
HAL Id: inria-00363326
https://inria.hal.science/inria-00363326

Submitted on 22 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unreliable Transport Protocol for Commodity-Based
OpenGL Distributed Visualization

Samuel Thibault, Xavier Cavin, Olivier Festor, Eric Fleury

To cite this version:
Samuel Thibault, Xavier Cavin, Olivier Festor, Eric Fleury. Unreliable Transport Protocol for
Commodity-Based OpenGL Distributed Visualization. Workshop on Commodity-Based Visualiza-
tion Clusters, Oct 2002, Boston, United States. �inria-00363326�

https://inria.hal.science/inria-00363326
https://hal.archives-ouvertes.fr


Unreliable Transport Protocol for Commodity–Based
OpenGL Distributed Visualization

Samuel Thibault
ENS Lyon

Xavier Cavin
SCI Institute

Olivier Festor∗

Inria Lorraine
Eric Fleury

Inria Rhônes–Alpes

Abstract

This paper presents a way to use an unreliable transport
protocol to perform distributed OpenGL visualization on a
commodity network of computers. We present a perfor-
mance evaluation of a prototype implementation based on
the Chromium environment.

1 Introduction

Clusters of commodity computers are becoming a practical
tool for visualization. However, most of the time, they are
dedicated clusters with a fast (and sometimes expensive) net-
work interconnect: gigabit Ethernet, Myrinet,etc. On these
networks,transfer time and packets loss are very low. For
this reason, the chosen transport protocol (IP) is often a reli-
able one (i.e. TCP).

In this paper, we consider alternative network intercon-
nects, that are both cheaper and more commonly available:
100 Mbps, 10 Mbps or wireless networks. On these net-
works, transfer time is longer and packets loss happens more
often (which requires to resent the packets and adds a delay
in the transfer time). In those cases, it may be more inter-
esting to use an unreliable transport protocol to get a higher
framerate, if we accept a degradation of the final rendering
quality (due to packets loss).

We show in this paper how to use an unreliable transport
protocol (i.e. UDP) to perform distributed OpenGL visual-
ization on a commodity network of computers. We present a
performance evaluation of a prototype implementation based
on the Chromium environment [1].

2 Network Interconnect

As opposed to shared memory parallel machines — where
multiple processors share a common adress space — a clus-
ter of computers requires to specify a way for the machines to
communicate between them: aprotocoldescribes “the mes-
sage formats and the rules two or more machines must follow
to exchange those messages” (Douglas Comer).

∗Contact:mailto:Olivier.Festor@loria.fr

Figure 1: The four layers in the DoD model (Freesoft.org).

Protocol layeringis a common technique actually used
to simplify networking designs by dividing them into func-
tional layers, and assigning protocols to perform each layer’s
task. The core Internet protocols rely on the Department
of Defense (DoD) Four–Layer Model depicted on Figure1.
The four layers in the DoD model, from bottom to top, are:

1. TheNetwork Access Layeris responsible for delivering
data over the particular hardware media in use. Dif-
ferent protocols are implemented from this layer by a
combination of hardware (e.g. a network adaptor) and
software (e.g. a network device driver); for example,
one might find Ethernet or Fiber Distributed Data Inter-
face (FDDI).

2. The Internet Layeris responsible for delivering data
across a series of different physical networks that in-
terconnect a source and destination machine. Routing
protocols are most closely associated with this layer, as
is theInternet Protocol(IP), the Internet’s fundamental
protocol.

3. The Host–to–Host Layerhandles connection ren-
dezvous, flow control, retransmission of lost data, and
other generic data flow management. TheTransfer
Control Protocol(TCP) andUser Datagram Protocol
(UDP) are this layer’s most important members.

4. The Process Layercontains protocols that implement
the user–level functions, such as mail delivery, file
transfer and remote login.

1

mailto:Olivier.Festor@loria.fr


Applications are usually built on the top of the process
layer protocols. However, an application is free to bypass
the defined transport layers and to directly use IP or one of
the underlying networks.

The internet layer protocols are fundamentally datagram–
oriented and unreliable. It is the responsibility of the host–
to–host and process layer protocols to enhance the quality
of service to that desired by a particular application. These
protocols function as an intermediary between the applica-
tion and network layers. The two main Internet host–to-host
layer protocols are:

• TCP is a sliding–window protocol providing reliable,
stream–oriented delivery. TCP includes support for
guaranteed delivery, meaning that the recipient auto-
matically acknowledges the sender when a message is
received, and the sender waits and retries in cases where
the receiver does not respond in a timely way.

• UDP provides almost no additional functionality over
IP. It performs fast, unreliable, datagram delivery. UDP
does not implement guaranteed message delivery and
provides no guarantees that the order of data delivery is
preserved. UDP is called anunreliable transport proto-
col for this reason.

The Maximum Transmission Unit(MTU) is the biggest
packet size that can be transmitted over a physical network.
Different networks have different MTUs; for Ethernet, 1500
is the maximum, and recommended MTU. When a packet
reaches a network whose MTU is smaller than the packet
size, the Internet Protocol will “fragment” it by breaking it
up into smaller ones.

TCP automatically breaks up the data to adapt to the MTU,
while UDP does not: the application has to take care about
the size of the packets it sends.

3 Distributed OpenGL

In this section, we assume that we have an OpenGL applica-
tion that encodes its OpenGL commands, send them over a
network to a rendering server that in turn decodes the com-
mands and renders them on its own graphics hardware. This
is the basic brick of a distributed OpenGL visualization sys-
tem, where multiple applications can send OpenGL com-
mands to multiple rendering servers.

Most implementations of a distributed OpenGL system
rely on TCP for the transport protocol, because it is reliable
by nature and rather efficient on a dedicated cluster of com-
puters. All OpenGL commands sent over the network are
guaranteed to be received, in the same order that they have
been sent. Figure2 shows a rendering of a crocodile model
using TCP: it appears as if it was rendered locally.

Figure 2: TCP rendering of a crocodile.

3.1 UDPversusTCP

Replacing TCP by UDP is equivalent to remove the acknowl-
edgment mechanism, so that some data may not be received,
or at least not in the order they were sent. It allows to op-
timize the use of the network, because the sender no longer
have to care about the loss of packets.

Simply replacing TCP calls by UDP calls is obviously not
a viable solution. Indeed, if some important OpenGL com-
mands are lost, the execution of the received ones (possibly
in a different order) often leads to a fatal crash. There is also
the case of OpenGL commands that are supposed to return a
value (like theglGet* family).

One solution is to combine the use of TCP for commands
that can not be lost and UDP for all other commands. How-
ever, the two communication channels have to be synchro-
nized so that commands sent through UDP are correctly in-
terleaved with commands sent through TCP. We so add a se-
quence number to UDP packets, which is incremented each
time new commands are sent through TCP, as shown by Fig-
ure 3. The receiver first tries to read a UDP packet, and if
the sequence number has raised, it reads the new commands
sent through TCP and can handle the UDP packet.

UDP

TCP

4 5 5 6 6 6 7

Figure 3: Interleaving UDP and TCP packets.

Rather than exhaustively listing the OpenGL commands
that can not be lost, we have chosen to incrementally choose
the one that can be lost and therefore be sent through UDP.

Actually, we have first decided to only send theglVer-
tex commands through UDP. These commands are used
within glBegin /glEnd pairs to specify point, line, and
polygon vertices, and may represent up to80% to 99% of
the whole commands, depending on the type of application.

3.2 Loosing packets

If the whole content of aglBegin /glEnd pair is lost, then
some holes would appear in the final rendering. Unfortu-
nately, this is not so simple: Figure4 shows a rendering of

2



the crocodile model using the interleaved UDP/TCP mecha-
nism. We can notice that a lot of “bad”, overlapping triangles
have been rendered.

Figure 4: UDP/TCP rendering of the crocodile.

Consider the simplified example of Figure5. Suppose that
the application wants to send the three triangles depicted by
Figure5(a): it will likely use a glBegin /glEnd pair in-
cluding the points of Figure5(b) in the specified order so
that they get linked correctly as on Figure5(c).

5

7

1
4

(a) Expected.

1

2

3

7
9

8

6

4

5

(b) Sent.

1

2

3

7
9

8

6

4

5

(c) Rendered.

Figure 5: Rendering without loss.

Real 3D objects (such as the crocodile model of Figure2)
are composed of many more points, and it can happen that
the content of aglBegin /glEnd pair becomes larger than
the MTU of the network, and then gets fragmented before
being sent. If a subset of the content of aglBegin /glEnd
pair is lost, we may get to a case similar to the (simplified)
one depicted on Figure6(a), where a single vertex (the third
one) has been lost during the transmission. The triplets of
vertices representing the individual triangles are wrong, the
two last vertices are ignored, and the final rendering shown
on Figure6(b) is completely incorrect.

1

2

7
9

8

6

4

5

(a) Received.

1

2

7
9

8

6

4

5

(b) Rendered.

Figure 6: Rendering with a single vertex loss.

A solution to overcome this problem is to group the points
by three (in the case of our simplified example) in the UDP
packets, so that the loss of vertices happen with triplets of
vertices, as shown on Figure7(a). A packet loss so leads to
a coherent hole, as shown on Figure7(b).

7
9

8

6

4

5

1

(a) Received.

7
9

8

6

4

5

1

(b) Rendered.

Figure 7: Rendering with a triplet of vertices loss.

A similar attention must be given to other cases ofglBe-
gin /glEnd pairs: GL_LINES, GL_LINE_STRIP ,
GL_LINE_LOOP, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP
andGL_POLYGON.

Figure8 shows a better rendering of the crocodile model
with the interleaved UDP/TCP mechanism and the MTU
consideration. We can observe holes due to the packets loss
(about10% in this case), but the result looks much better
than on Figure4.

Figure 8: Fixed UDP/TCP rendering of the crocodile.

4 Experimentations

We have implemented the UDP/TCP mechanism inside the
Chromium environment [1]. Chromium is a flexible frame-
work for scalable real–time OpenGL rendering on clusters
of workstations. The communication is done through a
stream packing library that takes a sequence of OpenGL
commands and produces a serialized encoding of the com-
mands and their arguments. The serialized representation of
the OpenGL command is sent over the network and then de-
coded for rendering or further processing.

Chromium provides a point–to–point connection–based
networking abstraction, that abstracts the details of the un-
derlying transport mechanism. This library is currently im-

3



(a) Rings. (b) Chromium B.S.U.

Figure 9: Screenshots of two tested applications.

plemented on top of TCP/IP and Myrinet. We have extended
this library so that it supports both the version 6 of the Inter-
net Protocol (IPv6) and our UDP/TCP mechanism.1

We have experimented our implementation between two
standard PC’s on a local network with three different config-
urations and with the following applications :

• Crocodile: a triangulated surfaces OpenGL viewer,
loaded with the crocodile model (see Figure2).

• Rings: one of the Chromium’s test programs that im-
plements a simple parallel application displaying rings
(see Figure9(a)).

• Chromium B.S.U. [2]: a space shooter game written in
OpenGL (see Figure9(b)).

100 Mbps: our first experiment is on the 100 Mbps
(100BaseTX) local network. Table1 shows the obtained
framerates with the three applications.

In this configuration, we observe a small gain with the
crocodile application (22%), with few missing triangles,
but the performance is the same with the rings application.
Indeed, the geometry of the rings is very light, and all
synchronization operations must be done through TCP.

Crocodile Rings Chromium B.S.U.

TCP 2.2fps 110fps playable
UDP/TCP 2.7fps 110fps playable

Table 1: Framerates on the 100 Mbps local network.

10 Mbps: in order to reduce the available bandwidth, we
have set the network card of the PC’s to 10 Mbps (10BaseT).
Table2 shows the obtained framerates with the three appli-
cations.

In this case, we observe a gain with the crocodile applica-
tion (28%) but also with the rings application (65%).

Wireless: finally, we have replaced the network card of
the PC’s with a 11 Mbps wireless card. In this configuration,

1These modifications have been applied to the patches–1–branch of the
Chromium’s SourceForge CVS repository.

Crocodile Rings Chromium B.S.U.

TCP 0.28fps 24fps playable
UDP/TCP 0.36fps 39fps playable

Table 2: Framerates on the 10 Mbps local network.

a lot of packets loss happen, and the TCP performance goes
dramatically down: for instance, the transfer rate for sending
a file is about 200 KB/s. Table3 shows the obtained framer-
ates with the three applications.

We obviously observe an important gain for the crocodile
application (560%), because TCP needs to resent a lot of
geometry. The gain is less important with the rings applica-
tion (145%), because it uses less geometry and relies more
on TCP. However, the rendering quality with UDP/TCP is
very bad in both cases, because the packets loss degrading
the TCP performance are directly visible on the screen.

Crocodile Rings Chromium B.S.U.

TCP 0.066fps 5.5fps quite playable
UDP/TCP 0.37fps 8fps non playable

Table 3: Framerates on the wireless network.

5 Conclusion

This paper presents a novel way to use an unreliable trans-
port protocol for commodity–based OpenGL distributed vi-
sualization, by interleaving UDP and TCP communications.
We have implemented this mechanism inside the Chromium
environment, and our preliminary experiments show that it
can be adapted if the geometry represents most of the traffic,
if rendering quality is not the first interest, if it is animated
(the eye compensates the holes), if there are a lot of packets
loss, and if network is the bottleneck. However, if the ap-
plication requires a lot of synchronization, or if the network
is faster than what the application can handle, TCP may be
better adapted. We also believe that our current implementa-
tion could benefit from some UDP specific optimizations in
order to obtain better performance.

Acknowledgments

The authors would like to thank Alain Filbois for his constant
technical support and Bruno Levy for his help with OpenGL
related problems. This material is partially based upon work
supported by the AVTC under the DOE VIEWS program.

References
[1] Chromium. http://chromium.sourceforge.net .

[2] Chromium B.S.U.http://www.reptilelabour.com/
software/chromium .

4

http://chromium.sourceforge.net
http://www.reptilelabour.com/software/chromium
http://www.reptilelabour.com/software/chromium

	Introduction
	Network Interconnect
	Distributed OpenGL
	UDP versus TCP
	Loosing packets

	Experimentations
	Conclusion

