 10] defined in ternisteffaced transition
systems. From this semantic model, it is possibledmpile AltaRica to lower level formalisms for
different verification purposes: fault-trees to perform reliability analj&2], Petri nets, Markov graphs
or finite state automata (that can be analysed with theMi&aC [13, 14, 15, 16] for instance).

Nevertheless one cannot specify real-time constraimdtaRica and of course this becomes crucial
when some timing information contributes to the modelling and correctness of skensy Moreover
there is no real high-level specification language for timed and hybrigmsgs This makesaltaRica
a good candidate to fill this gap. Once the language has been extended with ¢omstraints, we can
take advantage of the work carried out these last years about timethsydtées now well-known how to
deal with the verification ofimed automat4l17] andhybrid automatg18, 19] and many efficient tools
are now available [8, 7, 20]. This adds a new feature toAtkeRica toolbox.

Our Contribution.  Our work consists in extending tidtaRica formalism withreal-time constraints
and define a timed version éfitaRica calledTimed AltaRica. We thus extend the theoretical founda-
tions of AltaRica: we enhance the semantic model&ifaRica, theinterfaced transition system (IT\S)
into timed interfaced transition system (TIT&)d give the semantics dimed AltaRica in terms of
TITS. We proceed by shifting all the theoretical results obtained\faRica (e.g. interface bisimula-
tion homomaorphism, rewriting of a node into a component, .. .) to the timed casés thiportant as it
givesTimed AltaRica goodcompositional properties that are needed in practice. Finally we prasent a
algorithm to compileTimed AltaRica specifications into timed automata (which can be then analyzed
with UPPAAL [5]).

Outline of the paper. Inthe next section, we remind the basics abAltaRica and introduce a running
example: the Train-Gate-Controller example. Section 3 is the core of the pageresentdimed
AltaRica the timed extension dhltaRica. In sections 4 and 5 we respectively give (i) the algorithm for
translatingTimed AltaRica components into timed automata and (ii) an example of the use of priorities
for timed specifications. We conclude by some perspectives in section 6.

The proofs of the theorems are given in the appendices (pages 1033} 1

2. An Overview of the AltaRica Language

In this section we recall some basicsAdfaRica [10, 11] and give an example of &itaRica specific-
ation:the train-gate-controller [21]. In this example, the aim is to keep the tgedccwhen a train is in
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a critical section. We will use threg&ltaRica components to model the system and describe how they
synchronize.

2.1. Specifying Reactive Systems iAltaRica

A specification inAltaRica is anode A node is éierarchicaldescription. It can be built from sub-nodes
and so on. A node that contains no sub-nodescisraponentA node is basically composed of:

¢ thevariables definitiongtype, range, ...), anevents definitions
e thetransition relation

¢ theinitial constraintandglobal constraint

1:  node TRAIN approachy := 1
2 flow N : [0,1]; /I These are the flow variables Before
3 event approach, in, exit;
4: state etat : [0,2]; n : [0,1];
5: trans
6: etat=0 |- approach -> exitn := 0
T etat := 1, n := 1;
8: etat=1 |- in -> etat := 2;
9: etat=2 |- exit -> etat := 0, n := 0;
10: init
11: etat:=0, n:=0;
12: assert Far = etat =0
13: N=n;
14:  edon Before = etat =1
On = ctat =2
(a) Spec. of the Train iAltaRica (b) Spec. of the Train as an Automaton

Figure 1. Specification of a Train

2.1.1. Components

In the example of Fig. 1, we define a comportdrdin to model the behaviour of a train in two equivalent
manners in order to ease the understanding:Al@Rica description (see Fig. 1(a)) and a standard
automaton (see Fig. 1(b)). A train is eithiéar of the critical section, oBeforeor On meaning it is
respectively near or inside the critical zone. In téaRica specification, the variabletat (line 4)
ranging in[0, 2] represents the locatiortzr, Before On of the train. The events of the component
TRAIN areapproach in andexit (line 3). We also use a state variahl@ine 4) to denote that the train is
in {Before On}. Initially the component is in configuratiastat=0,n=0,N=0 (line 11), written(0, 0, 0)

for short. When a transition occurs the values of the state variables ela@egrdingly as well as the

In AltaRica the keywordnode in used for components (nodes with no sub-nodes) as well as fordtigral nodes; indeed a
component is a special case of node with no sub-nodes.
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value of the flow variable in order to satisfy the assertion (line 13). Fornastavhen everapproach
occurs in(0, 0, 0) the configuratior(1, 1, 1) is reached.

2.1.2. Interfaces

The component’s state variables are not visible from outside of the compoiideir scope is thus
the component itself just as for usual programming languages. To allosnghat information and
synchronization on variables of other components one cafiavggariables. Flow variables can be read
by other nodes. The part of the component which is visible by other coemp®is called thenterface
It consists in the events of the components and the flow variables.

The flow variableN is in theinterfaceof the nodeTRAIN (line 2). This means that other nodes can
read it and use the value ®f The value of the flow variablg is constrained to be equal toat anytime
(see theassert line 13) and the purpose @fis to make the value aof available outside.

Assume another node for the controller is given byAltaRica specification of Fig. 2(a). A trans-
ition of the formetat = 1 |- approach -> ; (line 9) means thaépproach does not bring about
any change in the state variables values (but not this is a deadlock!e tothponen€ONTROLLER the
purpose of the flow variabli (referred to a€0ONTROLLER. N from now on) is to count the total number
of trains in the regio{ Before On} (if we assume there are many train components). Depending on the
value of the flonCONTROLLER.. N the controller will make the gate go up on exit signal (if the value is
1, line 8) or will leave the gate closedGONTROLLER.N > 1 (line 7).

The value oCONTROLLER. N may change on any discrete transition and be assigned any integer as no
assertion constrains this flow in the noC@NTROLLER. Apart from the events listed in the component’s
events section (line 3), we assume a special discrete efensynchronization purposes. This event is
enabled in any configuration and does not change the values of varizligpestate. Nevertheless
flow variables can be updated etransitions with values satisfying the assertion. As the assertion of the
nNodeCONTROLLER is implicitely true the variableCONTROLLER . N may be assigned any integer value on
ane transition. This somewhat strange behavior will become clear when we uitigdderarchical nodes
and constraints among flows of different nodes (eeeert line £,,4in—assert ON Fig. 3).

As for the nodesATE (Fig. 2(b)) it consists in receiving orders from the controller (evéntsip and
Go_down) and after a whiléto actually go up or down (evenip anddown).

2.1.3. Hierarchy and Synchronization

As emphasized in the introduction, one can describe a system by compasinmyiéding new nodes
from sub-nodes. For example we can define a nade (see Fig. 3) specifying the train-gate-controller
with two trains. Indeed nodes can be instantiated and used as templates toidpudddIével nodes.
The node of Fig. 3 is composed of four instantiated sub-notlest@, g andc, see Fig. 3, lines 2—

5) which interact in two ways: flow coordination and synchronization @nés. The synchronization
constraint (after keywordync, lines 6—14) reads as follows: if a component does not appear in a syn-
chronization vector, it is assumed to do thaction. Note that evenigp anddown are not synchronized
and thus they will be assumed to be synchronized wittansitions of the other components. Finally
the global assertion, line 15, constrains the flow variables soltleftthe nodeMAIN is always equal

2\We will see later how this can be made precise using timing constraints to ntiakecaversion of the controller and the gate
in Fig. 5.
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node GATE
1: node CONTROLLER
event Go_down, Go_up, down, up;
2 flow N : [0,p];
X state etat : [0,3];
3 event approach, exit, Go_up, Go_down;
trans
4: state etat : [0,2];
etat=0 |- Go_up -> ;
5: trans
etat=0 |- Go_down -> etat := 1;
6: etat=0 |- approach -> etat := 1;
. etat=1 |- Go_down -> ;
7 etat=0 & N>1 |- exit -> ;
] etat=1 |- down -> etat := 2;
8: etat=0 & N=1 |- exit -> etat := 2;
etat=1 |- Go_up -> etat :=3;
9: etat = 1 |- approach -> ;
X etat=2 |- Go_down -> ;
10: etat = 1 |- exit -> ;
etat=2 |- Go_up -> etat := 3;
11: etat=1 |- Go_down -> etat := 0;
etat=3 |- Go_up -> ;
12: etat=2 |- Go_up -> etat := 0;
etat=3 |- Go_down -> etat := 1;
13: etat=2 |- approach -> etat := 1;
- etat=3 |- up -> etat := 0;
14: init etat := 0, z := 03 .
init etat:=0;
15: edon

edon

(a) The Controller (b) The Gate

Figure 2. AltaRica Specifications for the Controller and the Gate

to the number of trains on the critical section. A joint move of the componenis2,g,c can be
<t1.approach,t2.approach,c.approach> (see line 7) in which case the variahieN will be up-
dated on the move of component to satisfy the assertion of nodAIN i.e. c.N=t1.N+t2.N. This

is why we need to have the possibility to update flow variables wansitions. Anyway a meaningful
specification should be such that all flow variables are constrainedsttitethe outermost node. Note
that some constraints could be unsatisfiable: for instance if we adeé-2+t2.N to theassert line, this
clearly can not be satisfied and the resulting system has no configutai®also possible to constrain
the state space: if we use .N=t2.N we impose that the two trains issagproach at the same time and
leave the critical section at the same time (eweritt). This is due to the fact that no configuration with
t1.N not equal toc2. N is satisfiable hence no transition with only ciggroach event can be fired.

1:  node MAIN

2: sub

3 t1,t2 : TRAIN;

4: g : GATE;

5: c : CONTROLLER;

6: sync

7 <tl.approach,t2.approach,c.approach>;
8: <tl.approach,c.approach>;
9: <t2.approach,c.approach>;
10: <tl.exit,t2.exit,c.exit>;
11: <tl.exit,c.exit>;

12: <t2.exit,c.exit>;

13: <g.Go_down,c.Go_down>;

14: <g.Go_up,c.Go_up>;
15: assert c.N=t1.N+t2.N;
16: edon

Figure 3. Hierarchical Node



1006 F. Cassez, C. Pagetti and O. Roux /A Timed ExtensioAlfaRica

2.2. Formal Semantics ofAltaRica

The semantics oAltaRica specifications is given by Interfaced Transition Systems. For a detailed
presentation of these notions the reader is referred to [11, 10].

2.2.1. Interfaced Transition Systems

Definition 2.1. (Interfaced Transition system [10])
An interfaced transition systefhTS) is a tupled = (E, F, S, =, T') with:

1. E = E; U{e}is afinite set okventsuch that ¢ E.;
2. Fis a set oflowvalues;
3. Sis the set obtates

4. 7 : S — 2F associates to each statdn S all the admissible flow valuem s. We assume
Vs €S, m(s) # 0.

5. T C S x F x E x Sis thetransition relationand satisfies:

@) (s, f,e,s)eT = femn(s)
(b) Vs € S,Vf € w(s), (s, f,e,8) €T

A configurationof an ITS is a paif(s, f) € S x F such thatf € «(s). Every tuple(s, f,e,s’) € T
corresponds to the set of transitiaits, f), e, (s, f')) between configurations s’ € 7 (s’).

Remark 2.1. In AltaRica, if a transition(s, f, e, s’) is firable then there exists a configuratios, f”)
(as item 4 of Def. 2.1 assumes$s) is not empty fors € S). This remark will carry ovetimedITS. The
setF' may be considered as a set of properties (or observations) assdoittiedstates by the mapping
m. Also note thatT" is a shorthand for the explicit transition relati@ between configurations with
T"CSXFxExSxFand(s, f,e,s, fYeT < (s, f,e,s") € TN f en(s).

2.2.2. Priorities

In AltaRica we can constrain the behaviours of a system by giving priorities to somstiosas when
more than one is possible. For instance, this concept is classical in fiogg@@]. Formally, a priority
relation< is a strict partial order over the events. A transition labelledn be fired from a configuration
(s, f) ifitis maximal i.e. no other transitior’ such that < ¢’ is firable in(s, f).

Definition 2.2. (Priority relation [10])
A priority relation over E is a strict partial order oveE' such thatvv € E;,v £ € ande £ v (with
Ey =E\{e}).

Definition 2.3. (Priority Restriction Operator)

Let A = (E, F,S,w,T) be an ITS andk a priority relation overE. We define thepriority restriction
operator | for the transition relatiol” C S x F' x E x S and the priority relation< by: (s, f,e, s') €
Ti< <= (s, f,e,s) €T A (Ve € E, (3 € S|(s,f,e,s) €T) = e£¢).
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2.2.3. Formulas and Expressions

We consider hereafter thexpression& (X ) built over the variables in a séf. These expressions can
be either integer terms, boolean terms etc. The only thing we assume is thatididegan X take their
values in a seD. A valuationyv of a set of variableX is a mapping’ : X — D and the set of valuations
of X is denotedDX. Thevalueof an expression ¢ E(X) in the context : X — D is denotec:(v).
Given a seff(X) we can define the sé&t(X) of first order formulasover E(X) using some suitable
predicates (e.g<, = in the case of integer expressions) and the existential and univeesatiftgrs. For
f € F(X) we denotdreg( f) the set of free variables ii. We assume thdt (true) andff (false) which
are predicates of aritfy belong toF(X). In the sequel we often omit the base &etvhen we usé'(X)
as only the free variables used in a formyila F(X) are relevant.

The interpretatiorf ] of a formulaf € F(X) with free(f) C X' is a subset oD~": [f] € DX'.
Also we have[tt] = DX and[ff] = 0.

An assignmentor the variables inX is a mapping: : X — E(X). Intuitively an assignment of the
form z := y + z + 2 will be defined bya(x) = y + z + 2. Given a valuationv : X — D, we denote
by a(v) the valuation defined by(v)(z) = a(z)(v). We denote byd theidentityassignment such that
Vz,ld(z) = =.

Now we define an abstract syntax for thikaRica components and nodes again taken from [10].

2.2.4. AltaRica Components

AltaRica components give an abstract syntax for the basic systems (no hieramtiogluced in the
previous section.

Definition 2.4. (Component)
A components a tupleC = (Vg, Vi, E, A, M, <) with:

1. Vg, Vr are finite sets for respectivestatevariables flow variables, with the property of being 2
by 2 disjoint. We denot&; = Vs U V;

2. E = E, U{e}is afinite set of events and as usua the empty action;
3. A € Fis anassertionsuch thafree(A) C Vi;

4. M C Fx ExE(V)Ys is amacro-transitiorrelation such thattt, ¢, 1d) € M and every(g, e, a) €
M satisfies:

(@) g € Fis aguardsuch thafree(g) C V¢,

(b) e € E is theeventof the transition,
(€) a: Vs — E(V¢) is anassignmentor the variables i,

5. < is a priority relation.

Remark 2.2. In [10], another set of flow variables is defined: it correspondsimbservable flow vari-
ablesthat can be used as intermediary variables. We omit them in this work as theyt drease the
expressiveness of the language. Indeed they can be defined astxily quantified flow variables in
the assertion of a node.
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Now we can define the semantics of a component to be an ITS. For the sedelitiitons, we
assume that all variables Ir; U Vr have a common domaiB.

Definition 2.5. (Semantics of Components)
LetC = (Vs,Vr, E, A, M, <) be a component. Theemanticof C is the interfaced transition system
[C] = (E, F,S,n,T) constructed in the following way:

1. F =D,

2. S={seD"s|3feDF| (s,f) € [A]}

3. 7: 9 — 2F suchthatr(s) = {f | (s, f) € [A]};

4. TCSxFxFExSisgiven byl = [M] < with:
@) lett = (g,e,a) € M, then[t] = {(s, f,e,s) | (s, f) €E[ANg] A s =a(s, f)},
(b) [M] = Uenr[t]-

Note that because of item 4 above the requiremént # () for ITS is always fulfilled.

2.2.5. AltaRica Nodes

A nodeis built fromn nodes. The purpose of nodes is to give a semantics to hierarchicatideimnd
synchronization irAltaRica.

Definition 2.6. (Node)
A nodeis a tupleN = (Vp, E, <, Ny, - -+ , Ny, V) with:

1. Vg is a set offlowvariables,

2. E = E, U{e}is afinite set of events,
3. < is a priority relation over,
4

. foralli € [1,n], N; is a component or a nod&y, is the set of flow variables of; and E; the set
of events. We assumé # j € [1,n], Vi, N Vi, = 0,

5. Np is a special component called teentrol component. The set of events & is £y = F
and the priority relation of\, is the empty relation. The set of flow variables/d} is Vi, =
VFUVF1 UVFQU-“UVFn,

6. V = V4 U Vimp is the set obpecifiedsynchronization vectors:

o V; C E} x -+ x E} x 201 whereE] = E; U {?e|e € E;,}; we defineE}, by: e €
Ebif 3(--- ,a;,---) € Vywith z; € E}; EY corresponds to the set of events of nade
that are synchronizedy,; induces a set of synchronization vectors (see below). The last
component ir2%"+1] constrains the sets of “?"-events in the nodes that need to participate
in the synchronization (see below).

e Vimp € Ep x --- x E,, x {0} is the set ofimplicit synchronization vectors with:
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- <67"' 755®> € me,
— Vi€ [0,n],Ve; € E; \ By, (e, €5, ,&,0) € Vimp.
Vimp contains all the synchronization vectors with non synchronized events.

An example of howl; generates synchronization vectors can be given by the motieof Fig. 3.
Assume in this node, we replace the line Al .approach?,t2.approach?,c.approach> >= 1.
The meaning of this new specification is that it induces the set of synchtmmzvectors in which
more thanl (given by the>=1 constraint) event qualified with a “?” appears. Thus approach>
is not an allowed vector whereas1.approach,c.approach>, <t2.approach,c.approach> and
<tl.approach,t2.approach,c.approach> are allowed. Theainfoldingof the following constrained
vector<t1.approach?,t2.approach?,c.approach> >= 1 contains only the three allowed vectors
defined above. Note that our definition involving subset®of + 1] allows us to specify more precise
vectors than the one given by the number of “?”-events that have toglsemir The synchronization set
V generates a set of synchronization vector&gix F, x --- x E, together with a priority relation on
then?. As already mentioned, a vector of the foru . approach?,t2.approach?,c.approach> >=
1 generates all the synchronization vectors containing at least onetheemame of which is qualified
by a “?”. The priority relation for those vectors corresponds to givingrfty to the one with the max-
imal number of “?”-events occurring in the vector: in the previous case approach, c.approach>
and <t2.approach,c.approach> are both strictly lower (have less priority) than the 3-component
vector<t1l.approach,t2.approach,c.approach>. In this case, each time both .approach and
t2.approach are simultaneously enabled this priority relation imposes they are fired atrtieetsae.
Thus this specification rules out the behaviours where only one of tresstions is fired whereas the
other is enabled. We do not want to constraint the system in such a waapgndach events cannot
be constrained in the specification. This is why we have given three disinchronization vectors
involving eventapproach and they are independant from each other.

Finally, the setim, consists of all the events that are not involved in any synchronizatioy nist
occur on their own, hence the synchronization vectors of the ferm- , e, - -- , ) (eventsup anddown
of component&ate of Fig. 2(b)).

For a formal definition of how to generate the synchronization vectoregponding td/ the reader
is referred to [10]. We only need here to consider the set of syntaton vectors and the priority
relation generated by

In the definition of theimed nodegsection 3.6) we will focus on timed features and will consider
thatV has been “unfolded” into the set of synchronization vectoisgenerates and the priority relation
<y itinduces;.e. we will useV C Eg x By x --- x E, and<g; instead ofl.

There is a fundamental result about nodes: they can be rewritten¢tygally) into components that
preserve their semantics [10].

Theorem 2.1. ([10, 11])
If Ais anAltaRica node,C) its rewriting into a component (as defined in [10]), tH&] and[C/] are
bisimilar.

In the next section we focus on extending IPEaRica components and nodes with time. We define
our timed extension on these objects. Also we show that the results obtainediintitmed case [10, 11]

3how this is done is defined in [10].
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still hold (e.g. Theorem 2.1).

3. Timed Extension ofAltaRica

Our aim is to build a time@xtensiorof AltaRica, which means we need to keep the framework defined
for the untimed case: ITS, priorities and components. First we extend tdSimed ITSsee Def. 3.1)
and defindimedpriorities. Then we add timing constraints to componeins ¢lock variablesand give

the semantics of timed components into TITS. Finally we defimed nodesgive their semantics and
prove that they can be syntactically rewritten into an equivalent (timed bisirobanponent.

3.1. Preliminaries about Timed Systems

Before definingTimed AltaRica we recall some basics about timed systems [23]. More precisely we
use the framework of timed automata [17] and the associated usual notdtieneeal-valued variables
will be clocks aclockis a positive real valued variable, and it evolves at a constant rate vinysical
time.

Clock valuations and assignments. A clock valuatiorfor the clocks in a seX is a mapping : X —
R> that assigns a positive real value to each clocKinA clock assignmens a mappingz : X —
E(X). For decidability reasons, we will restrict the allowed assignment express section 4.4 to
simple assignments given by table 2, page 1030. We denoté(B§) the set of clock assignments.
As defined in subsection 2.2.3, for a clock valuatioand an assignment we denotex(v) the clock
assignment(v)(z) = a(x)(v). Fort € R>( the clock valuationw+t is defined by'z € X, (v+1t)(x) =
v(x) +t.

The set ofclock constraintd3(X) over a setX of clocks is defined inductively by:

gi=xrlr—y-rlghglgVyg (1)

with z,y € X, € {<,<,>,>,=}, r € Q. Also we denote by (X) the subset oB(X) that defines
convex clock constraintsA clock constrainty is a particular formula and evaluates eitherttor ff:
[g] < ]R)Z(O andg(v) = tt < v € [g].

Timed Transition Systems and Timed Automata. A timed transition systerj23] (TTS) is a tuple
(Q, E,Qo,—), Where@ is set of locationsF is the set of actiongy) is the set of initial states;>C

Q x (EUR>() x Q.A timed automatoifil7] is a tuple(L, Lo, E, X, I,T) such thatL is a (finite) set
of locations X is a finite set oftlocks Ly is s.t]Lg] C L x ]R§O is a predicate that defines the set of
initial states,F is a finite set ofactions 7 C L x (B(X) x E x A(X)) x L is thetransition relation

I : L — Bc(X) is theinvariant constraint.

The semantics of a timed automat@h, Ly, E, X, I,T') is given by a TTSL x R§O,E, Qo, —)
whereQ = [Lo] and¥(l,v) € L x R the transition relation- is defined by: iXiscretesteps of the
form (I,v) S (I,v') if 3(1, g,e,a,1') € T, such thatg(v) = t,v' = a(v),v’ € [I(I')], ii) continuous
steps of the forn{i, v) LN (I,v"),0 € Ry if V&' < 6,0+ € [I(1)].
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A very useful result about timed automata (actualbdatabletimed automata [24]) is that reachab-
ility is decidable [17, 24] for this class of timed systems. Hence automatic véigficeools have been
designed to analyse timed automata, and among thERAAL [5], KRONOS [7] and CMC [6]. We
will give in the last section a translation fromTamed AltaRica specification into a timed automaton.
This will allow us to usdJPPAAL [5] or KRONOS [7] or CMC [6] to check timed properties on the
designed systems.

In the sequel, we defin€imed Interfaced Transition SystefidTS) that are extended TTS. The
timed extension oAltaRica components aremed componenthat are the counter parts of timed auto-
mata: the semantics of timed components is given by TITS.

3.2. Timed Interfaced Transition Systems

Timed Interfaced Transition Systems are an extension of ITS with realevahréables and flows.

Definition 3.1. (Timed Interfaced Transition System)
A timed interfaced transition syste(m the sequel TITS) otontinuous dimensiofn, m) andtime
domairt T is a tupleA = (E;, Fy, Sy, m, T') with:

1. E;, = E, U{e} UT whereE, is afinite set okeventsuch that ¢ £, UT andE; NT = (;

2. F; C F x R™is the set oflowvalues, wherd" is the set ofliscrete flowalues andR™ is the set
of continuous flowalues;

3. 5; C S x R™is the set obtateswheres is the set ofliscrete stateandR" is the set otontinuous
states

4. 7w : S, — 2F associates to each statec S; all the admissibleflow values ing. We assume
Vg € S, w(q) # 0.

5. T CS5; x Fy x E; x Sy x Fy is thetransition relationand satisfies:

@ (¢,9,¢,¢,9) €T =gen(g Ng' €n(q)
(b) Vq € S¢,Vg,9 € n(q) we have(q, g,¢,q9,¢9') € T
(C) Vq € Stvv.g € W(Q) we have(qvg7O7Q7g) eT

A configurationof a TITS is a pair((s, v), (f, 1)) € S; x F; such that( f, u) € n(s,v).

Remark 3.1. Compared to item 5 of Def. 2.1, we need to be more precise when definingtod s
transitions of a TITS. Indeed we want to enforce discrete variablesnt@inreunchanged when time
elapses. Assume we define the transition relafiom the same way as it was in defined item 5 of
Def. 2.1: T C S; x Fy x E; x S;. Then we will not be able to leave discrete flow values unchanged
during a delay transition when we define the semantigditaiRica timed components (Def. 3.7): in the
target configuration, we can only constrain the state variablesamd not the flow variables if;. Thus

we prefer to defin@” overS; x F; x E; x Sy x F; which enables us to refer to the source and target flow
values of a transition as in item 5.(c) of Def. 3.1.

“we assum@® € T andT = N or Q> or R>, or {0}.
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Also note the following properties: it = 0 andm = 0 andT = {0} we obtain the definition of
ITS. Indeed as pointed out in remark 2.1, we can give the definition of @imsition relation of an ITS
in terms of transitions between configurationsf= 0 and we add an initial state to the TITS then
we obtain the definition of TTSE' is to be interpreted as the set of atomic properties. It is possible to
consider an integer time domaifi,= N. Notice that in this case even if we allow only integer time steps
in the TITS, the values of the clocks can beRn,. For a dense time domaih = Qx> is suitable. For
a continuous time domain one can take= Rx>. In the following we assume the time domairis
when we deal witlTimed AltaRica nodes.

3.3. Timed Bisimulations

In the sequel we will use the notion tifned bisimulation®etween timed systems. We define it for TITS
extending the definition dhterfaced bisimulatiorf [10]:

Definition 3.2. (Timed Interfaced Bisimulation)
Let Ay = (E, Fy, S1,,m1,T1) and Ay = (Ey, Fi, Sy, ma, Ts) be two TITS. Atimed interfaced bisimu-
lation relationfor .4; and. Az is a relationRk C 57, x Sy, that satisfied conditions:

1. Vq1 € S1,,3g2 € S, S.t.(q1,q2) € RandVgs € S2,,3q1 € 51, S.t.(q1,42) € R,
2. Y(q1,q2) € R, m1(q1) = m2(q2),

3. V(ngae,ﬁagi) € Tla VQ2 € 52,5 such that(Ql?Q?) € R then 3(‘]%9767%’95) € T2 s.t.
(01, 93) € R,

4.V(q2,9,e,¢5,95) € To, Vg1 € Sy, such that(q1,q2) € R then3(q1,9,e,44,97) € Th St
(01,45) € R,

Two TITS aretimed bisimilariff there exists a timed interfaced bisimulation relation on their set of states.

In the sequel we use the term timed bisimulation instead of timed interfaced bisimulati@nin the
untimed case, an interfaced bisimulation can be expressed as an homomdsptvien two TITS.

Definition 3.3. (Timed Interfaced Bisimulation Homomorphism)
Let Ay = (E, Fy, S1,,m1, T1) and Ay = (Ey, Fy, Sa,, w2, To) be two TITS. Atimed interfaced bisimu-
lation homomorphism : A; — Aj is a mapping: : S;, — S», such that:

1. his surjective,
2. Yq1 € S, mi(q1) = m2(h(q1)),
3. Y(q1, 9,e,41, 91) € Th, g such thalh(a1), g, e, h(1), g5) € T,

4.Vq1 € S1,,Yq, € So, sit. (h(q1),9,e,¢5,95) € T> then3g; € Si, such thath(q]) = ¢5 and
g1 € mi(qy) suchthatqr, g, e, 41, 91) € Th.

We use the term timed bisimulation homomorphism as a shorthand for timed intedso®dlation
homomorphism.
The following theorem is an extension to TITS of previous results on It&ealfows from [10, 25]:
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Theorem 3.1. Two TITS A; and A, are timed bisimilar if and only if there exists a TIT®and two
timed interfaced bisimulation homomorphists: A; — B andhs : Ay — B.

The proof is given in Appendix A.1.

3.4. Timed Priorities

In the untimed version cAltaRica, priorities among events play an important role [10]: they allow the
easy modeling of priorities among concurrently enabled transitions. It isat&tuatimedsetting to try
and introducdimed priorities i.e priorities among transitions involving some timing information. Again
we want to extend the existilytaRica specification language and add timed priorities.

Timed priorities in timed systems have been introduced for timed automata [26cangmaehensive
study of timed priorities can be found in [27, 28, 29]. The most common timedityrie urgency[30]:
basically, it says that if a transition is enabled in a timed automaton, time can net @lag this transition
must be fired immediately. Without loss of expressiveness we defijeait eventsif an event in alimed
AltaRica specification isirgentthen all the transitions labelled by this event are urgent. We then extend
Def. 2.2 to allow priority between time labels (if) and discrete events:

Definition 3.4. (Simple Timed Priority Relation)
A simple timed priority relation< over E' is a strict partial order ovelf' U {time} such thak is a priority
relation overE and a strict partial order oveti™® with EY™ = £, U {time} andVv € E,v £ time

Thena > time mean$ that eventa is urgentand has to be fired immediately when enabled (a
semantic definition of priorities will appear later in this section in Def. 3.6). Alsithat ifa > time
andb > a thenb > time the urgency of event entails urgency of greater events.

This allows us to model what is callehgernese [30]: aneagertransition is one that forbids time
elapsing if it is enabled. In the papers [27, 28] other notions of prioritiedafined: (i) adelayable
transition is one that can be fired when its guard is true and before a aetadline (ii) a lazytransition
is one that has no deadline (it may or may not be fired). We will add in Deftigné) guardsnto Timed
AltaRica components which will enable us to defilagytransitions. It is proved in [28] that a delayable
transition can be encoded using lazy an eager transitions. As we already(Ref. 3.4) how to define
eager transitions, we are able to express the three types of prioritiessprbm [30].

More elaborate ways of prioritising transitions are given in [27]. The airtoiexpress priority
between events when several are enabled by using timing information.nleigst@nsion of the priority
relation notion: we want to express thak ¢’ only if ¢’ will not be enabled in some future. Intuitively,
we will write e <5 €’ for: the transition labelled’, if enabled within5 time units, has priority oves.
We now extend the notion of simple timed priority relation:

Definition 3.5. (Timed Priority Relation) ' _
A timed priority relation< over E is a 3-ary relation inE™ x (N U {co}) x E{™M® satisfying the
following conditions (we denote; <y as for (ay, k, a2) €<):

¢ the binary relation< is a simple timed priority relation,

SWe rule outtime > « as the purpose of a priority relation is to add a sort of liveness in the systdorcing some discrete
actions to be taken.
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e a<pbAha=time= k=0,
e Vk € N, <, is a strict partial order,
o a <} ag =—> (Vk' <k, a1 <p ag).

Remark 3.2. Notice that in [27], another condition can be imposedo(a transitivity condition). This
condition is related to the building die timed systemand is not relevant in our setting. It is aimed at
preserving liveness in the systems and can then add new behaviors Wgé @ant to build live timed
systems but only to provide a restriction operator (by giving priorities)rigstticts the set of behaviors
of the system. Note also we restrict the bound&tahich in theory is enough for specifying timed
systems.

The static priority ofAltaRica coincides with the particular timed priority where all the delays are equal
to zero,i.e. k = 0.
As in section 2.2.2, we define the timed priority restriction operator.

Definition 3.6. (Timed Priority Restriction Operator)

Let A = (Ey, Fy, S, m, T) be a TITS of continuous dimensidm:, n), time domainT and < a timed
priority relation overE. We define thdimed priority restriction operatorf for the transition relation
T C S x F; x By x Sy x Fy and the timed priority relatior: by:

ife=teTVt eT,t <t if(q,9,t,¢",¢") €T

(¢,9.¢,4'.9") € TI<& (¢,9,e,4,9') € T A time £ €.

otherwise if(q, g,t,q",¢") € T,t € T, t < k,
thenve’, (q//’g//’ e, q/llvg//l) ET=>¢ & €.

We denoted r< = <EtaFtaSta7T7Tr<>'

Remark 3.3. Again, if T = {0}, we obtain the definition of the priority relation restriction (Def. 2.3).
We can lift the following theorem for ITS stated in [10] to TITS:

Theorem 3.2. (Priority and Timed Bisimulation)

Let Ay = (Ey, Fy, S14,m1,Th) and Ay = (E;, F, Say, w2, T2) be two TITS and< a timed priority
relation overE. If h : A1 — A, is a timed bisimulation homomorphism thén A;|< — Asl<is
also a timed bisimulation homomorphism.

The proof is given in appendix A.2.

3.5. Timed Components

Timed AltaRica components are the timed extensionsAitiRica components (see Def. 2.4). Our
extension consists in addingocksto AltaRica components. Hence our model is closely related to
the timed automaton model. Adding real-valued variables instead of clocks issiuaightforward:
the resulting model is then close to the hybrid automaton model. In this papercu® do the timed
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extension and the addition of clocks. We consider the formilJasxpression& and set of value®
settled in section 2.2.3.

Definition 3.7. (Timed Component)
A timed componeris a tupleZ7 = (Vs U Cs,Vr UCp, E, A, M, <) with:

1. Vg, VE are finite sets for respectiveltatevariables,flow variables with the property of being
disjoint. We denotd’r = Vg U Vp; Cg, Cr are finite sets for respectivetlock variables real
flow variables with the property of being disjoint. We den6tg = Cg U CF; also we assume
VrNCr =0

2. E = E, U{e} whereE, is afinite set of events and as usua the empty action;

3. A= Ay, NAc, € Fisanassertionsuch thafree(A) C Vr U Cr; Ay, € F,free(Ay,) C Vr.
Acy = Npex P = I where K is a finite set of indicesP;, < F, free(P,) C Vr, I, € F,
free(I,) C Cr and}, defines a convex region & if |Cp| = p;

4. M C (F x B(Cr)) x E x (E(Vy)¥s x A(Cr)) is amacro-transitionrelation such that every
((9,7), e, (a, R)) € M satisfies:

(@) (g,7) is aguardsuch thay € F andfree(g) C Vp; v € B(Cr);
(b) e € E is theeventof the transition;

(c) a : Vg — E(Vp) is anassignmentor the variables i/s. R € A(Cr) is theclock assign-
mentof the transition;

5. < is a timed priority relation.

Remark 3.4. Item 3 of Def. 3.7 allows us to specify constrairifsbetween clock variables and real-
valued flow variables (e.gy" = = whereY is a flow variable and: is clock variable): it suffices to use
tt = CwhereC € F(Cr) (e.9.tt = Y =ux).

Notice that the semantics of is a subset of DVs x R") x (D'F x R™) as well as the semantics of a
guard(g, ).

Example 3.1. (The Train)

In Fig. 4 the time features of componeTRAIN appear on line 7 where a clock (state) variables
declared; it is used to constrain the guards of the transitions (see linesly amd on some of them
is reset; also the assertion (lines 16—17) implies that when ineti@te- 1 (resp.2) time cannot elapse
aftert has reached0 (resp.20).

Definition 3.8. (Semantics of Timed Components)

Let7 = (Vs UCs,Vr UCFp, E, A, M, <) be atimed component. L&€s| = n and|Cr| = m. The
semantic®f 7 over the time domaiff is the timed interfaced transition systdth| = (E:, F;, S¢, w, T)
of dimension(n, m) constructed in the following way:

1. B, =FEUT,

2. F, =D xR™,
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1: node TRAIN

2: flow N : [0,1];

3: event approach, in, exit;

4: state

5: etat : [0,2];

6: n : [0,1];

T t : clock ; /I Definition of aclock variable

8: trans

9: t >= 70 & etat=0 |- approach -> etat := 1, t := 0, n :=1
10: 20 <= t <= 30 & etat=1 |- in -> etat := 2, t := 0;

11: 10 <= t <= 20 and etat=2 |- exit -> etat := 0, t := 0, n := 0;
12:  init

13: etat=0,n=0,t=0;

14: assert

15: N=n;

16: (etat=1) => (t<=30); /I Time assertions

17: (etat=2) => (t<=20);

18: edon

Figure 4. Specification of a Train as a Timed Component

3. Sy ={(s,v) € D' x R%y[3(f, ) € DVF x R™[((s,v). (f, 1)) € [A]},

4. m: 8 — 2" suchthatr(q) = {(f, )| (¢ (f,n)) € [A]},
5, TC S x Fy x By xS x FyandT = [[M]] r< with:

(@) lett = ((g,7),e, (a, R)), define[t] by:

((s,v), (fs ) e, ('), (f' 1) € [e] f 28/ :’ C;(SJ%{Z,M)
AN (o) en(s, V)

with R(v, i) the new clock assignment after resetting the variablés.in
(b) letd € T, define[o] by:

((5,v), (f, 1) € [A]
((5,0), (f,10),0, (5,0/), (f; 1)) € [0] 1 S AV =v+ A ((s,V), (f, 1)) € [A]
AYS < 6,3y | (v 46, py) € [I(s, £)]

With I(s, f) = Aperci(s.pep, Te-
(©) [M] = Urem[t]UUser[4]-

Remark 3.5. Note that[/(s, f)] is a convex set as it is a conjunction of convex sets. We have not used
this property ofl (s, f) in the semantics of components as it is not required in this definition. Anyway in
the sequel we will need this assumption and this is why we have put it in Dedf 8iied components.

The delay transitions in the semantics of a timed components leave the “contirflovus free
to take any value as long as the invaridi, f) is satisfied. This is rather permissive as the values
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encountered along a delay transition could even be non continuous. skamde a constraint on a flow
like x <Y < xz+2wherez is a clock and” a continuous flow would allow” to take any value between
x andx + 2 at each time point. If we define flow to be clock we constrain the set of eqisatie can
write in the assertion. Indeed equations Ilke= 2x could not be defined with a “clock¥”. So far we
stick to this permissive definition and we will tackle later which kind of flows cafilmplemented” (see
section 4.4).

Finally in the case&”r = () we obtain the definition of timed automata (again if we add an initial
state); the semantics of such a timed component is then a TTS (Hgamto be interpreted as some
properties or observations on each state.)

As for the untimed case we have the following lemma:

Lemma3.1. Let7 = (VsUCs, VR UCE, E, A, M, <) be atimed component ardis a timed priority
priority relation. Ther[(Vs U Cs, Vp UCp, E, A, M, <)] = [(Vs U Cs, Vp UCp, E, A, M, ()] |<.

The proof is straightforward from Def. 3.6 and Def. 3.8.

3.6. Timed Nodes

Timed nodes are straightforward extensions of nodes. Indeed, if sugn@sas stated in Def. 2.6 of a
node, that the synchronization constraint is expanded, the new dahattded by the time transitions is
trivial: the synchronized time transitions farnodes are of the forry, J, - - - , ), € T whereT is the
time domain and they do not need to be specified.

Definition 3.9. (Timed Node) N
A timed nodés a tupleN = (V, Cr, E, <, Ny, -+ , Ny, (V, <y)) with:

1. Vr is a set oflowvariables,

2. CFr is the set ofeal flowvariables,

3. E = E; U{e} is afinite set of events,
4. < is atimed priority relation oveF,

5. foralli € [1,n], N; is a timed component or a timed node; the interface of the node is composed
of (i) Vi, U CF,, the set of discrete flows and real flows/df and (ii) E; the set of events ok;.
We assume’i # j € [1,n], Vi, N VE, = Cp, N Cr, = 0,

6. Ny is a special timed component called t@ntrol component. The set of events of this node is
Ey = E and the priority relation ofV; is the empty relation. The set of (discrete) flow variables
of Npis Vi, = Ve U VR, U Vg, U--- U Vg, and the set of real flow variables @&, = Cr U
Cr,UCRpU---UCFE,,

7. VCEyx E; x---x E,isan expanded synchronization set together with a priority relation
(see Def. 2.2).
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Remark 3.6. Notice that<y; is a priority relation and not a timed priority relation. This is because
v, <i) expresses the discrete synchronization constraint.

Example 3.2. (Hierarchical Specification of the Train-Gate-Controlle)

A timed version of the train-gate-controller is given in Fig. 5. Notice that the aa component, the
train is the component given by Fig. 1, but the noidéN embeds the&€ONTROLLER node and plays the
role of \Vg.

node MAIN
flow N : [0,p];
event approach, exit, Go_up, Go_down;
priorities Go_up (<,k) approach;
state etat : [0,2];
z : clock ;
trans
etat=0 |- approach -> etat:= 1, z:=0;
etat=0 & N>1 |- exit -> ;

node GATE
event Go_down, Go_up, down, up;
state etat : [0,3];

: clock ; .
y etat=0 & N=1 |- exit -> etat:= 2, z:=0;
trans etat = 1 |- approach -> ;
etat=0 |- Go_up -> ; PP H
etat = 1 |- exit -> ;
etat=0 |- Go_down -> etat:=1, y:=0;
etat=1 & z<=10 |- Go_down -> etat:=0;
etat=1 |- Go_down -> ;
etat=2 & z <= 10 |- Go_up -> etat:=0;
etat=1 & y <= 10 |- down -> etat:=2;
etat=2 |- approach -> etat:= 1, z:=0;

etat=1 |- Go_up -> etat:=3, y:=0;
etat=2 |- Go_down -> ;

etat=2 |- Go_up -> etat:=3, y:=0;
etat=3 |- Go_up -> ;

etat=3 |- Go_down -> etat:=1, y:=0;
etat=3 & y <= 10 |- up -> etat:=0;

sub t1, t2 : TRAIN, g : GATE;

sync <tl.approach,t2.approach,approach>;
<tl.approach,approach>;
<t2.approach,approach>;
<Go_down,g.Go_down>;
<tl.exit,t2.exit,exit>;

init i .
etat:=0 :=0: <tl.exit,exit>;
assert Ty <t2.exit,exit>;
(etat =1) => (y <= 10); _ <Go_up,g.Go_up>;
(etat =3) => (y <= 10); init
edoia Y ’ etat := 0, z := 0;
assert
N=t1.N+t2.N;

(etat =1) => (z <10);
(etat =2) => (z <= 10);
edon

(a) The Timed Gate (b) The Timed Controller

Figure 5. Timed AltaRica Specifications for the Controller and the Gate

Syntactically there is not much changes between timed and untimed nodesifférendes appear
in the semantics where the timed transitions are synchronized:

Definition 3.10. (Semantics of Timed Nodes)

Let N = (Vr,Cp,E, <, Ny, -+, Na, (V, <)) be a timed node anfiN;] = (E;,, F,, Si,, i, T;)

of dimension(n;,m;) for i € [0,n]. The semantics oV is the timed interfaced transition system
N1 = (E, Fy, Sy, m, T') of dimension(}_;_, ni, |Cr|) defined by:
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1. B, =FEUT,

2. F, = DYF x R™, withm = |CF]|,

w

. fOI’qi S Sit, Ietq: (qo,q17~'- ,qn), then

(q) = {(f,u) € D'F x R™ Vi € [1,n],3n; € mi(as) | ((f, ), 01,12, -~ 10n) € 70(a0)}

4. St:{qesot X Slt Ko XSnt|7T(Q) #@},
5. T CS5; x Fy x By x Sy x Fy is defined by
(a) let<q be the timed priority relation defined by:

(eo, €1, ,€n) <o (66,6’1,”- ,6;1)<:>60<66

(b) lete = (eg,e1, - ,en) € Eg X -+ X E,U{(d,---,0)},5 = (80,51, - ,8,) ands’ =
(sp, 81, ,sh,). DefineT) by:

ElfO = (f7f17"' afn) € 7TO(SO)
<§,f,€,§/,f/>€T./\/'<:> Hf(,):(f/,f{,"-,fé)ET(o(Sé)
Vi e [Oan (Shfiaei:s;afi/) eT;

(c) thenT = (T I<y ) <o

We have the node version of lemma 3.1:

Lemma3.2. Let N = (Vi,Cp, E, <, No,--- , Ny, (V, <y7)) be a timed node anfV] its semantics.
Then[[N]] = II<VF7 CF7 E7 (Z)vNOa e 7NTL7 (V7 <‘7)>ﬂ f<

The proof is straightforward from Def. 3.9 and Def. 3.10.

The semantics of nodes is compositional with respect to timed bisimulation:

Theorem 3.3. LetN = (V, Cp, E, <,No, -+ , Ny, (V, <g)) andN” = (Vp, Cp, B, <, N, -+ N,
(V, <7)) be two timed nodes such that € [0..n] there is a imed homomorphisha from [A] to [A].
Then there exists a timed homomorphisrfrom [A] to [AV].

The proof is given in appendix A.3.

Timed AltaRica is a hierarchical modeling language so that each timed node can be exjdrgsstimed
component. The timed priorities and the synchronization are directly encottetheresulting timed
component. LelN = (VRpUCp, E, <, Ny, -+ , Ny, (f/, <y )) be atimed node, we present the construc-
tion (extending the one given in [10]) of a timed componéxt = (Ve U Cs, Vr U Cp, E, A, M, <)
which has the same semantics.

First we associate to each timed node a timed component defined as follows:
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Definition 3.11. (Symbolic Semantics)

If N = (Ve UCF, B, <,No,- -+, Ny, (V,<p)) is a timed node, with\; = (Vg U Cp,, E;, <;
yNigy o+, N, (‘zv<f/¢)> for 0 < i < n, we denote byCys = (Vs U Cgs,Vp U Cp, E, A, M, () the
timed component constructed as follows:

1.VO<i<n
(a) if \V; is atimed component, then we defiNg = N [<; and the timed priority is syntactically

encoded in/\/i’ as defined later in section 3.7.2;

(b) if V; is a timed node, then we defié’ = Cy, the rewriting ofV; into a timed component
and encode timed priority syntactically as defined in section 3.7.2;

(c) we denoteV = (V4 U C5,. Vi, U CF,. Ef AL MY, 0);
2. ngvgou---uvgn andc*s:c’sou---ucgn;

where the notatiod,—; ,,(W;).¢ stands for:Vi, 3n; € W; such thatp(n;). For ((s,v), (f,u)) €
DVs x RE x DVF x RCF we define:

d ((877/)’ (fa ﬂ)) € [[A]] = Vie [1"”}33771' € Dvﬁi X RC}% S.t. ((877/)’ (fa N)ﬂh, T ,Un))
€ [Nizo.n 4l

o Vie [17},]7 ((87 V)a (f7 :u)77717 e 77771)) € [[A;]] — ((8i7 Vi)u 771) € [[A;]]

4. the set of macro-transitiodd C (Fx B(Cr))x E x (E(Vr)Vs x A(Cr)) is defined byM = (M}
<y )I<o0, Where< is the timed priority relation specified in Def. 3.10, &g, v), ¢, (a, R)) € M’
if and only if:

e V0 < i < n,thereis atransitio((g;, v:), i, (a;, R;)) € M/ such that:
= 9= Fi=1.aVF)-90 A+ A gn,
- 7= (ElzzlnCFl) Yo N A Yy
o Vx € Vs NV we havea(r) = a;(x) andve € Cs N C§. we haveR(c) = Ri(c),

e c=(eg,e1, - ,e,) €V.
Theorem 2.1 (see page 1009) for untimed nodes carries over to timest node

Theorem 3.4. Let A/ be a timed node. TheN can be rewritten into a timed componéhy such that
[N] and[Cx] are timed bisimilar.

The proof is given in appendix A.4.
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3.7. Syntactical Timed Priority

In [27] the authors show that it is possible to encode a priority relation lkeygthening the guards of a
component: this way one can syntactically encode the priority relation.

We tackle this problem in the timed case. [®t= (Vs U Cs,Vr U Cp, E, A, M, () be a timed
component and< be a timed priority relation. We first assufniat < contains no urgent evenis.
Ve € E,time £ e. Our aim is to compute the transition relatidn|< syntacticallyi.e. by finding new
guards that defind/ [<. We first rewrite our timed component so that we are sure that when d guar
evaluates to true, the corresponding transition can indeed be ifeedhe resulting new state satisfies
assertionA. This is done by adding weakest precondition (section 3.7.1) into the exgigls. Then
we show how to encode timed priority (section 3.7.2) again by strengtheningutrels. Finally we
detail how urgency is handled in section 3.7.3.

3.7.1. Weakest Precondition

The key point is to know if a transitiof(g, 7), ¢, (a, R)) can really be fired, and the fact that the guard
evaluates to true is not sufficient: a new state can be reached fsom, (f, 1)), only if after the assign-
ments given by(a, R) w(a(s, f), R(v,u)) # 0, i.e. there are some admissible flow values. This latter
condition depends on assertidnof the timed component and can be seen agsakest precondition

First assume we have an untimed component (Def. 2.4).t l-et (g, e,a) be a transition of this
component, and! the assertion. Fa C S x F, we definePre,(Q) = {(s, ) |3f'| (a(s, f),f) €
Q}. AssumePre([A]) can be defined by a formulg, € F, andfreg(¢;) C V. Now if we take
t' = (g A ¢, €,a), we are sure that whenpA ¢, evaluates to true the transitiortan be fired ags, f) €
[o A oe] = wlals, ) # 0.

We can extend this to the timed component. Fot ((g,7),e, (a, R)) we definePre,(Q) =
{2, () 13707 ((als', f), ROV, 1), (f7 1)) € Q). AssumePrey([A]) can be writ-
ten asp; A 6, with free(¢;) C Vp andfree(d,) C Cr.

Then if we defing’ = ((g A ¢,y A 6), ¢, (a, R)), we can ensure that if the guardikvaluates to
true,t can be fired.

Now we show how to encodere,([A]) into guards of the fornig,v) with g € F,free(g) C Vp
andy € B(Cr). AssumeA = py Apa A~ App, At = 1)) A~ A(qg = ;). Assume
Pre,([A]) is a conjunction of the forfp} Aph A - ADPj A (¢ = @) A A(q, = il,). Let
P’ = p} Aph A+ Apl. We can rewritePre; ([A]) as:

\/ P! /\ Njesq; /\ Arergy /\ Areriy,
————

JUI=[1..m]
InJ=0 Gr,g Tr,y

This is a formula of the forny/,,_, G, AT, with G, € F, free(G)) C Vr andl', € B(Cr). Now we
creates transitions fromt = ((g,v), €, (a, R)) defined by:

Vp € [1.s],tp = ((g A Gp, ¥ ATp), €, (a, R))

5Urgency is dealt with in section. 3.7.3 and requires additional assunspinhdefinitions.

"Quantifier elimination irPre;([A]) can only be done under some conditions (e.g. the discrete domain is. finigegio not
discuss this in this paper and assume we can actually find a quantifiexfrezssion foPre, ([A]).

8This expression is equivalent to the one given in [10], Def. 9.2.®(i&s Syntaxiques), page 85.
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It remains to replace by thet,,p € [1..s] to build a new timed component andan be fired in the
original component if and only if one of thig can be fired in the new component (leading to the same
values for the state variables.) In the sequel we assume guards havatiesgthened so that if a guard
evaluates to true then the transition can actually be fired.

3.7.2. Encoding Timed Priority

The Simple Case. Lett = ((g9,7),e, (a, R)) € M. Assumee <; ¢’ and there is only one transition
t'=((¢',7),€,(d,R")) € M labelled withe’. Thent can be fired from a configuratianonly if (g, ~)
is true ing and:

1. eitherg’ is not true ing,

2. org’ is true ing and~’ will not be true withink time units.

First we deal with the discrete part of the guard and split the trangifimio ¢; and¢s with:
e t1 =((g A—d',7v),e, (a, R)) which corresponds to item 1 above;

e to=((9Ng',7), e, (a, R)) which corresponds to item 2 above althougheeds to be strengthened
to meet the requirements of item 2 above.

We now show how to strengtherin ¢5. A useful operator was introduced in [28, 29] for this purpose:

Definition 3.12. (Modal Operator [28, 29])
Let X = {x1, 29, -+ ,x,}. Letv € R” andk € N. Let¢ € B(X) andT be the time domain. We define
the (state) predicaté ¢ by:

(Crp)(v) <= T e T, t <k,op(v+1t)

Now we strengthen the guardin ¢ and definet, = ((g A ¢',v A (=OrY')), e, (a, R)). According
to [28, 29], it is possible to eliminate the existential quantifieCigy’ and to obtain a quantifier-free
formula (we will not get into the details and refer the reader to [28, 29]).

General Case. In the general case there could péransitionst, = ((g},7.), ei, (a}, R})) s.t. e <,

e1, -+ ,e <g, ep. Then we split into 2” transitionstr = ((gr,Vr), ¢, (a, R)) with F C [1..p]:
gr = gn N —gin Nd 2)
i€[L.p|\F i€F
vro= AN\ O (3)
icF

Remark 3.7. As stated in remark 3.2, page 1014, we do not modifyitliariantsof the system.

According to [27], the formula> .~y can be written as simple formula B(Cr). If we denote byM <
the transition relation obtained by:

1. strengthening the guards by the weakest preconditicfiréability as defined in section 3.7.1,
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2. strengthening the guards to encode the timed priority relation as defioeed iakthis subsection,
we obtain a new timed componehi<= (Vs U Cs,Vr U Cr, E, A, M|<, () such that:

Lemma 3.3. (Syntactical Priority)
[T1<] = [TTI<.

Lemma 3.3 follows from Def. 3.10 and Def. 3.12. From lemma 3.1, we obtain tlesving corollary:

Corollary 3.1. [(VsUCs,VFUCEr,E, A, M,<)] = [(VsUCs,Vrp UCp, E, A, M, @) <]

This completes the syntactical encoding of timed priority without urgency fortiooenponents.

3.7.3. Encoding Urgency

Urgency consists in preventing time elapsing when a discrete transition itedndb this section we
assume the time domainks.,. Also we assume time determinism and denote the valuation defined

by (v—t)(z) = v(z)—t (time non determinism is more technically involved but can be handled as well).
Our work is based on previous papers by S. Bornot, J. Sifakis and@kis [28, 29, 27]. The authors
define the notion ofising edgeof a guard that plays a central role:

Definition 3.13. (Rising Edge [27])
Let X = {x1, 29, - ,z,}, v € R" andy € B(X). Therising edgeof ~, denotedy1 is the predicate
defined by:

1 (v) = (fy(v) ATt>0,V0<t <t —y(v— t’)) v (ﬂ’y(v) ATt>0,Y0 <t <t y(v+ t')) (4)

We assume that each guard of a transition labelled by an urgent everhighad [~ 1] < [+].
Indeedxz > 10 is not a relevant guard for an urgent transition as there iirabinstantat which the
guard becomes true: the transition becomes urgent strictly Hftesich is a fuzzy instant and this is
in contradiction with urgency. Note that in this cage > 10) 1= (z = 10) which gives the same
rising edge as for: > 10 but the latter has a first instant for which it is true. This problem is well-
known and is already discussed in [29]. Note that in this case equatiaf (#@f. 3.13 simplifies in
7T (v) = (y(w) ATt > 0,V0 < t' < t, -y(v—1t')). We also assume that a guaycf an urgent
transition is convex and this implies thgt is convex as well.

Urgency as an assertion The semantics of urgency (see Def. 3.6) implies that when a transition be-
comes urgentife. its guard is true) time elapsing is forbidden and this is the semantics propog4].in [

It does not imply that the urgent transition is fired. Also this notion is diffefrem the notion of urgency

in UPPAAL [20] which only constrains processes to synchronize on common clsafsyachronized
events) whenever they can.

To be more precise assume we have a compouviemith an urgent transitiore,, as defined on
Fig. 6(a).

Start in configuratior{s = 0,z = 0). At some pointf can occur. If it occurs before = 10 it is
possible to let some time elapse unti= 10 reachings = 1,z = 10). At this point the urgent transition
prevents time from elapsing. Anyway a new occurrenc¢ cbuld occur and set to 0 again: in this
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1: node U_Y
2: flow Y ;  //the flow variableY”
1: node U
3 state
2: state
4: s : [0,1];
3: s : [0,1];
5: x : clock ;
4: x : clock ;
6: event
5: event
. 7 e_u, f
6: e_u > time, f
7 trans 8: trans
) 9: s=1 & 10<=x<=20 |- e_u -> s:=0;
8: s=1 & 10<= x<=20 |- e_u -> s:=0; ! -
10: |- £ -> s:=0;
9: |- £ -> s:=0;
11: |- £ -> s:=1;
10: |- £ -> s:=1; L
. 12: init s:=0, x=0 ;
11: init s:=0, x:=0 ;
13: assert
12: edon
14: (s=1) => (10<x<=20 => Y=0)
15: edon

(a) NodeU with evente,, urgent
(b) Urgency as an assertion

Figure 6. Encoding Urgency

configuration the urgent evenf, is no more enabled and time can elapse. Thus to use our notion of
urgency to force a transition to occur, one must ensure that once entargnsition is enabled: (= 10)

no other transition can disable it (to achieve this, one could change thingnainditionTrue of line £y

of nodeU to x<10).

To encode urgency, we use an additional real flow variablsee line 2 of Fig. 6(b)). This flow
variable is assumed to be reseiton each discrete transition and evolves at taggynchronous with
physical time) on delay transitions. How this will be achieved will be dealt withr liat¢his section.
The syntactical encoding of urgency consists in adding a timed invariaati#irof nodeéJ_Y, Fig. 6(b))
to constrain time elapsing. Note that this assertion imglies- 0 only whenz > 10 (and notz >
10). Intuitively, assume we reach a configuration= 1,z < 10). Then time can elapse from this
configuration untilz = 10. Indeed(s = 1,2 = 10) satisfies Def. 3.6 as for each strictly preceding
instant the assertion is true. From this configuration on time cannot elapse-a8 and the assertion
forbids it. Now if we reach(s = 1,10 < = < 20) by firing a discrete transitior}” is set to0 and time
elapsing is also forbidden. This achieves urgency (in the sense that tipsinglds prevented).

Some limitations of our encoding is that we do not know how to deal with urgansitions with
sharpurgent guards as = 5. This is why we require an additional assumption on guards for urgent
transitions: the (temporal) guasd must satisfyde > 0, v € [1,]] = Ve <e v+¢€ € [y]. We
refer to this latter property as, is not sharp.

Correctness of the encoding Let7 = (Vs UCs, VR UCE, E, A, M, <) be atimed component where
< consists in one element, > time (e, is urgent). Assume there is one urgent transitign=
((gus Yu), €u, (au, Ry)), Yo 1S Not sharp, and there is a flow varialifethat is reset on each discrete
transition and evolving at rateon delay transitions.

def

Define the timed componer, = (Vs U Cs,Vr U Cp, E, A A ¢y, M,0) with ¢, = ¢, —
(7 A =(71)) = Y = 0). Note that we assum¥ is aninvisible variablethat does not belong to
Cr. This is just for the sake of clarity as otherwise we need to define a newnradtioned bisimilarity
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for timed interfaced transition systems that do not have the same sets of fliablea (remind that
Def. 3.2 imposes the two systems to have the same interface).

Theorem 3.5. [7] and[7,] are timed bisimilar.

The proof is given in appendix A.5.

Implementation of the encoding To implement our encoding and add a fresh flow varialewve
proceed as follows:

1. create nods_Y from nodeU, as described by Fig. 6(b),

2. build a new nod&Y (Fig. 7(a)) that manages a variablethat satisfies the assumptions we needed
before: Y is reset on each discrete transition and evolves atlraie delay transitions. Each
discrete event of other components will be synchronized with avent'y;

3. build a parent nodeu that synchronizeB_Y andYY; this node is given in Fig. 7(b).

node YY

flow Y; node UU
event uj event e_u,f;
state sub  CU_Y:U_Y; C_YY:YY;
: . sync
trar;ys : clodk <f,C_YY.u,CU_Y.f>;
|- u -> y:=0 ; <e_u,C_YY.u,CU_Y.e_u>;
init -=o-y. ’ assert
asserty.Y= ' CU_Y.Y=C_YY.Y
edon Y edon
(a) Nodeyy (b) Nodeuu

Figure 7. Hierarchical Modeling of Urgency

This scheme can be carried out for multiple urgent events. We do not thésdiih this paper as it is
just a technical exercise.

Now that we know how to encode timed priority syntactically and how to flattendse moto a
component. We proceed with a translation of timed components into timed automéaavill enable
us to check various timed properties.

4. From Timed Nodes to Timed Automata

In this section, we present a translationTafned AltaRica specifications to timed automata [17]. This
way we can extract a timed automaton frortiemed AltaRica specification and carry out some veri-
fication of temporal properties using tools for analysing timed system3JleAAL [5], CMC [6] or
KRONOS [31]. Notice that thanks to theorem 3.4 we only need to define the translatiainfed
components.
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4.1. FromTimed AltaRica Components to Timed Automata

Let7 = (Vs UCs,Vp UCR, E, A, M, () be a timed component witl’s| = n and|Cr| = m (thanks
to lemma 3.3, we can assume the timed priority relatioi a§ the empty relation). From Def. 3.7, the
assertion of a timed component consists in two parts:

¢ Ay, which gives a constraint on the discrete variables,
e Ac, which associates time invariantto a predicate on the discrete variables.

Thus we writedc, = ?Zl(Pj = I;) with freg(P;) C Vp andfreg(l;) C Cr.

As we want to build a timed automaton (which is timed bisimilar to the original node) &réimed
component, we need to define the locations of this timed automaton. They arfedmithe assertion on
the discrete variables, and must be labelled with a timed invariant. We definatiséatron of a timed
component with no flow variables and explain later how we deal with compongthtflow variables.

We writeG W L = [1..p] as a shorthand fa®, L C [1..p], GNL =0,GUL = [1..p] i.e. G andL
form a partition off1..p).

Definition 4.1. (Timed Automaton Associated with a Timed Component)

Let7 = (VsUCs, VpUCE, E, A, M, () be atimed componentwithp = Cr = 0. LetA = Ay, AAc,
with freg(Av;.) € Vr, Ac, = Ni_\(P; = I;) andfree(P;) C Vr andfreg(l;) C Cr. Given
G C [1..p], L C [1..p], we define:

ré = (NeaPj) A (NjerP) ()
16 = Avp AT (6)
The timed automatdnA(7) = (L, Lo, E, X, I, T) associated withl" is defined by:
o L={IL|GwL=11.p]A[IL] # 0} is the set of locatior}s,

e Lo = L is the set of initial states (actually in reBilmed AltaRica specifications, a set of initial
states is given as in the example of Fig. 5(b); assume this set is definedrbgieateinit then
Loy = init),

e F isthe set of events,

e X = Cfris the set of clocks,

NeeaIp if G # 0
tt otherwise

the invariant/ is defined by:I(1%) = {

the transition relatiorT” is defined by: let%, 1%, € L such thafli5 A g] # 0 anda([l5 A g]) N

[[lé/]] # () (the source location intersects the discrete guard and the target locatimedtsethe
discrete part of the state space) a&nd ((g,7), ¢, (a, R)) € M, then

(1 (9 APre(iG) Avse, (a,R)), 1) € T

9see section 3.1 for the definition of a timed automaton
%Thus the number of locations is exponential in the number of predicatds.pf Notice that this definition gives a partition
of the set of states defined byt~ and thaf[i%] C S; x F;.
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Remark 4.1. As we have imposed that thg denote convex sets, the invariaf(@5) are allowed by
the definition of timed automaton (section 3.1).

In the previous definition we assume we can give constraints on the disar&ibles in the guards,
and allow assignments of the discrete variables on a transition, which is moalfp allowed by the
definition of timed automata of section 3.1, but this definition can trivially be exend include this
(timed automata dJPPAAL [5] allow the use of such features). Also if we do not make any assumption
on the domain of the discrete variables ofiemed AltaRica specification the number of locations may
be infinite. Anyway we can define the translation of a timed component into a tiotechaton (with
potentially an infinite number of locations):

Theorem 4.1. Let7 = (Vs U Cg,Vp U Cp, E, A, M, () be a timed component withr = Cr = (.
Then[7] and[A(7)] are timed bisimilar.

The proof is given in appendix A.6.

4.2. The Train Example

We now apply the previous translation to the train example of Fig. 8.

node TRAIN
/I flow N : [0,1]; commented out
event approach, in, exit;
state
N : [0,1]; /I vis now a state variable
etat : [0,2];
n : [0,1];
t : clock ;
9: trans
10: t >= 70 & etat=0 |- approach -> etat := 1, t :
11: 20 <= t <= 30 & etat=1 |- in -> etat 2, t
12: 10 <= t <= 20 and etat=2 |- exit -> etat := 0, t := 0, n := 0, N:=0;

o
o
B
]
-
=
]
-

13:  init

14: etat:=0;n:=0;N:=0;t:=0;
15: assert

16: /I N=n; commented out
17: (etat=1) => (t<=30);
18: (etat=2) => (t<=20);
19: edon

Figure 8. Train Timed Component with no Flow Variables

The flow variableN is first assumed to be a state variable (line 5) and an assignment is givearfor
lines 10-12. We assume that this enables us to get rid of the asserti¥r(ian line 16 is commented
out). Table 1 gives the locations and invariants of the corresponding tiotechaton.

The next step consists in computing the graph structure: the result foathedmponent of Fig. 8 is
given on Fig. 9. Notice that we compute an abstract timed automaton in theteahdescrete variables
are not interpreted: as a result the number of locations of the timed automiztoa tlve discrete variables
are interpreted might be larger than the number of locations of this abstradtdim@maton, even could
be infinite.
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| cwr | & L] 1ah) |
Pw{1,2} | etat=0 | etat=0 it
{1}w{2} || etat=1 | etat=1 | ¢t <30
{2} w{l} | etat=2 | etat=2 | ¢ <20
{1,2} 60 I ff -

Table 1. Locations and Invariants of the Train Component

t>T70ANetat=0
approach
(etat,n,N,t):= (1,1, 1,0)

10 <t <20 Aetat=2
exit
(etat,n,N,t):= (0,0,0,0)

20<t <30 ANetat=1
in
(etat,t):= (2,0)

Figure 9. Translation of the Train component
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4.3. Discussion of our Translation

The assumption that flow variables become clock state variables of the timedicentpneans that the
flows evolution rates and resets must follow the evolution rules of a clock in @ tam®maton. This
imposes restriction on the type of equations one can write in the assert aditwed AltaRica program.

We will not go into details about it and the reader is referred to [32] foedmaustive presentation.
Nevertheless such constraints like= z, Y = x + 1 etc. (whereY is a flow andz a clock) can be
dealt with in the translation into timed automata. More complex equatiors2x + y can be handled
usinghybrid automatd18]. Constraints like: + 1 <Y < 2y + x cannot be encoded into linear hybrid
automata as the slope &f is unbounded. In the sequel we assume that only assertions of the simple
typeY = xorY =z + ¢, ¢ € N are used so that we can encode them into timed automata constraints.
Computing the assignments of the flow variables that have become state \igablinis case easy and
detailed in Table 3.

The other choices we have made can be accounted for by the followisgnea

¢ we do not want to have an expensive computation to produce the timed autpmatdranslation
scheme is easy to implement and does not require extensive computation;

e also, we do not want to deal with clocks in the translation as it is the purgothe dools for
analysing timed systems to do some computation on continuous time domains; we rdoitynpe
syntactical rewriting;

e we do not want to constrain the discrete variables to be in a finite domairelbedorg the trans-
lation: indeed this could be the case that the variables are in a finite domainewayde of the
timing constraints. Thus we do not want to compute the domain of the variables iraaslation.
This is why the locations are predicates on the discrete variables and trasmsibiostrain updates
of these variables. Notice also that this could be the case that the timed autcmatmiated
with a timed component has a finite bisimilar quotient whereas the untimed compuagenb
finite bisimilar quotient (e.g. if a transition contains an update of the form= = + 1). With
our translation, we do not need to assume that the untimed component admits higimilar
quotient.

4.4. Reachability Issues foiTimed AltaRica Components

Timed AltaRica components are translated into timed automata as described previously. dintiaénd
of the discrete variables is finite, we obtain a timed automaton with a finite numbeéscoéi@ states.
Reachability is decidable for timed component if the translation of a timed compbelkmgs to a class
of timed automata for which reachability is decidable. This problem has béensdrely studied and an
exhaustive set of results was given in [24]. We recall (see sectiQritgafithe set otlock constraints

B(X) over a setX of clocks is defined inductively by the grammar (see equation 1):

gi=xzwrlr—ywrlghglgVg

with z,y € X, € {<,<,>,>,=}, r € Z. The set ofdiagonal-freeconstraints3; (X) is defined by
the sub-grammar:

gi=xwrlghglgVg
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with x € X, € {<,<,>,>,=}, r € N. Table 2 gives a summary of the results in [24] (an assignment
of the formz :< ¢ means that: is assigned any value less thanconcerning the decidability of the
reachability problem for timed automata: decidability depends on the type adgafthe automata and
on the type of assignments allowed.

H Deterministic Assignment H Guards inBg (X) ‘ Guards in3(X) H
ri=c (N
=y 2) Decidable
zi=x+1 3) Decidable
r:=y+c (4) Undecidable
z:=x—1 (5) Undecidable

H Non-Deterministic Assignment H Guards inBg(X) ‘ Guards in3(X) H
z:<c (6) Decidable
x:>c @) Decidable
Ty +c (8) Undecidable
y+e<iz:<y+d 9)
y+e<iz:<z+d (20) Undecidable

Table 2. Decidability Results for Reachability in Timed Amntata (from [24])

In our setting, the decidability of reachability depends on the type of guardsssignments of the
timed component as well as on the type of assertions used to constrain timeicos flow variables. If
we allow only assertions on the continuous flow variables of the 6rm =+ ¢’ whereY  is a continuous
flow variable,z is a clock state variable and € N then the updating oY on discrete transitions can
be encoded as a clock assignment according to the encoding descritanlér3: in the case of non-
deterministic assignments (6—10):0fve encode the assignment forwith an e-transition that occurs
right after the one assigningwithout any time elapsing (can be implementeccbynmittedocations in
UPPAAL for instance).

Combining Tables 2 and 3 we obtain that for an assertion containing onlyraims of the form
Y =z + ¢ with Y a flow variable and: is a clock variabley’ € N:

o if all the guards on the clock and continuous flow variables at;i(.X ), reachability is decidable
in case the assignments of the clock state variables are not of type (3Mpr (

o if all the guards on the clock and continuous flow variables a8(iK ), reachability is decidable
only if the assignment of the clock state variables are of the form (1) @@ = 0 (Y = x and
x := y allowed).

5. A Case Study Using Timed Priorities

In this section we give an example of the use of time prioritie$imed AltaRica and the modeling
power they give. We consider again the train-gate-controller introdimceekction 2:
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H Type of Assignment fog: H Type of Assignment fot” H
T:i=c 1) Y:i=c+/¢ (1)
Ti=y (2) Y i =y+¢ (4)
r:=x+1 3) Y =Y +1 3)
Ti=y+c 4) Y =y+c+c 4)
r:=x—1 (5) Y =Y -1 (5)
x:<c (6)
x:>c @)

Tiy+ec (8) e-trans.Y :=x + ¢ 4)
y+e<iz:<y+d (9)
y+e<iz:<z+d (10)

Table 3. Encoding Flow Variablg constrained by = = + ¢/

¢ there are two tracks crossing at the gate,
¢ the trains can come from any side on these two tracks,

e the aim is to ensure property stating “the gate is closed when at least one train is on the near
section”. Also we do not want to open the gate if a train is crossing and @mnistiyoing to cross
in a near future (this is where the priorities will be used).

Let k& € N be a parameter, we fix some timed priorities among the two ewgpi®ach andGo_up
within a delayk. First, we translate this system in timed automata by applying the translation develope
in the previous section 4. Second, we analyse the system USIRQAL [5] (note in this case we do
have to instantiaté with a value inN before using the tool).

5.1. Translation of the Train-Gate-Controller into Timed A utomata

The components Train-Gate-Controller have been given in Fig. 1, f@@fednd Fig. 5, page 1018.

From those components we can build timed automata using the algorithm definection<.1.
For this particular case of a hierarchical node with sub-components nvasgaan alternative way for
building the timed automatoA(Main): it is the synchronized product of the three automata obtained
by translating each component into a timed automaton. The timed automata forTfRad8sandGATE
are given in Fig. 10. The timed automatbrorresponding to nodeAIN is given in Fig. 11MAIN.N.

On the synchronized product of the thre®PAAL timed automata, property’ is given by the
UPPAAL-style property:

A[]J((TRAIN1.s2 or TRAIN2.s2) imply GATE.etat==2)

We can check thaP is satisfied for any fixed value &f

1170 deal with priority, we use the algorithms given in section 3.7 and we ohtpiiority free component.
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etat ==
Go_up!
etat :=3,y:=0

t>=20,t<=30, etat ==

in!
sl etat :=2,t:=0

Go_down!
etat :=1,y:=0

0, etat ==

t>=10,t<=20, etat ==2

t>=70, etat .
exit!
approach!
=0, n :=0,t:=0 etat ==
etat :=1,n:=1,t:=0
etat :=1,y:=0
y<=10, etat ==3
up!
etat :=0
etat ==
Go_up! etat ==
Go_down!
Figure 10. Train and Gate AutomataliiPPAAL
etat ==2,X1 >= 70
approach!
s2

etat ==1,X1>=70
|
approach! etat :=1,2:=0, N :=0

etat ==1,X2 >= 70

etat ==2,X1 >= 70

etat ==2,X1 >= 70
approach!
etat :=1,z:=0, N :=2

etat ==1,X2 >= 70
approach!
N:=0

etat ==0,X2 >= 70 2<=10, etat ==2,X1<70;

etat:=0, N ;

approach!

etat :=1,z:=0, N :=2
2<=10, etat ==2,X1<70-k,X2<70

etat :=0 Go_up!
etat :=0, N :=0
2<=10, etat ==2,X1;
Go_y etat ==0, N >1
exit!
N:=0

z<=10, etat ==1
Go_down!

etat =0, N :=1

etat ==0, N >1

etat ==0, N >1
exit! exit!
N:=0 N:=2
etat ==0, N >1
exit!
N:=1

Figure 11. Controller Automata idPPAAL
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5.2. Influence of Timed Priorities

Timed priorities constrain the system and one of the first questions that ariséat kind of behaviour
do we forbid. The priority we have given in Fig. 5(b), page 1018 meaatsvib do not want to raise the
gate if a new train can enter the near section within less thi@me units. As intended, there should be
a threshold valué for k£ such that for alk > kg, the gate remains closed forever. We can express this
as the property? A[1 (GATE. etat==2) and it is satisfied fok, = 40.

Another interesting problem concerns the liveness of the system. As staiedark 3.2, page 1014,
some deadlock may occur when prioritising the system. The train-gate-tentrithout priority is
deadlock free and looses this property as soon ad).

6. Conclusion

We have shown how to add clocks AdtaRica and build a timed extension of this formalismimed
AltaRica. This timed extension has the same features as the untimed ones and wele/evgedye all
the results obtained for the untimed case:

e two timed bisimilar timed interfaced transition systems remain timed bisimilar when we apply a
timed priority restriction (theorem 3.2),

e a timed component with timed priorities can syntactically be rewritten into a timed compone
without timed priorities and has the same semantics (lemma 3.3),

e the synchronised product (for nodes) is compositional with respect tal thiggmulation (the-
orem 3.3),

e atimed node can be rewritten into a timed component that has the same semaruresr(tBet).

Moreover we have defined a translation of timed components into usual tinnatata (section 4)
so that we can use tools for analysing timed automata (JIREAAL) to carry out our verification.

Moreover the implementation of our translation calléched AltaRica-Compiler is currently being
added to th&ltaRica toolbox.

Our future work is many-fold:

e complete the extension dfltaRica by adding features allowing the user to spedifgbrid sys-
tems[18]; the main problem is to deal with time priorities in this case. The work we hesgen-
ted in this paper is correct faock variables but additional work is needed for systems where
variables may have arbitrary integer slopes;

e study the problem of preserving liveness when using priorities (followhegramework of [27]),
e use ourTimed AltaRica-compiler on real industrial case studies,

e investigate in alternative ways of checking the correctne3sméd AltaRica specifications: this
amounts to design some hierarchical model-checking algorithms taking ageanitdone structure
of Timed AltaRica specifications.

2actually to prove this property with the restricted TCTL settPPAAL we have to change the initial set of states to check
this property.
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Appendices

Proof of Theorem 3.1

Theorem A.1. Two TITS A; and A, are timed bisimilar if and only if there exists a TIT®and two
timed interfaced bisimulation homomorphisis: A; — B andhs : Ay — B.

Proof:
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If part. Assume there exist two homomorphisias : A, — B andhs : A, — B and denote
B = (Ey, Fy, Si, m, T). Define the relatioR C S, x S, by: R(s,s") <= hi(s) = ha(s’) We show
that R is a timed interfaced bisimulation by proving it satisfies the four points of Def. 3.2

1. Letq; € Sy, ets = hi(q1) € S;. Sincehs is surjective there existg € So, S.t. h(ge) = s =
h(q1).

2. Let (¢q1,42) € R. Thenhi(q1) = ha(qz2). By item 2 of Def. 3.3 it follows thatri(q1) =
m(hi(q1)) = m(h2(q2)) = m2(g2).

3. Let(q1,9,¢,4},9,) € Ti. By item 3 of Def. 3.3 there existg € s.t. (h1(q1),9,e,h1(¢}), ') € T.
Letge € Sy, S.t. (q1,92) € R. Thenha(g2) = hi(q1) and by item 4 of Def. 3.3 we have i) there
existsq, € So, s.t. ha(gh) = hi(q}) i.e. (q,45) € R and ii) there existgy, € ma(qh) s.t.
(g2, 9,€,4,95) € Ts. As the two TITSA; and.A; play a symmetric role we obtain both items 3
and 4 of Def. 3.2.

Only if part The idea is as follows: there is a largest bisimulationfor 4, and=, for A; and those
two largest bisimulations give two transition syste.wnls/El andAg/52 that are isomorphic. Moreover
each bisimulatiors; can be made a function and we can build two homomorphisms from these fumction
The scheme is depicted in Fig. 12.

A R . Ay
hl h2
Al/El ¢ > A2/52

Figure 12. Building a Timed bisimulation Homomorphism

LetV C X; x Xo andU C X5 x X3 be two binary relations. We denotéU C X; x X3 the
relation s.t.(¢,¢') € (V.U) <= 3¢ € X2 s.t. (¢,¢q2) € V and(qq,¢') € U. For a binary relation
L C X x X denoteL™! = {(q,¢)|(¢,q) € L} andL* = U,enyL" with L° = Id and Li*! = L.L".
Note that(L.L~1)* is an equivalence relation.

AssumeA; and.A;, are timed bisimilar and deno#e a bisimulation relation o%;, x .Ss,.

The relations:_ldzef (R.R~H)* C 8y, x Sy, andzgd:ef (R~L.R)* C S5, x 99, are both equivalence

relations. We define the quotiedt ,—, and.Az /-, and the functiong; : A; — A; =, by: h;(s) = [s]
([s] denotes the equivalence class §prlt is easy to see that; is a timed bisimulation homomorphism.
Also define the mapping by:

o Az, — Ay,
[s] — [§] <= (s,8)€R
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¢ is a (timed bisimulation) isomorphism. Now gt = ¢oh,. b} is atimed bisimulation homomorphism
(composition of an isomorphism and homomorphism). This completes the proof.
O

A.2. Proof of Theorem 3.2

Theorem A.2. (Priority and Timed Bisimulation)

Let A; = (E, Fy, S1y,m1,T1) and Ay = (Ey, Fy, Sap, w2, T2) be two TITS and< a timed priority
relation overE. If h : A1 — A is a timed bisimulation homomorphism thén A < — Ay<is
also a timed bisimulation homomorphism.

Proof:
Leth: Ay — A, be atimed bisimulation homomorphim. We show thas also a timed bisimulation
homomorphim from4;|< onto . Ay<.

For points 1 and 2 of Def. 3.3 just notice thatonly restricts the transition relation and does not
involve the set of states and the mapping; .

Now for point 3, let(qi1,9,¢e,4},9") € Ti <, then(h(q1),9,e,h(¢}),g’) € T>. Assume that
(h(q1),9,¢, h(q}),q’) ¢ TaI<, then according to Def. 3.6 there are two possibilities:

1. eithere =t € T and3e’ > time,t’ < t,(h(q1),9,t',d5,9") € To A (¢y,¢", ¢, 4y, g") € Ts.
Sinceh is an homomorphism anth(q1), g,t',¢5,¢"”) and (¢5,¢",¢", 4y, ¢"") are inTy, there
"

existsqy, i’ € S1, s.t.h(qf) = ¢5, hq]") = @3’ A (a1, 9,1, 4], 9") and(q},g", ¢, q{", ") are in
T:. Hence(q1, g, €, 4}, ¢') cannot be irl; [< which contradicts the first assumption.

2. otherwisee € E; and3e’|e < ¢’ and3t < k|(h(q1),9,t,45,9") € To and(qy,¢", €', ¢4, g") €
T». Sinceh is an homomorphism anh(q1), 9,t, 45, ¢") and(¢y, ¢". €', ¢y, g"") are inTy, there
existsq!, ¢f" € S1,|h(¢}) = ¢4, h(q]") = ¢§ and(q1,9,t,4{,¢") and (¢}, ¢", €, q{’,¢"") are in
T:. This contradicts again the fact that , g, e, ¢;) € T1|<. This ends the proof of point 3.

Now letq; € S1,,q5 € S, such thath(qi1),g,e,4,9") € ToI<. Then3g] € Sy,|h(q}) = ¢, and
(¢1,9.€,41,9') € T1. Again assume that for alf; s.t. h(q;) = g5, we have(q1, g, e, ¢4, 9') ¢ Til<:

1. if e € T, this means thait; < t¢,(q1,9,t1,47,9") € Ty and3e’ >( time that is firable from
(¢{,d"). Then from item 4 of the Def. of homomorphism we ¢&tq.), g, t1, h(q}),9") € To A
(h(d),d", ¢4y, ¢") € T», and it contradict$h(q1), g, €, ¢b, 9') € Tol<.

2. Otherwisee € E, and there exists’ € E, andt < k s.t. e <i €, (q1,9,t,¢/,¢") € Th and
(¢{.9".¢.d}'.g") € Ti. It follows that(h(q1), gt h(a}). g"), (h(d}). ", ¢, h(¢{").g") € T
which again contradicts the hypothe§igq: ), g, e, ¢5) € T>|<. This ends the proof of point 4 and
of the theorem.

0

A.3. Proof of Theorem 3.3

Theorem A.3. LetN = (Vi,Cp, E, <, Ny, - , Ny, (I7,<‘~/)>and/\/’ = (Vp,Cp,E, <, N{,--- N,
(v, <{7)) be two timed nodes such that € [0..n] there is a timed homomorphisi from [A;] to [A;].
Then there exists a timed homomorphisrfrom [A] to [A].
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Proof:
Let [Ni] = (Ey, Fi,, Si,, mi, T;) and[N] = (Ey, F;,, S. , =, T!) be the TITS that give the semantics of

tyMig N g

the timed nodes. First we assurids the empty relation.
Defineh by:

h: Sy — S
q=1(q0,---,qn) +— h(q) = (ho(qo);---;hnlqn))

We prove that is timed bisimulation homomorphism froid to N”.

1. his obviously surjective,

2. assumen = |Cr| andf = (f, ). Form(q) we get:

... 77771) S WO(QO)}

m(q) = {f D" xR™|Viel,n], In €milq)| (f,
) (fyms - mm) € mo(ho(qo)) }

= {feD"" xR™| Vie[l,n], In; € i (hilq)
= 7(h(q))

3. if(4,9,¢,01,9') € T since< is the empty relation and by definition f(see Def. 3.10) it follows
that(h’(Q)ﬂ g6, h(q1)7 g/) S TI,

4. letq = (g0, q1,---,qn) € St andq’ = (¢4, ¢}, ---.4,) € S;s.t. (h(q),g,e,4,9") € T'. Assume
e = (eg,...,en). Then by definition off” (Def. 3.10) we have:

3fo = (g9, f1,---, fn) € T (ho(q0))
o= i, fn) € mo(d)
st.Vie [0,n] (hi(q), fisei d., f]) € T!

As eachh; is an homomorphism we getlq/ € S;, s.t. hi(¢/) = ¢} and f/ € m(¢/) and
(@i, fireird!, f) € T;. This means:

EIfO = (97 fla . 7fn) S WO(QO)
fo= (9" fl,---, fn) € mo(ap)
stVie[0,n] (¢ fisenq), f]) €T

(2

Takeq” = (qfj,...,q). We haveh(q") = ¢’ and3f} € n(¢") s.t.(¢,9,e,¢",¢") € T.

Now assume< is not the empty relation. LeNj = (Vi,Cp, E,0,No, -, Np, (V, <)) and
Ny = (VL Cw,E,0,Ng, -+ N, (V, <7)). With the previous proof in the case of an empty priority
relation we get that there exists an homomorphisfrom N, to A”y. Applying theorem 3.2 we obtain
thath is also an homomorphism fro/” to A’. This completes the proof.

a
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A.4. Proof of Theorem 3.4

Theorem A.4. Let \ be a timed node. TheN can be rewritten into a timed componéh¢ such that
[N] and[Cx] are timed bisimilar.

Proof:

We prove theorem 3.4 by induction. L&f = (Vp U Cr, B, <, Ny, -+ , Ny, (V, <)) and [N] =
(Ey, Fy, Sy, m,T). LetCy = (Vs U Cg, Vp UCR, E, A, M, () as given by Definition 3.4, anfly/] =
<Et, Ft, Silf’ 7T,, T,>

Base Step For the base step assume all the are timed components; = (Vs, U Cs,, Vi, U
Cr, E;, A;, M;,0) (note the priority relation is empty as we can use the syntactical encoding of timed
priorities defined in section 3.7) afid/;] = (E;,, F;,, Si,, mi, T;).

We prove that\ andCyr are timed bisimilar. Take equality as a candidate to be a bisimulation
relation.

1. checking that equality is a total relation 8nx S; amounts to checking thay € S;, 7(q) = 7'(q)
and this is done in the second point,

2. Ietq = (QO,QL e 7qn) and? = (fa M),

m(q) = {feD" xR™|Vie [L.n],3In| n; € m(a) A (Fom, nm) € m0(q0)}

= {feD"" xR™|Vie [1.n],3n;| (gi,m) € [A] A (¢ Fm. - omn) € [Ao]}
= {feD" xR™|Vie [L.n],3n]| (¢, f, 1, o) € [Nimo.nAil}

= {feD"" xR™|Vie [1.n],In;| (¢, f) € [Bic1.n(VE, UCE,). Ni=o..n A]}
= {feD"" xR™|Vic [1.n],3n;| (¢, f) € [A]}

= 7'(q)

3' let <(QO7 q1,- - 7qn)7 f7 €, (Q67Qi7 T 7Q;1)7 f/> S T We denOteq = (QO,Qh Tt 7qn) and q, =
(9,44, -+ »q,)- Note thatl; = [M;] as for allV; the priority relation is empty.

o if e =(eg,e1, -+ ,e,) With e; ¢ T then by Def. 3.10:

Hfo = (f?fla"' 7fn) EWO(QO)
Elfé = (flaf{f" af'rlz) € 770((1(,))

This entails that(q, f) € [A]. Also by Def. 3.8Vi € [0..n] there exists a transition
((9i>7i), €5 (ai, Ri)) € M st (g, fi) € [Ai Agi Avi] andg; = (ai, Ri)(qi, fi) and
(¢}, 1) € [A;]. This implies that¢’, f') € [A]. It remains to find a transition id/ s.t.
the transition from(q, f) to (¢, ) is fireable inCxr. Take((g,7),e, (a, R)) in Cxr given
by g = (Fi=1.4VE)-90 N A gn, v = (Fi=1..CF) 0 A -+ Ay @nda(z) = a;(x) for
x € VsNVg andR(c) = R;(c) forc € CsNCyg . AsVi € [0..n] (q;, fi) € [AiAgiNvi] we
have(q, f) € [3i=1..VF,)-90A - Agn AV = (Ji=1..CF,) 0N - - Ayn] @and agg, f) € [A]
we get(q, f) € [A A g Av]. As we already mentione@’, /') € [A]. Moreover(¢/, f') =

} such thatvi € [On]v (qza fi)eiaqg’fi,) € [[Ml]]
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(CL, R)(Qv f) and by Def. 3.8 this means thé(tQO» q1,- - aQn)v f’ €, (q(,)v Qia e ’q;L)7 f/> €
T'. The converse is straightforward and we finally have, f),e, (¢, f')) € T <=

{(q,f),e,(d, ) € T fore = (eg,e1, - ,e,) wWithe; & T.

o if e=(0,0,---,0) with § € T the have to ensure that all long the way frgrto ¢’ the time
constraint (invariant) holds. This is straightforward by pointing out thaiff ), d, (¢, f’) €
T thenvd’ < 6 we have(q, f),d, (¢", f") € T for some(q”, ). Then using Def. 3.8 we

easily get the result thato, ¢1,- -, gn), £, 9, (40, ¢4, -+ . q,), f') € T'. Again the converse
holds and we end up with = T".

Induction Step Let N = (Vi U Cp, E, <, Ny, , N, (V, <)) and assume all th&/; can be re-
written into timed componentSy; s.t. A; andCy; are timed bisimilar. LetN' = (Vp U Cp, E, <
,CNoy 5 CA s (f/, <y ))- Then using the base step proof we conclude there exists a timed component
Cn that is bisimilar taN’. By theorem 3.3 we also have th&t and\ are timed bisimilar and hence
Cn and are timed bisimilar.

This completes the proof.

A.5. Proof of Theorem 3.5

Theorem A5. Let7 = (Vg,Cs, Vp,Cr, E, A, M, <) be a timed component where consists in one
element:e,, > time (e, is urgent). Assume there is one urgent transitipr= ((gu, Vu), €u, (Gu, Ry))
and~, is not sharp. Define the timed componé&pt= (Vs, Cs, Vi, Cp, E, A A @y, M, () with

ou Z gy = (W A-(al)) = ¥ =0) (7)

Assume the flow variabl® is reset on each discrete transition and evolves atlratedelay transitions.
Then[7] and[7Z,] are timed bisimilar.

Proof:

First note that as,, is not shargv, A —=(v.])] # 0. Indeed for alle > 0 the setW, = {v+¢ | v €
[v.1] ande’ < €} is included in—(v,,1). Hence if[y, A =(7,1)] = 0 it must be the case that for all
e > 0 the seti. N [,,] is empty and contradicts the fact thatis not sharp.

Secondy, A —~(7,1) is past-opened i.eff v € [y, A ~(7,1)] then there is > 0 such thatve’ < e
we haver — €' € [y, A =(7.1)]. This follows from the constraint that the guard of an urgent transition
has a first instant for which it becomes true.

Again we assumg’ is not part of the configuration of the system and it is a global variablatepod
by an oracle. This enables us to use our notion of timed bisimilarity (Def. 3.#)er@ise we would
have to define timed bisimilarity for timed components with different sets of (clbak}.

[M]I< is the transition relation df7 | and we denoté)/, | the transition relation of,.

First part: [M]}<C [M,]. Remark that discrete transitions are unchanged and we only need to prove
that each delay transition {i\/][< is a transition in[AZ,].

Assume(s, v), (f, 1), 0, (s,v/'), (f, 1) € [M]|< with § > 0. By Def. 3.8, item 4.(c) it implies that
) (s,v), (f,1n),0,(s,v"), (f,1) € [M] and by Def. 3.6 that iiyt’ < ¢ s.t. ((s,v),(f,p),t',(s,v+
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), (fyp+ 1) € [M], if ((s,v+1),(fip+t)ed,q) e [M]thene # time By i) we know
thatVve’ < §if ((s,v),(f,n),d,q,q") € [M] then(d,q’) € [A]. Now if (s, f) € [g.] We need to
prove that(v/, i) € ¢,. 6 > 0 impliesY > 0. Hence(y, A =(7.,T)) must be false ats, v/), (f, 1/).

Assume it is true ats, /), (f, /). Then as(vy, A —(7, 1)) is past-opened there must be> 0 s.t.

Ve <€, ((s,v =€), (f, 1/ —¢€)) € [(vu A —(71))]. This contradicts ii). Thu$y, A —(7,T)) is not
satisfied for anyy’ < § and A A ¢, holds all along the delay transitiqm, v/), (f, 1), 9, (s, ), (f, 1)

which implies this transition is ifiM/,,].

Second part: [M,] C [M]|<. Assume(s,v),(f,un),d, (s, "), (f, i) € [M,] ands > 0. By Def. 3.8
this means that all long the path frofs, v), (f, 1) to (s,v'), (f, ') assertiond A ¢, holds. In case
(s, f) & lgu] clearly the transition is ifM][<. If (s, f) € [gu] then(yu A =(71)) = Y = 0 must
hold all along the way. Again as > 0 (becaus@ > 0) it must be the case th&t, A —(v,1)) is false for
allo <t/ <die. -y, V] holds. EitheN0 < ¢/ < §, 7, is false and in this case no urgent transition
can be fired on the way frois, ), (f, u) to (s, /), (f, ') and(s,v), (f, 1), 9, (s, V), (f, ') € [M]I<.

Or v, holds for some) < t” < t. Then~v,1 must hold at”. By the fact thaty, A v, is not single
we know that there is & < ¢ < t s.t. 4, holds att’”’ as well as~(v,,1)). HenceY must be equal
to zero att’”’ which cannot be the case. Hence there cannot be&’ary § s.t. ¢, is fireable and again
(5.0), (f. 1), 6. (5, 0), (f, ) € [M]}<

This completes the proof.

A.6. Proof of Theorem 4.1

Theorem A.l. LetT = (Vs UCs,Vr UCp, E, A, M, () be a timed component withy = Cp
Then[7] and[A(7)] are timed bisimilar.

0.

Note that we have shifted the clock flows into the state variables of the comiparmewe allow only
flows that are clock-definable.

Proof:

We denote[7T] = (Ey, F;, Sy, m, T) with F, = {# } (F, cannot be empty because of the definition of
TITS) andr is constant and equal to(q) = . A(T) = (L, Lo, £, X, I,T) and the semantics of(7)

is a TTS (see section 3.1)), E, —). Thus itis also TITS(E}, F{, S;, ', T') of dimension(|X|,0),

with B} = EUR>q, F; = {tt }, S; = {(L,v)| v € [inv(])] }, 7(q) = t (always non empty) an@’

is given by—. We omit f is configuration like(s, f) as it always amounts @, t#).Now we prove that

[7] and[A(7)] are timed bisimilar: as a candidate for a timed bisimulation relation we take equality of
the states.

1. Letq = (s,v) € S;. We apply Def. 3.8:
(s,v) € S (s,v) € [Avy AN A,
s € [Av, ] A (s,v) € [Ac, ]
scll, Gw L =[1.p|(I& form a partition ofAy;.) andv € [Nrecli]
sclinve[Inv(l)]
(s,v) € 5]

1ttt
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2. w andn’ are constant and equal # so they agree for each state,

3. let(s,v) € S;. Then(s,v) € S; by item 1 above. Assum@s, v), e, (s1,v1)) € T withe € E..
We have to prove that(s,v), e, (s1,v1)) € T'. As((s,v),e,(s1,11)) € T there is a transition
t = (g9,7),¢e, (a, R)) € M such thati)(s,v) € [AAgA~],ii) s1 = a(s) andiii) vy = R(v).
This implies that in4(7") there is a transition of the forrfi%, g A Pret(léll) A7, e, (a, R), léll).
By iii) we get that(s,v) € [[Pret(léll)]]. By i) (s,v) satisfiesy A v A 1%. So in the semantics
of A(T) a transition of the form((s,v),e, (s',2/)) can be taken. As we ude, R) to update
the values of the state variables afad R) are deterministic we obtaifs’, ') = (s1,71). Now
assumg((s,v),d, (s1,v1)) € T with § € R>(. By definition (s,v) € [A] and(s1,v1) € [4]
and as we have time determinism for the flow variables< ¢’ < 4, (s,v + ¢’) € I(s) with
I(s) = Nijsep,Ii- s € I fo someG w L = [1..p] and the invariant fot is Inv(i&) = Nrea -
Inv(l%) andI(s) coincides and thu§(s, v), d, (s1,v1)) € T".

4. the converse of item 3 above is straightforward and proved exadtiymass.

This completes the proof. O



