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Abstract: System-on-Chip (SoC) can be considered as a particular case of
embedded systems and has rapidly became a de-facto solution for implement-
ing these complex systems. However, due to the continuous exponential rise in
SoC’s design complexity, there is a critical need to find new seamless method-
ologies and tools to handle the SoC co-design aspects. This paper addresses this
issue and proposes a novel SoC co-design methodology based on Model Driven
Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and
Embedded Systems) standard proposed by OMG (Object Management Group),
in order to raise the design abstraction levels. Extensions of this standard have
enabled us to move from high level specifications to execution platforms such
as reconfigurable FPGAs; and allow to implement the notion of Partial Dy-
namic Reconfiguration supported by current FPGAs. The overall objective is
to carry out system modeling at a high abstraction level expressed in UML
(Unified Modeling Language); and afterwards, transform these high level mod-
els into detailed enriched lower level models in order to automatically generate
the necessary code for final FPGA synthesis.
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Du MARTE a reconfiguration dynamique
partielle en FPGAs: Introduction d’une
extension du controle dans un flot de conception
basée sur les modéles

Résumé : System-on-Chip (SoC) peut etre considérée comme un cas par-
ticulier de systemes embarqués et est rapidement devenue la solution de mise
en oeuvre ces sysetmes complexes. Toutefois, en raison de la complexité de
conception de SoC, il existe un besoin de trouver de nouvelles méthodologies et
d’outils transparente pour traiter la co-conception de aspects SoC. Ce document
traite cette question et propose une nouvelle co-SoC basés sur la méthodologie de
conception Model Driven Engineering (MDE) et MARTE (Modeling and Analy-
sis of Real-Time and Embedded Systems) norme proposée par 'OMG (Object
Management Group), afin de élever les niveaux d’abstraction de la conception.
Les extensions de cette norme, nous ont permis de passer de spécifications de
haut niveau a I'exécution, tels que des plates-formes reconfigurables FPGAs, et
permettent de mettre en oeuvre de la notion de reconfiguration dynamique par-
tielle des FPGAs. L’objectif global est de réaliser la modélisation de systémes &
un haut niveau d’abstraction en UML (Unified Modeling Language), et ensuite,
de transformer ces modeles de haut niveau dans les modeles de niveau inférieur
afin de générer automatiquement le code nécessaire pour la synthese.

Mots-clés : Systemes Embarqués, Co-conception SoC, FPGAs, Reconfigura-
tion partielle, ISP, Control, MDE, MARTE, UML
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1 Introduction

Since the early 2000s, System-on-Chip (SoC) has emerged as a new methodology
for embedded systems design. In a SoC, the computing units (programmable
processors, hardware functional units), memories, I/O devices, communication
channels, etc.; are all integrated into a single chip. Moreover, multiple proces-
sors can be integrated into a SoC (Multiprocessor System-on-Chip, MPSoC) in
which the communication can be achieved through Network on Chips (NoCs).
These SoCs are generally dedicated to target application domains (such as mul-
timedia video codecs, software-defined radio and radar/sonar detection systems)
that require intensive computations. According to Moore’s law, rapid evolution
in hardware technology doubles the number of transistors in an Integrated Cir-
cuit (IC) nearly every two years. As the computational power increases, more
functionalities are expected to be integrated into the system. As a result, more
complex software applications and hardware architectures are integrated, lead-
ing to a system complezity issue which is one of the main hurdles facing SoC
co-design. The fallout of this complexity is that the system design (particularly
software design) does not evolve at the same pace as that of hardware due to
issues such as development budget limitations, reduction of product life cycles
and design time incrementation. This evolution of balance between production
and design has become a critical issue and has finally led to the productivity
gap. System reliability and verification are also the other issues related to SoC
industry and are directly affected by the design complexity. An important chal-
lenge is to find efficient design methodologies that raise the design abstraction
levels to reduce overall complexity, while effectively handling issues such as ac-
curate expression of inherent system parallelism: such as application loops; and
hierarchy.

Currently High Level Synthesis (HLS) (or Electronic System Level) is an es-
tablished approach in SoC industry. This approach raises the design abstraction
level to some degrees as compared to traditional hand written HDL (Hardware
Description Languages) implementations. The gap between the high abstrac-
tion levels and the low abstraction levels is often bridged using one or several
Internal Representations (IRs) [24]. The behavioral (algorithmic) description
of the system is written in a high level language such as SystemC or a
similar language, and is then refined into a RTL (Register Transfer Level) im-
plementation using HLS tools. An effective HLS flow and associated tools must
be flexible to cope with the rapid hardware/software evolution; and maintain-
able by the tool designers. The underlying low level implementation details are
hidden from users and their automatic generation reduces time to market and
fabrication costs. However, usually the abstraction level of the HLS tools is not
elevated enough to be totally independent from low level details. Normally, the
set of concepts related to an IR are generally difficult to handle due to absence
of formal definitions of key concepts and their relations. The text based na-
ture of a system description also results in several disadvantages. Immediate
recognition of system information such as related to hierarchy, data parallelism
and dependencies is not possible; differentiation between different concepts is
a daunting task in a textual description and makes modifications complex and
time consuming.

Model Driven Engineering [45] (MDE) is an emerging domain and can be
seen as a High Level Design Flow in order to resolve the issues related to SoC co-
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design. MDE enables system level (application/architecture) modeling at a high
specification level allowing several abstraction stages (i.e. IRs). Thus a system
can be viewed globally or from a specific point of view of the system, allowing
to separate the system model into parts according to relations between sys-
tem concepts defined at different abstraction stages. This Separation of Views
(SoV) allows a designer to focus on a domain aspect related to an abstraction
stage thus permitting a transition from solution space to problem space. Using
a graphical modeling language i.e. UML (Unified Modeling Language) for sys-
tem description increases the system comprehensibility. This allows designers
to provide high-level descriptions of the system that easily illustrate the inter-
nal concepts (task/data parallelism, data dependencies and hierarchy). These
specifications can be reused, modified or extended due to their graphical nature.
Finally MDE’s model transformations allow to generate executable models (or
executable code) from high level models bridging the gap between these models
and execution platforms.

FPGAs (Field Programmable Gate Arrays) are considered an ideal solu-
tion for SoC implementation due to their reconfigurable nature. Designers can
initially implement, and afterwards, reconfigure a complete SoC on FPGA for
the required customized solution. Thus FPGAs offer a migration path for final
ASIC (Application Specific Integrated Circuit) implementation. Modern state
of the art FPGAs also possess the capability to change their functionality at
runtime, known as Partial Dynamic Reconfiguration (or Partial Runtime Re-
configuration) (PDR); and introduce the domain of Dynamic Reconfigurable
Computing. PDR allows to modify specific regions of an FPGA on the fly, thus
exhibiting the notion of a virtual hardware with the advantage of time-sharing
the available hardware resources for executing multiple (mutually exclusive)
tasks. PDR allows task swapping depending upon application needs, hardware
limitations and Quality-of-Service (QoS) requirements (power consumption, per-
formance, execution time etc.). Currently only Xilinx FPGAs fully support this
feature.

MARTE [41] (Modeling and Analysis of Real-Time and Embedded Systems)
is an industry standard of Object Management Group (OMG), dedicated to
model-driven development of embedded systems. MARTE extends UML, al-
lowing to model the features of software and hardware parts of a real-time
embedded system and their relations, along with added extensions (for e.g. per-
formance and scheduling analysis). Although rich in concepts, MARTE lacks a
design flow to move from high level modeling to execution platforms.

Gaspard [16], is a MDE based MARTE compliant SoC co-design frame-
work dedicated specifically towards parallel hardware and software; and it allows
to move from high level MARTE specifications to different execution platforms.
It exploits the inherent parallelism included in repetitive constructions of hard-
ware elements or regular constructions such as application loops. Gaspard also
focuses on a limited application domain, that of intensive signal processing (ISP)
applications.

The main contribution of this paper is to present a novel MDE based design
methodology for implementing the aspects of Partial Dynamic Reconfiguration
from an extended MARTE standard. This design flow successfully responds
to the major issues, for both users and designers of a typical HLS flow. Ap-
plications are graphically specified at a high abstraction level with UML and
factorized expressions of parallelism, multidimensional data arrays and powerful
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constructs of data dependencies are managed thanks to the use of the MARTE
standard profile. The design flow allows to specify part of the reconfigurable
system at a high abstraction level: notably the reconfigurable region and the
reconfiguration controller. Afterwards, using model to model transformations,
the gap between high level specifications and low implementation details can
be bridged to automatically generate the code required for the creation of bit-
stream(s) for final FPGA implementation.

The rest of this paper is organized as follows. An overview of MDE is pro-
vided in section 2 while section 3 summarizes our MARTE compliant GASPARD
framework. Section 4 describes PDR concepts while section 5 gives a detailed
explanation of the deployment extension in MARTE. Section 6 details the re-
lated works and Section 7 illustrates our methodology related to implementing
PDR supported FPGAs. A case study is present in section 8 followed by future
works and perspectives. Finally section 10 details the conclusion.

2 Model Driven Engineering

MDE revolves around three focal concepts: Models, Metamodels and Model
Transformations. A model is an abstract representation of some reality and
has two key elements: concepts and relations. Concepts represent “things”
and relations are the “links” between these things in reality. A model can be
observed from different abstract point of views (views in MDE). The abstraction
mechanism avoids dealing with details and eases re-usability. A metamodel is
a collection of concepts and relations for describing a model using a model
description language; and defines syntax of a model. This relation is analogous
to a text and its language grammar. Each model is said to conform to its
metamodel at a higher definition level. A metamodel can be viewed as an IR in
an HLS flow. Finally, MDE permits to separate the concerns in different models,
allowing reutilization of these models and to keep them human readable.

Rules

Meta- B %m 77777777777 N Meta-
models use use models

A

conform to icontains conform to

—
Models

Figure 1: An overview of Model Transformations

Models nputs

Transformation

The MDE development process starts from a high abstraction level and fin-
ishes at a targeted level, by flowing through intermediate levels of abstraction
via Model Transformations (MTs) [51]; by which concrete results such as an ex-
ecutable model (or code) can be produced. MTs carry out refinements moving
from high abstraction levels to low levels models and help to keep the different
models synchronized. At each intermediate level, implementation details are
added to the MTs. A MT as shown in figure [1/is a compilation process that
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transforms a source model into a target model and allows to move from an ab-
stract model to a more detailed model. Usually, the initial high level models
contain only domain specific concepts, while technological concepts are intro-
duced seamlessly in the intermediate levels. The source and target models each
conform to their respective metamodels, thus respecting exogenous transforma-
tions [36]. A model transformation is based on a set of rules (either declarative
or imperative) that help to identify concepts in a source metamodel in order to
create enriched concepts in the target metamodel. New rules extend the com-
pilation process and each rule can be independently modified; this separation
helps to maintain the compilation process. The advantage of this approach is
that it allows to define several model transformations from the same abstrac-
tion level but targeted to different lower levels, offering opportunities to target
different technology platforms. The model transformations can be either uni-
directional (only source model can be modified; targeted model is re-generated
automatically) or bidirectional (targeted model is also modifiable, requiring the
source model to be modified in a synchronized manner) in nature. In the second
case, this could lead to a model synchronization issue [52]. For model trans-
formations, OMG has proposed the Meta-Object Facility (MOF) standard for
metamodel expression and Query/View/Transformation (QVT) [40] for trans-
formation specifications.

3 GASPARD: MARTE compliant MDE based
Co-Design Framework

Gaspard [16], is a MDE oriented SoC co-design framework that utilizes
a subset of the MARTE standard currently supported by SoC industry. In
Gaspard as in MARTE, a clear separation of concerns exists between the hard-
ware/software models, as shown in figure 2|

UML + MARTE Profile
Application Architecture
Allocation
Deployment

', Refactoring

GASPARD .~

2\

\
=
£X AN

OpenMP PL

Synchronous
Equational

X 4)
Key GpenMP | [OpenMP Y
_ -~ -» Refactoring Fortran C @
Metamodel dependency 3

B R U U EUSUE High Performance Applications:

[[Usage JNSNS P used for

Figure 2: GASPARD framework with deployment added at the MARTE specifi-
cation level
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Gaspard has also contributed in the initial MARTE conception. One of the
key MARTE packages, the Repetitive Structure Modeling (RSM) package has
been inspired from Gaspard. Gaspard, and in turn RSM, is based on the Array-
OL [9] model of computation (MoC) that describes the potential parallelism
in a system; and is dedicated to intensive multidimensional signal processing
(ISP). Array-OL itself is a specification language and not an execution model.
In Gaspard, data are manipulated in the form of multidimensional arrays. The
absence of limited number of dimensions in data arrays allows to represent data
in a manner typical of their manipulation in ISP applications. For example,
video processing applications handle two spatial and one temporal dimensions.
Sonar chain is another kind of application, which handles spatial, temporal and
frequency dimensions. RSM allows to models such applications.

RSM permits to describe the regularity of a system’s structure (composed
of repetitions of structural components interconnected in a regular connection
pattern) and topology in a compact manner. Gaspard uses the RSM semantics
to model large regular hardware architectures (such as multiprocessor archi-
tectures) and parallel applications. For an application functionality, both data
parallelism and task parallelism can be expressed easily via RSM. A repetitive
component expresses the data-parallelism in an application (in the form of sets
of input and output patterns consumed and produced by the repetitions of the
interior part). A hierarchical component contains several parts. It allows to de-
fine complex functionalities in a modular way and provides a structural aspect
of the application: specifically, task parallelism can be described using such a
component. The shape of a pattern is described according to a Tiler connec-
tor which describe the tiling of produced and consumed arrays. The Reshape
connector allows to represent complex link topologies in which the elements of
a multidimensional array are redistributed in another array. The difference be-
tween a Reshape and a Tiler is that the former is used for a connector that
links two parts while the latter is used for a delegation connector: between a
port of a component and ports of its parts. Another point to remember is that
the ports (interfaces) of a component modeled in Gaspard have the MARTE
FlowPort stereotype by default.

The MARTE Hardware Resource Model (HRM) concepts are inspired heav-
ily from the preexisting hardware concepts in Gaspard. Finally the Generic
Component Modeling (GCM) concepts are used as the basis for component
modeling. Gaspard currently targets a limited application domain, namely con-
trol and data flow oriented ISP applications (such as multimedia video codes,
high performance applications, anti-collision radar detection applications). The
applications targeted in Gaspard are widely encountered in SoC domain and
respect Array-OL semantics [9].

Gaspard also integrates the MARTE allocation mechanism (Alloc package)
that permits to associate the applicative part of the system onto the available
hardware resources (for e.g. mapping of a task or data onto a processor or a
memory respectively). An example of an allocation is present in figure[3l The
figure clearly illustrates the utilization of the MARTE concepts presented be-
fore. The RSM package represents the hardware repetitions and the application
loops concisely in a declarative way, while the Alloc package allows to map the
application on to the hardware resources.

Although MARTE is suitable for modeling purposes, it lacks the means to
move from high level modeling specifications to execution platforms. Gaspard
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bridges this gap and introduces additional concepts and semantics to fill this
requirement for SoC co-design.

H26:
lumin {176,144} ’ «shaped»
«tilers H263mb: H263MacroBlock {11,9} mbout {384}
iler»
lumin {16,16}
tiler
mbout {384,99)
\\cbin (88,72} D e {3 tiler»
\ .
tlers .
\ o ©872) [ ] enee size {1} size {99}
7
S £
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VA QuadriPro
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\ \\ \ N master {4}
\\ \ \\ «hwCommunicationResource»

vV crossbar: Crossbar

\ slave {5}
‘NN

«hwRAM, shaped» AEFLD
DataMemory: SRAM {2,2}

«hwROM»
Im: InstructionMemory

bus {1} bus{1}

Figure 3: An Allocation: mapping a part of a H.263 codec onto a QuadriPro
architecture

Gaspard also defines a notion of a Deployment specification level [2] in or-
der to generate compilable code from a SoC model. This level is related to
the specification of elementary components (ECs): basic building blocks of all
other components having atomic functions. Although the notion of deployment
is present in UML, the SoC design has special needs, not fulfilled by this no-
tion. Hence, Gaspard extends the MARTE profile to allow deploying of ECs.
To transform the high abstraction level models to concrete code, detailed in-
formation must be provided. The deployment level associates every EC (of
both the hardware and the application) to an implementation (code) hence fa-
cilitating Intellectual Property (IP) reuse. Each EC ideally can have several
implementations: e.g. an application functionality can either be optimized for
a processor (written in C/C++) or written in hardware (HDL) for implementa-
tion as an hardware accelerator. Hence this level is able to differentiate between
the hardware and software functionalities; and allows to move from platform
independent high level models to platform dependent models for eventual im-
plementation. Deployment provides IP information to model transformations to
form a compilation chain in order to transform the high abstraction level models
(application, architecture and allocation) for different domains: formal verifica-
tion, simulation, high performance computing or synthesis. Hence deployment
can be seen a potential extension of the MARTE standard to allow a complete
flow from model conception to automatic code generation. It should be noted
that the different transformation chains: simulation, synthesis, verification etc.,
are currently unidirectional in nature.

Once Gaspard models are specified in a graphical environment, model trans-
formations are carried out via a transformation tool. However, since the stan-
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dardization of QV'T, few of the investigated tools are powerful enough to execute
large complex transformations such as present in the Gaspard framework. Also
none of these engines is fully compliant with the QVT standard. An alternative
solution to QVT is the Eclipse Modeling Framework or EMF [18], that allows
to create and modify models.

In order to solve this dilemma, In 2006, an initial transformation tool called
MOMOTE (MOdel to MOdel Transformation Engine) was developed internally
in the team that was based on EMFT QUERY [19]. MOMOTE is an enhanced
Java framework that allows to perform model to model transformations. It is
composed of an API and an engine. It takes source models as input and produces
target models with each conforming to some metamodel. Another advantage of
MOMOTE over the then existing transformation tools was that it supported
external black box calls: e.g. native function calls, rule inheritance, recursive
rule call and integration of imperative code. However, since that time, new
tools such as QVTO and smartQVT have emerged that implement the QVT
Operational language and are effective for handling the Gaspard model trans-
formations. Currently, in order to standardize the model transformations and
to render them compatible with the future versions of the MARTE standard; we
have chosen QVTO as the future transformation tool for Gaspard. Current all
the existing MOMOTE based transformation rules for each execution platform
are being converted into QVTO based transformation rules.

MOCODE (MOdels to CODe Engine) is another internal Gaspard integrated
tool that allows automatic code generation and is based on EMF JET (Java
Emitter Templates) [20]. JET is a generic template engine for code genera-
tion purposes. The JET templates are specified by using a JSP (JavaServer
Pages) like syntax and are used to generate Java implementation classes. Fi-
nally these classes can be invoked to generate user customized source code, such
as Structured Query Language (SQL), eXtensible Markup Language (XML),
Java source code or any other user specified syntax. MOCODE offers an API
that reads input models, and also an engine that recursively takes elements from
input models and executes a corresponding JET Java implementation class on
them.

4 Basic PDR related concepts

Currently PDR is only fully supported by Xilinx FPGAs. Xilinx initially pro-
posed two methodologies (difference based and module based) [54]; fol-
lowed by the Early Access Partial Reconfiguration (EAPR) flow [56]. The flow
supports static nets in reconfigurable regions; and 2D reconfigurable modules,
thus resolving the drawbacks present in the earlier modular design methodol-
ogy. Part(s) of the FPGA remains static, while another part(s) is dynamically
reconfigurable at run-time. Bus macros which are relationally placed macros
(RPMs), are used to ensure proper communication routing between the static
and dynamic parts during and after reconfiguration. Being CLB based in na-
ture, they provide a unidirectional 8-bit data transfer. For Xilinx Virtex-II to
Virtex-IV series FPGAs, Xilinx provides bus macros constructed of 2 CLBs.
Bus macros are placed in a fashion that one CLB is placed inside the reconfig-
urable region while the other is outside in the static region. For modern state of
the art Virtex-V FPGAs, single CLB based bus macros are also available [58].
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At the heart of the PDR mechanism lies the Internal Reconfiguration Ac-
cess Port (ICAP) [7], which is a subset of the SelectMAP Interface. It is an
integral component that permits to modify the FPGA configuration memory at
run-time. The configuration memory of FPGA contains the application specific
data. Writing into a configuration memory is accomplished via configuration
files known as bitstreams (that contain packets of configuration control informa-
tion as well as the configuration data). The granularity of reconfiguration is also
of importance. In the Virtex-II and Virtex-II Pro series FPGAs, the smallest
unit of reconfiguration granularity is a frame. The number of bits present in a
frame is directly proportional to the height of the device that is measured in
CLBs. For example, for Virtex-II series FPGAs, the number of bits per frame
ranges from 832 (the smallest device) to 9152 (the largest device) bits per frame.
In the Virtex-IV series FPGAs, the smallest unit of reconfiguration granularity
is a bit-wide column corresponding to 16 CLBs (or multiples, and this unit is
independent of the different device sizes or families). A configuration frame of a
Virtex-IV series FPGA contains forty one 32-bit words (1,312 bits per frame).
The smaller granularity size allows more than one dynamically reconfigurable
module to be placed vertically in the same region of FPGA. This is not possible
in the earlier series FPGAs due to the frame based reconfiguration granularity.

The ICAP is present in nearly all Xilinx FPGAs ranging from the low cost
Spartan-3A(N) to the high performance Virtex-V FPGAs [3]. For Virtex-IT and
Virtex-II Pro series, the ICAP furnishes 8-bit input/output data buses while
with the Virtex-IV Series, the ICAP interface has been updated with 32-bit
input/output data buses and the width can be alternated between 8 and 32 bits
[14]. The ICAP cannot be directly connected to a system bus as it requires a
controller to manage the data flow coming from the reconfiguration controller
(RC). A classical ICAP controller is presented inside the OPB HwICAP core
[62] (that allows interfacing with the ICAP). Another version is the PLB ICAP
[13], however this paper focuses on the former version. The ICAP utilizes a
mechanism of read-modify-write (RMW) [25] which allows a RC (a PowerPC
or Microblaze) to modify the bitstream related to the reconfiguration module
dynamically. After the modification, the modified bitstream is written back.
The combination of the ICAP with the RC allows to build a self controlling
dynamically reconfigurable system [7].

Virtex devices also support the feature of glitchless dynamic reconfiguration:
If a configuration bit holds the same value before and after reconfiguration,
the resource controlled by that bit does not experience any discontinuity in
operation, with the exception of LUTRAMs and SRL16 primitives [33]. This
limitation was removed in the Virtex-IV family. With the introduction of EAPR
flow tools, this problem has also been resolved for Virtex-1I/Pro FPGAs and de-
signers do not have to explicitly exclude these resources from the reconfigurable
module(s).

In this paper, respecting the terms as specified by Xilinx, a region of the
FPGA to be reconfigured dynamically is termed as PRR or Partial Reconfig-
urable Region. A PRR can have several possible implementations or PRMs
(Partial Reconfigurable Modules). An important point to consider is that all
the PRMS of the PRR have the same external interface to ease compatibility.
We now utilize these terms during the course of this paper. Figure[4]shows a
general overview of a PDR system.
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Figure 4: An abstract illustration of a typical PRR system

Usually an initial bitstream is loaded on to the FPGA which consists of
the static portion as well as an initial PRM for the PRR(s). Afterwards, the
controller only has to load the partial bitstream related to an alternate PRM
for the same PRR. Using glitchless reconfiguration and the RMW mechanism,
the difference between the two PRMS is noted and written back by the RC
resulting in implementation of the new PRM.

5 Deployment level : a detailed overview

In order to generate an entire system from a high level specification, all im-
plementation details of every EC have to be determined. Low level details are
much better described by using usual programming languages instead of graph-
ical UML models.

As explained before, the deployment level in Gaspard enables one to precise a
specific implementation (IP) for each EC (of both application and architecture)
among a set of possibilities. As compared to the deployment specified in [2],
the deployment level has been modified to respect the semantics of traditional
UML deployment.

The concept of VirtualIP has been introduced to express the behavior (func-
tionality) of a given EC, independently from the compilation target. It links to
all the possible implementations (IPs) for one EC. Finally, the concept of Code-
File is used to specify, for a given IP, the file corresponding to the source code
and its required compilation options. The CodeFile thus identifies the physical
path of the source code. It should be noted that the modeling of a CodeFile is
not possible in the UML composite structure diagram but is carried out in the
UML Deployment diagram. The desired IP is then selected by the SoC designer
by linking it to the EC through the implements dependency.

Figures[5 and[6 show a clear description of the deployment level. The com-
ponent HuffmanCoding is an elementary component of the Gaspard application
(H.263 codec) present in figure [3. At the deployment level, this elementary
component has several possible implementation choices. These choices can be
for the same execution platform (same abstraction level) in a given language,
or can be for different ones. In the illustrated example, the component can be
implemented for simulation in SystemC or can be implemented as a hardware

RR n° 6862



12 Quadri, Meftali & Dekeyser

HuffmanCoding
[ ]cbinie8)

«cimplements»<

P
«mplements): implements»

«mplements»

dmpléipents»

«jrhplepients»
\ipfplerytents»

«imblements»

«softwarelP» g ripjements»
\ Huffman-VHDL .

hcbin

hsize

herin L
\, hvector g

N hiumin

Figure 5: Deployment of the HuffmanCoding elementary component
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Figure 6: The CodeFile artifact determines the physical path for the code related
to an IP

functionality: a hardware accelerator in an FPGA by synthesizable VHDL. The
final implements dependency from the Huffman-VHDL component to the Huff-
manCoding illustrate that this is the targeted implementation choice and the
execution platform.

A fundamental limitation of the current deployment level is that for final
compilation to an execution platform, an elementary component can be linked
to only one implementation (IP). While this does make sense in regards to
platforms where dynamic nature is not relevant, in the case of dynamically
reconfigurable FPGAs, this is an important factor. We discuss our extended
PDR supported Deployment level later in the paper.

6 Related Works

6.1 From UML to Synthesis

ROSES [12] is an environment for Multiprocessor SoC (MPSoC) design and
specification, however it does not conform to MDE concepts and as compared to
our framework; starts from a low level description equivalent to our deployment
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level. [1] provides a simulink based graphical HW/SW co-design approach for
MPSoC but the MDE concepts are absent. In contrast, [21] uses the MDE
approach for the design of a Software-Defined Radio (SDR), but they do not
utilize the MARTE standard as proposed by OMG and use only pure UML
specifications. While works such as and are focused on generating
VHDL from UML state machines, they fail to integrate the MDE concepts for
HW /SW co-design and are not capable of managing complex ISP applications.
MILAN [37] is another project for SoC co-design benefiting from the MDE
concepts but is not compliant with MARTE. Only the approach defined in [31]
and [32] comes close to our intended methodology by using the MDE concepts
for SoC co-design. Yet the disadvantage is that in reality it only generates the
ISP application which is implemented as a black box in a targeted FPGA; and
there is no notion of a heterogeneous SoC and the MARTE and PDR aspects
are absent. MOPCOM [29] integrates MDE and MARTE but is not oriented
towards PDR. In [6], the authors present a design flow to manage partially
reconfigurable regions of an FPGA automatically using SynDEx. A complete
system (application/architecture) can be modeled and implemented, however
the MDE concepts are strikingly absent. Similarly [8] present an HLS flow for
PDR, yet it still starts from a lower abstraction level as compared to MDE.

6.2 Partial Dynamic Reconfiguration

In the domain of runtime reconfiguration, Xilinx initially proposed two design
flows in [54] and [55] termed as the Modular based and Difference based ap-
proaches. The difference based approach is suitable for small changes in a
bitstream but is inappropriate for a large dynamically reconfigurable module
necessitating the use of the modular approach. However, both approaches were
not very effective leading to new alternatives.

[50] presented a modular approach that was more effective than the initial
Xilinx methodologies and were able to carry out 2D reconfiguration by placing
hardware cores above each other. The layout (size and placement) of these cores
was predetermined. They made use of reserved static routing in the reconfig-
urable modules which allowed signals from the base region to pass through the
reconfigurable modules allowing communication between modules by using the
principle of glitchless dynamic reconfiguration.

[4] implemented 1D modular reconfiguration using a horizontal slice based
bus macro. All the reconfigurable modules that stretched vertically to the height
of the device were connected with the bus macro for communication. They
followed by providing 2D placement of modules of any rectangular size by using
routing primitives that stretch vertically throughout the device [26]. A module
could be attached to the primitive at any location, hence providing arbitrary
placement of modules. The routing primitives are LUT based and need to be
reconfigured at the region where they connect to the modules. A drawback of
this approach is that the number of signals passing through the primitives are
limited due to the utilization of LUTs. This approach has been further refined
in [48].

In March of 2006, Xilinx introduced the Farly Access Partial Reconfigura-
tion (EAPR) [56] design flow along with the introduction of CLB based bus
macros which are pre-routed IP cores. The concepts introduced in [50] and [4]
were integrated in this flow. The restriction of full column modular PDR was
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removed allowing reconfigurable modules of any arbitrary rectangular size to be
created. The EAPR flow also allows signals from the static region(s) to cross
through the partially reconfigurable region(s) without the use of bus macros.
Using the principle of glitchless reconfiguration, no glitches will occur in sig-
nal routes as long as they are implemented identically in every reconfigurable
module for a PRR. The only limitation of this approach is that all the partial
bitstreams (PRMs) to be executed on a reconfigurable region (PRR) must be
predetermined.

Works such as [3] and [44] focus on implementing softcore internal config-
uration ports on Xilinx FPGAs such as the pure Spartan-3 that do not have
the hardware ICAP core rendering dynamic reconfiguration impossible via tra-
ditional means. In [44] a soft ICAP known as JCAP (based on the serial JTAG
interface) is introduced for realizing PDR while [3] introduces the notion of a
PCAP, based on the parallel Select MAP interface, providing improved recon-
figuration rates as compared to the JTAG approach. However this approach is
only suitable to reconfigure very small regions of FPGA and since the design is
not an embedded one, it is impossible to retrieve bitstreams from an external
memory. This issue has been addressed in [10], where a complete reconfigurable
embedded design on a Spartan-3 board has been implemented using a recon-
figurable coprocessor. The user application can map to a number of potential
coprocessors; and the reconfiguration controller can order the self reconfigura-
tion of the system for the reconfigurable coprocessor, resulting in loading of the
partial bitstream related to a potential coprocessor. The results show that this
achieves a compromise between the works presented in [3] and [44].

In [13], a new framework is introduced for implementing PDR by the utiliza-
tion of a PLB ICAP. The ICAP is connected to the PLB bus as a master periph-
eral with direct memory access (DMA) to a connected BRAM as compared to
the traditional OPB based approach. This provides an increased throughput of
about 20 percent by lowering the process load. [53] provides another flavor of a
PDR architecture by attaching a Reconfigurable Hardware accelerator to a Mi-
croblaze Reconfiguration controller via a Fast Simplex Link (FSL) [60]. In [14],
a customized ICAP controller is presented in order to speed up the reconfigu-
ration process depending on a specific reconfiguration scenario. This controller
can be implemented as either a PLB/OPB ICAP and offers the possibility of
different memory implementations: slices or BRAMs.

Works such as [28] use ICAP to connect with Network on chip (NoC) to allow
distributed access to speed up reconfiguration time. However the Read-modify-
write (RMW) [7] mechanism is not supported which is an important factor to
speed up reconfiguration time. This limitation has been resolved in where
an ICAP communicates with a NoC using a light weight RMW method.

6.3 Control in GASPARD

As explained before, Gaspard targets intensive signal processing applications.
However in reality, the applications targeted in Gaspard are mainly data flow
oriented and there is no notion of control. This is because the core formalism of
data parallelism in Gaspard (its MoC or Array-OL) is based on data dependency
descriptions and repetition operators; for expressing data parallel applications
that compute large amounts of data in a regular manner. The behavior of these
applications is completely fixed statically and cannot be changed at run-time.
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Thus dynamic behavior is considered to be a disadvantage to the regularity and
performance of Gaspard applications.

However, the field of reconfigurable computing is gaining a foothold in the
SoC industry at an increasing pace. As dynamic behavior begins to appear
more and more in these data ISP applications, e.g. mobile multimedia systems,
due to market requirements, QoS etc.; its absence becomes a big constraint in
current Gaspard applications. Thus suitable behavioral modeling concepts are
required to address these issues.

An initial version of control for expressing dynamic behavior in Gaspard at
the application level has been proposed in [30]. The control is state-based, as it
is inspired from the synchronous mode automata (SMA) [34]. However unlike
SMA, the control and data computations are specified in a separate manner
allowing a clear distinction between the two. As a result, data computations
can be specified independently from control. Extensions to this work have been
proposed in [22]; [67] and address hierarchical and parallel compositions and
formal semantics based on SMA and the Array-OL language. These works
allow to express the control events as arrays not dissimilar to the data arrays
(An infinite flow of control events is modeled as an infinite array) which also
have data dependencies.

We now present a summary of the control modeling concept related to the
applications targeted in Gaspard. A application task in Gaspard can have sev-
eral exclusive running modes. The choice of the activated mode at run-time is
determined by an automata that serves to control that task. Thus two distinct
components can be distinguished: the State Machine Component (SMC) which
is a controlling component and the Mode Switch Component (MSC) that cor-
responds to a mode switch between the different available modes of the task in
question.

6.3.1 SMC and UML State machines

The SMC is associated with UML state machines [42] and reacts to external
events. Determinism is also an important property for the state machines, i.e.,
for each state, input events lead to firing of at least one transition (either a
self transition or a transition to another state). While traditional UML state
machines are associated to a component: state machines react to some events
issued in its context classifier, Gaspard state machines (or GSMs as we call
them) are associated with a Gaspard component to give a precise external view
with regards to its ports. A GSM is constrained to finish a transition before
the arrival of a new value on the input ports of a SMC. To avoid ambiguity, we
use this name for the remainder of the paper. The interfaces of the SMC are
represented by Ports and stereotyped accordingly as FlowPorts. The shape of a
port indicates the number of values arriving at a port at one instance of time. As
this proposal takes only data flow into consideration, the shape corresponds to
one reaction of the state machine and is always defined as {1}. The input ports
of a SMC can be either event or state ports. Event ports serve as triggering a
transition in the associated state machine and are normally of boolean type. The
events used in Gaspard for triggering a transition is generally a ChangeEvent
[42]. This event has a changeErpression which is a boolean expression that
can result in a change event. The second type of event is the AnyReceive Event
which is considered as a default event when all the triggers of the transition of a
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state are not satisfied. They are expressed as the all statement in the modeling
of the GSM.

Values associated to state ports are termed as state values and identify the
different states in the GSMs. The input state port for a SMC indicate the
initial state upon entering the GSM. For a hierarchical GSM, multiple initial
states may be required. This issue is discussed in detail in [67]. A SMC also
supports two kinds of output ports: mode ports and state ports. The GSMs
associated to the SMC carries out transition functions on the states and each
state is associated to one mode. The output mode port thus carry mode values
to the MSC, which are determined by the transitions of the GSMs. The output
state ports are similar to the input state ports and provide next state of the
GSM (the next state after a transition). The mode values are defined in the
application in an enumeration and are independent of SMC and its associated
MSC. Figure [7 collectively shows the two UML diagrams related to an SMC
and its associated state machine.

ColorController

tate_in: States (1) |

event_color_up: Boolean (1} |

event_color_down: Boolean {1} .

when (event_color_up)
state_out: Stafes (1}

Monochrome

mode_out: Color_Wodes {1}

Figure 7: An example of a State Machine Component (SMC) and associated
GSM
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) “""Mode_Color - -~~~ "Mode_Monochrome ~~~
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Figure 8: An overview of MSC with data flow values on input/output ports

6.3.2 MSC and UML Collobrations

The MSC is associated with UML collaborations [42] and serves to switch be-
tween the different exclusive modes present: It has at least one mode. A MSC
has an input mode port which obtains the mode values from the SMC. It can
also have input / output ports for expressing the data flow related to the rel-
evant task. An MSC acts on the mode values and executes the corresponding
mode. Only one mode can be selected at time ¢ depending upon the mode value
present in the input mode port at t. All the modes present in a MSC share the
same interface (which is equivalent to the MSC interface except the mode port)
and are connected to the MSC with the help of delegation connectors. While
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the structure of the MSC can be defined using the MARTE general compo-
nent concepts as defined in GCM, the execution semantics of an MSC and the
internal collaborations of its internal parts are not evident. For this reason,
UML collaborations are associated with a MSC. These collaborations specify
roles of components (instance level collaboration) via usage of connectors and
parts in composite structures. A collaboration specifies the relation between
some collaborating components (or roles). Each of these roles provides a spe-
cific function, and executes some required functionality in a collective way. Only
the concerned aspects of a role are included in a collaboration while others are
omitted. Figure[8 shows an example of a MSC. The two collaborations depict
the behavior of the MSC Color_Style_SwitchComponent. The name of the col-
laborations correspond to the mode values and thus these collaborations define
the activity of the MSC upon receiving a particular mode value. For example,
the collaboration Mode_Color shows the relationship between the MSC and the
mode Color_mode (indicating that mode value Mode_Color switches the current
executing mode to Color_mode). The connectors between them are shown in the
collaboration. As in this mode only Color_mode is to be executed, the second
mode or Monochrome_mode is omitted. The collaboration is finally linked to
Color_Style_SwitchComponent.

6.3.3 Creation of a Gaspard Mode Automata

To create a Gaspard mode automata (GMA), first its internal structure: a com-
position of a SMC and a MSC, is constructed. The SMC produces mode values
which are taken by the MSC, that executes a switch function between the modes
present in the MSC. Compared to synchronous mode automata, the computa-
tions are not set in the states of a state machine, but are placed in the MSC.
This composition is termed as a GMS (Gaspard Macro Structure). An abstract
representation of GSM is also present in figure[9/and illustrates a complete Gas-
pard control structure. It is evident that this is not a UML diagram, due to the
reason that a state machine (respectively a GSM) diagram cannot be modeled
in a composite structure diagram (for modeling of Gaspard components). In
order to shown the global view of a simple Gaspard control structure, we have
include the state machines as well. While an abstract representation, this is very
close to UML modeling. In order to simplify the illustration, event_color_up and
event_color_down are only shown as a single event 7 .

Once the GSM is constructed, it is placed in a repetition context (RT). For
SMCs with hierarchical GSMs, hierarchical RTs can be specified as defined in
[67]. In a RT, a SMC can be executed in parallel (each repetition of SMC is
independent of other SMCs; and the SMC has no memory of the previous state
as the inputs required by each successive repetition of a SMC are only present
at one time) or a sequential manner (a dependency exists between the repeti-
tions of a SMC allowing to introduce the concept of memory of previous states).
Currently in Gaspard we only address the second approach. A dependency in
the sequential execution is called an Interrepetition Dependency or IRD. A de-
pendency vector associated to the IRD expresses the dependencies between the
repetitions inside the RT. If the depended repetition is not defined in the repe-
tition space, a default value is selected. The DefaultLink provides default value
for repetitions whose dependency for the input is absent. The GSM should be
placed in a RT with at least one IRD specification, offering following advan-
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tages.: A GSM only represents one transition function from a source state to a
target state, where as a SMA has continuous transitions. Hence the GSM needs
to be repeated for multiple transitions. An IRD permits a sequential execution,
making it equivalent to the execution of a synchronous mode automata. Sec-
ondly, the RT is transformed into a serialized RT. This allows to construct a
mode automata.

A global representation of the complete GMA structure is present in figure
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Figure 10: An overview of Gaspard Mode Automata

6.3.4 Summary of Related works

For our implementation purposes, we have focused mainly on the Xilinx EAPR
flow methodology [33] as it is openly available and can be adapted to other PDR
architecture implementations. While there are lots of related tools, works and
projects; we have only detailed some and have not given an exhaustive sum-
mary. To the best of our knowledge, only our methodology takes into account
the following domain spaces: SoC HW/SW co-design, ISP applications, con-
trol/data flow, MDE, MARTE standard and PDR; which is the novelty of our
design flow.
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7 Proposed Design Flow

Our design flow is inspired from the works present in where a Gaspard ap-
plication modeled at the UML level was successfully converted as a hardware
functionality (while keeping the multidimensional arrays and repetitions speci-
fied at the modeling level). However this design flow only allows to create one
configuration for final FPGA implementation using commercial tools and lacks
the dynamic aspects required to implement PDR. Another drawback of this flow
is that the final hardware design (the hardware accelerator) is implemented in
an FPGA as a black box and there is no notion of a heterogeneous system (pro-
cessors, buses, etc.) that communicate with this hardware accelerator. Also the
MARTE modeling concepts are absent in the modeled applications.

As seen from the section related to PDR, a reconfiguration controller (RC)
is necessary for dynamic reconfiguration of a PRR. Although only a state ma-
chine based controller can be used for reconfiguration, this cannot be an internal
dynamic self reconfiguration. Usually in a processor based controller, a part of
the code relates to interfacing with the ICAP core and fetching the necessary
frames or bit wide columns (depending upon the FPGA series); while another
part is the state machine which basically alternates between the different im-
plementation choices. The first part can be viewed as an essential macro while
the 2nd part depends upon the nature of the application, the number of PRRs,
their corresponding PRMs and the mechanism to change the PRMs of a PRR.
Either the RC acts upon the events provided by an external environment, or
depends solely upon the tasks of the application present in the static/dynamic
portions. Some parts of the application can be present in the static portion
(even in the RC itself), while a part(s) can be dynamically reconfigurable [53].

Normally in PDR, based systems (we avoid the discussion related to PDR
based NoCs), we see a trend to change either the tasks of an application or the
application itself. However in our design flow, we focus mainly on changing the
implementations related to the ECs of an application. This offers two advan-
tages. An application can retain the same structure and the same functionality
while differing partly in the manner by which it is implemented. This imple-
mentation choice can arise due to several factors such as the available hardware
resources, power consumption, reconfiguration time etc. The other advantage
is that by changing the ECs, it is possible to partly change the functionality of
the application.

In Figure[11 we present our MARTE based PDR. design flow in order to im-
plement the aspects of PDR. Initially the application is modeled via UML and
MARTE concepts; and is independent from any implementation details. After-
wards, the UML2MARTE model transformation allows to transform the UML
model into a MARTE model. This model corresponds to the MARTE meta-
model. Afterwards this MARTE model is transformed into a Gaspard model by
the MARTE2GASPARD transformation. Via GASPARD2RTL transformation,
the RTL model is created which corresponds to a low abstraction level of an
hardware accelerator (or several accelerators in the case of PDR) able to execute
the initial modeled ISP application. The RTL model provides a nearly accurate
estimation of the resources required for the resulting design implementation.
An exploration process (not illustrated in the figure) is performed according to
these estimations. Finally using MOCODE, it is possible to convert the mod-
els to source code. Once the source code for the application (implemented as
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Figure 11: The proposed model driven design flow for PDR

a hardware accelerator) and the reconfigurable controller (state machine part)
is obtained, the reconfigurable architecture can be created by using the Xilinx
EDK tool [59]. The application implemented as a hardware design can be im-
ported as a peripheral in the architecture while the code corresponding to the
state machine can be used as part of the source code for the RC (a PowerPC
in our case). Once the system has been created, usual synthesis flow can be
invoked using commercial tools such as Xilinx ISE [61] and PlanAhead for
final implementation. A further extension of our work can be to model the
whole PDR system (application and architecture) at the MARTE level for a
complete automatic generation. We have proposed an initial modeling of the
PDR architecture in by introducing new concepts in MARTE HRM pack-
age, but the corresponding model transformations have not been carried out.
Figure 12/ shows a global overview of the modifications related to the Gaspard

framework.
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Our aim is not to replace the commercial FPGA tools but to aid them in
the conception of a system. While tools like ISE and PlanAhead are capable
of estimating the configurable FPGA resources (CLBs and in turns the slices)
required for implementing the hardware design, this resource estimation is only
possible after initial synthesis. In our design flow, the ECs can be synthesized
independently to calculate the consumed FPGA resources. This information
can be then incorporated into the model transformations, making it possible to
calculate the approximate number of consumed FPGA resources of the overall
application (at the RTL model) before final code generation and eventual syn-
thesis. Thus the designer is able to compare the resources consumed by the
modeled application and the total resources available on the targeted FPGA
resulting in an effective Design Space Exploration (DSE) strategy. If the ap-
plication is too big to be placed on the FPGA, the designer can carry out a
refactoring of the application. It should be noted that a refactored Gaspard
application remains a Gaspard application.

As currently only Xilinx FPGAs support the features of PDR, our model-
ing methodology revolves around the Xilinx reconfiguration flow as it is openly
available and flexible enough to be modified. While this does make the archi-
tectural aspects of our design flow restricted to Xilinx based technologies, it is
an implementation choice as currently no other FPGA vendor supports this fea-
ture. It should be noted that our methodology can be used as a building block to
support other non standard PDR implementations based on Xilinx FPGAs (use
of Soft ICAP cores for example). Our contribution does not relates to creating
a new PDR architecture methodology per se at the RTL level, but is based on
how the PDR methodology can be raised to a higher abstraction level, to reduce
design complexity and to create a generic PDR approach for implementing all
ISP applications supporting our MoC. This approach can then be taken as an
input by the designers who contribute to the optimization of the PDR aspects
at the RTL level.

7.1 Initial implementation of PDR at RTL level

We first investigated the architecture related to implementing PDR in Xilinx
FPGAs. Although PDR is a growing domain, we found that there is not suffi-
cient initial information for a novice designer to implement this feature. Also
the tools for implementing PDR are still in the development phase: for exam-
ple, the EAPR flow is still not available for the Xilinx Virtex-V and the recently
released Virtex-VI series FPGAs [65].

In Figure13 we present the structure of our reconfigurable architecture that
was implemented on a Xilinx Virtex-1I Pro XC2VP30 FPGA on a XUP Board
[66]. A Reconfiguration Controller (a PowerPC in this case) connects directly
to the high speed 64-bit PLB bus and links with the slower slave peripherals
(connected to the 32-bit OPB bus) via a PLB to OPB Bridge. The buses and
the bridge are a part of the IBM Coreconnect technology [27]. The OPB bus
is attached to several peripherals: A SystemACE controller for accessing the
partial bitstreams placed in an external onboard Compact Flash (CF) card.
A SDRAM controller for a DDR SDRAM present onboard, permits the par-
tial bitstreams to be preloaded from the CF during initialization for decreasing
the reconfiguration time. The ICAP core is also present in an OPB periph-
eral (Xilinx OPB Hwlcap Core) and carries out partial reconfiguration using
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the RMW mechanism. The static portion of the FPGA is connected to a Re-
configurable Hardware Accelerator (RHA) via bus macros. Although the RHA
can be placed with the fast PLB bus, it is an implementation choice to con-
nect it with the OPB bus. An internal memory can also be used to store the
partial bitstreams depending upon the application size. Since in general, our
targeted ISP applications cannot be placed inside the internal memory due to
their sizes, an external memory was used. Initial experiments were carried out
in order to understand the PDR mechanism. As explained previously, using the
MDE design flow, we are mainly interested in generating the RHA part and the
state machine part of the RC. The current model transformations are able to
generate the synthesizable HDL code for a hardware accelerator for final static
implementation, however they have to be modified for the PDR aspects. An-
other important point to consider is the integration of the PDR control in the
Gaspard framework. Our proposition related to this issue is presented in the
next section.

7.2 Modifications in existing Deployment level

As elaborated before, the notion of control has already been presented in Gas-
pard at the application level for the synchronous domain. However, in reality,
this is currently only a theoretical approach and the model transformations are
not present to implement this proposition.

In relation to PDR and specifically the concept of the RC, we were presented
with a choice for implementing the control. While control in application allows
the application to be independent of the targeted architecture, it requires mul-
tiple associations (of the application tasks onto the hardware resources) and
multiple deployments. Control at only the architectural level allows the archi-
tecture to be independent of the application while suffering from the disadvan-
tage of the absence of a dynamic hardware accelerator. Control at only the
association level can be used to reduce the number of active executing units
(hence decreasing the total power consumed) but offers no dynamic softcore or
hardcore IP. Control at the deployment level renders both the application and
the architecture reusable and the IPs (actual implementations) related to the
elementary components can be alternated supporting IP reuse. In order to in-
tegrate the aspects of PDR, we extended the current mechanism of deployment
by first introducing the notion of a Configuration.
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7.2.1 Configurations

When viewed from an implementation point of view, as an EC can be linked to
one final implementation (IP) among the different choices (if any); the final over-
all implementation of either the application or the architecture (or the mapping
of the two forming the overall system) is a static one. We term this collective
composition as a Configuration. The current model transformations for RTL
chain only allow to generate one hardware accelerator (hence one configuration)
for final FPGA implementation.

While control at the application level does allow a semi dynamic behavior
at the application level in the synchronous domain, this is a task level dynamic
nature and basically can modify the structure of the application (the different
alternating modes for one task can be hierarchically composed in different man-
ners). While the control at the deployment level allows IP level dynamic nature
and safeguards the same structure for the application (or the architecture) by
only changing the underlying functionality.

Our proposal allows to create several configurations for the final implemen-
tation(s). For this we create a new stereotype termed as a Configurationnfo.
This concept can be added to the implements dependency which links an 1P to
the corresponding EC. This new stereotype has a tagged value (an attribute)
termed as ConfigurationNumber which can be specified by the designer to de-
termine that this particular implementation of the EC is related to which final
configuration. It is thus possible for an EC to have the same IP in different
configurations. This point is very relevant to the semantics related to partial
bitstreams in PDR. By changing the metamodel and the corresponding model
transformations related to the deployment level, it is now possible to link sev-
eral IPs with an EC with each link specifying a specific configuration. We apply
a condition that for any number of n configurations with each having m ECs,
each EC of a configuration must have at least one IP.

Finally, the designer needs to add additional information by creating two
enumerations, Modes and States. The first contains as entries, the IPs selected
for all the possible configurations. The second contains the global states as
entries. With information provided in deployment and the model transformation
rules, each global state (configuration) is linked with its respective IPs. Each
global state also has a boolean flag with a default value of 0. A value of 1
indicates that this global state is selected as the initial state/configuration for
the GSM. This information is then passed onto the control concept modeled
in the second phase of deployment using the model to model transformations.
Figure [14] represents the extended version of the deployment related to an EC
while omitting the enumerations; and figure [15] represents an abstract global
overview of the deployment semantics.

By modifying the current RTL level model transformations, it is possible
to generate different hardware accelerators (hence different configurations). Al-
though a large part of the generated VHDL code (top level code and the code
corresponding to the instantiated sub components) remains the same, the code
corresponding to the EC is changed for each configuration. This choice of cre-
ating multiple hardware accelerators was chosen to remove ambiguity and to
ease the creation of partial bitstreams. While it is possible to create only one
hardware accelerator and change the low level EC implementations; and thus
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Figure 14: Eztended version of the deployment for an elementary component

--------- >  Configuration X = {IP AL, IPB1, IPC1}  (selected as Initial Configuration
--------- > Configuration Y = {IP A2, IP B3, IP C1}
......... > Configuration Z = {IP A2, IP B2, IP C1}

Figure 15: Eztended Deployment mechanism: for an application with three ECs

create different configurations manually, it is a tedious task which augments in
complexity depending upon an increase in the numbers of ECs or configurations.

Once the configurations are created, each one can be treated as a code for a
partial bitstream (PRM) related to the RHA (PRR). Although this extension
does allow to create different configurations, the RC in the FPGA is created
manually for final PDR implementation. In order to automatically generate the
state machine part of the RC, it is evident that this extension is not sufficient.
We then turn to the existing control concepts present in in order to solve
this issue.

7.2.2 Modification of the existing Control concept

While the control presented in [67] is sufficient for introducing control flow at
the application level, it is not compatible for integration at the deployment level.
Hence we first carry out the necessary modifications. A bottom to top approach
is adapted here to explain the control semantics; starting from the MSC.
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In GMA, the different modes present in a MSC are modeled as instances.
Each mode is an instance of a component (task) which can be either elementary,
repetitive or hierarchical in nature. However modeling at the deployment level
is only concerned with component themselves (The EC, the Virtual IP and the
related IPs are all components). Hence the first change is that the modes (IPs)
belonging to a MSC are modeled as components and not as instances.

The second change is related to the representation of the data flow entering
and exiting the MSC (correspondingly the GMS, the RT and finally the GMA)
itself. As the control is applied at the application (either at the global level of
the application or at a sub level), the data flow entering and existing that level
has to be expressed also (resulting in the input and output ports of the MSC,
the GMS, the RT, the GMA; and the corresponding connectors). However this
data flow is not expressed explicitly in the deployment level. The reason being
that an IP for an EC essentially replaces that EC during final implementation,
and the ports of the EC at the modeling level correspond to the ports of that
IP via the implements dependency. Hence for all IPs belonging to an EC, their
input/output data flow values are equivalent to that of the EC at an instance of
time. For this reason, we suppress the input and output data ports of the MSC.
Model transformations are capable to link the ports of each of the IPs in an
MSC to the corresponding EC. This modified version of an MSC is termed as a
Deployed Mode Switch Component or DMSC. It is evident that each DMSC is
related to an EC and contains as modes, all the related available IPs.

The third change is related to the collaborations which express the behav-
ior of a DMSC. As evident from the second modification, a collaboration only
show the DMSC and corresponding mode. As compared to traditional MSC
collaborations, the delegate connectors are absent. Figure shows a DMSC
and its collaborations. A limitation of the UML collaborations is the inability
to model internal elements as components. For this reason, the IPs are modeled
as instances and during model transformations it is possible to select the owner
(the component itself) of the modeled instance. This approach has not been
applied on the internal elements of the DMSC themselves (the IPs acting as
modes) to avoid confusion relating to the modeling of the DMSC.

[ DMSC_EC_A _-="7"" A_Mode_

: DMSC_EC_A

«softwarelP»
mode_value: Modes {3} A_Algorithm_1_VHDL I \
7\ /
ainx aoutx 1,/ ‘\\ : A_Algorithm_2_VHDL
«softwarelP» pa /_,r“/
A_Algorithm_2_VHDL e il -=-
ainy aouty

7 N
~"""A_Mode_1 -="7"" A_Mode_2
477”7"?6[{5{_&5}\ 77777777 . e : DMSC_EC_A

: A_Algorithm_1_VHDL ,'/ N :A_Algorithm_2_VHDL

Figure 16: The Deployed Mode Switch Component related to the elementary
component EC_A

An important point to remember is that the traditional macro structure or
GMS as defined in the earlier proposition contains a SMC for controlling a single
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MSC. However, in our proposition, as a DMSC is related to only one EC, and
an application can have several ECs; this entails the creation of several DMSCs
being controlled by a single SMC. This is one modification related to the overall
control concept. This in turns produces the second modification related to the
SMC.

The output mode port of a SMC in a GMA has a shape of {1}, indicating the
only one mode value is produced at an instance of time; which is then treated
as input for the single MSC. As we deal with multiple DMSCs (in turn a global
GSM composed of several parallel sub-GSMs) with each requiring different mode
values for the same instance of time ¢, we modify the shape value of the output
mode port of the SMC. For n configurations, the value of the shape of the
mode port is set to n as well. This modified SMC is termed as a DSMC or
Deployed State Machine Component. This indicates that a n-sized array of
mode values is produced. Correspondingly all DMSCs also have the same shape
value on their corresponding input mode ports. Each DMSC receives the array
of mode values and observes its own associated mode values (the name of the
related collaborations). If a mode value in the array matches the mode value
associated to a DMSC, it switches to the corresponding mode. However, if there
is no corresponding match, the DMSC remains inactive. While it was possible
to create different output mode ports on the SMC (one for each DMSC) and
connect them to the DMSCs via connectors, this complicates the modeling of
the RC. Thus we chose the first approach to render the diagram more compact
and comprehensible.

Once the SMC and the DMSC(s) are constructed, they are placed inside
a composition which we term as a Deployment Macro Structure (or DMS) to
differentiate it from the GMS. The DMS is then placed in a repetition con-
text termed as DRCT or Deployment Repetition Context. We do not concern
ourselves with hierarchical or parallel DSMCs and the DSMC is sequentially
executed. Hence the IRD is utilized to make the GSM associated to the DSMC
equivalent to a SMA.

Another apparent change in the modeling of the DGMA is the introduction
of an internal component inside the DRCT responsible for relaying the initial
state of the GSM to the DSMC. In a traditional GMA, the initial state for the
mode-automata (and in turn the SMC) is produced by an application component
usually at a higher level of hierarchy. The application component may have a
number of input event ports and an output state port. Initially some events
are generated which are taken by that application component as input in order
to produce as output, the initiate state. After that, the application component
remains inactive due to the absence of the events arriving on its input ports.

However the nature of DGMA is different from that of GMA in the sense
that at the deployment level, there is no notion of the hierarchical structure of
an application. Hence it is not evident to determine which component produces
the initial state at the application level and how to link that initial state to
the DGMA and in turn the DSMC. For this, we create a component inside the
DRCT having the InitialStateComponent (ISC) stereotype. This component
contains only one output port of the enumerated States type having the shape
of {1}. This provides the user defined initial state of the GSM for linking to the
DSMC. Once a transition to another state occurs, the IRD allows to provide
the information about the previous state and the destination state is treated as
the source state for the subsequent transition of the GSM.
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Figure 17: An abstract overview of the DGMA

Also we need to address the issue related to the incoming events arriving
in the DGMA shown in figure In a traditional GMA, the application takes
the events either from the external environment (for example user generated
stimuli) or the events are produced randomly in the application itself (due to
a EC). However in DGMA, the incoming events have to be linked directly to
the deployment level. At the RTL level, these events are basically the non
deterministic user specified input by means of a UART interface into the PDR
system. The user is initially given a set of options for configuration selection
(these options are treated as input events) and he can choose among the different
configurations modeled at the deployment level, depending upon different QoS
criteria such as reconfiguration time and consumed FPGA resources.

In order to link the user specified inputs (events) to the deployment level,
the DGMA has n number of event ports of shape {1,*} where n is the num-
ber of possible configurations: the first dimension on a port indicates that only
one event value arrives at a particular instance of time, while the second di-
mension indicates a temporal dimension. These event ports are of the boolean
type. The event values serve to cause a transition in the GSM depending upon
the satisfaction of the expression related to a trigger, which in turn causes a
transition.

It should be observed that the input event ports of the DGMA are not
linked to any higher abstraction level of the application, but via model transfor-
mations, at the RTL level, are in fact treated as the input ports of the UART
interface present in the Processor Sub System of the highest hierarchical entity
(i.e. top.vhd) of the PDR system. This is explored more in detail later on.
Figure 17 shows a complete overview of our proposed control structure.

7.3 Introducing control determinism in the RTL level

As elaborated in the precedent section, it is evident that control events are gen-
erally non deterministic in nature and depend upon the user input, while data
computations in Gaspard are deterministic and operate in a regular manner.
Hence there is a need to create a compatibility between the two. The notion
of an FventObserver (EOR) is thus introduced at the RTL level in the highest
hierarchical PDR system entity. We avoided adding this concept at the model-
ing level in order to distance the user from event arrival management which is
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viewed as a lower abstraction level detail. Figure show the overview of the
top level entity of the PDR system.

Top Level Design Entity (top.vhd)

Customized OPB Bus
(fu_r interfacing PSS to IP-Core)

Processor Sub System (PSS)

IP-core containing
Reconfigurable
Hardware
Accelerator
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Rx Event
T Observer

Clock(}
Reset]

Figure 18: A global overview of the PDR system

BM enable

This component takes user inputs at irregular time intervals and produces
events at regular time intervals for regular arrival of control events into the GSM.
This component has input and output event ports (EVENTIN and EVENTOUT
respectively) as well as the CLK and RESET ports for clock and reset signals.
The EVENTIN port is connected to the top level UART_Rz input port while the
EVENTOUT port is connected to the system_i’s (instance of the processor sub
module) UART _Rx input port. The algorithm related to the EOR is presented
below using an informal semantic.

Sentivity List (CLK, EVENT)

if
CLK is TRUE and EVENT
then
EVENTOUT = EVENT;
else if
CLK = TRUE AND NOT EVENT
then
EVENT OUT = DEFAULT VALUE;
end if;

End Sentivity List

The user input can arrive irregularly at any instance of time, where as an
event value is need at each instance of time ¢ in order to respect Gaspard
semantics. EOR listens on its input port, and at each rise of clock, checks if
an event is present or not. In the first case, the event is sent to the processor
subsystem and in turn the reconfiguration controller which causes a successful
state transition (or a self transition). In the second case, if there is no user
driven input event at time ¢, then the EOR generates a default event event_d
which causes a self transition in the state machine. This value can be viewed
as a special value among the set of values corresponding to the all expression,
which catches any event not specified in related transitions and causes a self
transition in the GSM. £ is the set of all possible events. The overall relation is
given below as:

E = {el,e2,e3} , all = {{\ E}U{ed}
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Figure [19] illustrates the relations between the events and the states (con-
figurations) in a GSM in the RC. A self transition does not switch the current
configuration, while a transition to a different state causes the controller to dy-
namically switch to the configuration corresponding to the transited destination

state.
e % Y z
X all e2 e3
Y el all e3

Figure 19: Different representations of GSM: Events and state relations

While this notion does allow to introduce regularity in the arrival of control
events, it is quite possible that a control event and the eventual configuration
switch causes a disrupt in the data flow of the application implemented as a
RHA. Tt is thus critical to determine the precise moment when to effectively
switch a configuration while avoiding the failure of the required application
functionality. Our works could benefit from the notion of Degree of Granular-
ity proposed in [30] which effectively responds to the synchronization of the
control/data flow.

7.4 Extension of existing Transformation rules

It is not our objective here to fully detail the model transformations in our
design flow which are considered as the underlying technical details. An initial
description of the existing model transformations for the RTL level can be found
in [32]. However, we do highlight some of the important new extensions that
we have integrated into the RTL level.

7.4.1 Integration of the hardware design into the PDR system

IP-Core

STUB (userlogic.vhd)

data in

IPIC

IPIF
Module

OPB Bus

Figure 20: An abstract overview of the IP-Core

As elaborated earlier, the design flow in [32] creates a single hardware ac-
celerator that is implemented in a targeted FPGA as a black box and there
is no notion of heterogeneity in the final design. However, as our PDR archi-
tecture is composed of different heterogeneous communicating components (the
RC, the IBM coreconnect buses, memory controllers, UART peripheral etc.), it
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is essential that the generated hardware design successfully integrates into the
static part of the PDR architecture. Xilinx provides the notion of an Intellectual
Property-core InterFace (IPIF) module, that acts as a hardware bus wrapper
specially designed to ease custom IP core interfacing with the IBM Coreconnect
buses using IPIC connections. It can also be used for other purposes such as con-
necting the OPB bus to a DCR bus: another bus of the Coreconnect technology
[27]. There exist two versions of the IPIF: a PLB IPIF for PLB attachment, and
OPB IPIF, for OPB attachment [63]; [64]. A custom peripheral that connects
to any of the two buses must meet the principles of the OPB/PLB protocol:
matching of interface signals, for example. In our design flow, the RHA is con-
nected with the OPB bus but can also be integrated with the PLB bus. A
RHA generated via the model transformations is intended to be integrated as a
slave peripheral connected to the chosen bus for communicating with the RC.
However at the modeling level, the designer does not have any knowledge of the
targeted PDR architecture and this is an underlying low level detail. In order to
make the RHA compatible with the interface signals of the OPB and in turn the
IPIF module, we create several input and output ports for different functional-
ities (input data, byte enable, read and write, transfer acknowledgment etc) at
the top level design entity of the application (MainApplication.vhd) at the RTL
model via the corresponding model transformation rules. Afterwards the IPIF
wizard in the EDK can be used to generate the template for the custom periph-
eral containing the communication logic (IPIF module) and the inner user logic
module. We treat the user logic (the userlogic.vhd) file as a stub in which the
final hardware design (the core) is instantiated. The stub allows the bus master
to read/write the output and input signals of the core respectively. Figure [20
shows the final structure of our IP-core.

Afterwards the IPIF wizard can be invoked again to import this peripheral
into the PDR system resulting in a successful integration of the hardware accel-
erator. Currently this integration is a manual process, however model transfor-
mations can be extended to automatically generate the top level IP-Core VHDL
file, an interface module and the stub module which itself contains the core sub-
module. This approach can be seen as a complementary approach as present in
[39].

Once all the configurations of the RHA are imported as OPB peripherals
(having different version names) in the EDK, the project files (peripheral_xst.prj)
related to each version of the RHA are then modified manually as specified in
the EAPR flow before eventual synthesis is carried out. Readers should refer to
[57] for a detail explanation.

7.4.2 Barriers and Pipeline stages

The MoC of Gaspard authorizes the pipelined execution of an application. A
data array produced by one task of the application (or architecture) can be con-
sumed by the next successive task. In terms of a hardware accelerator, pipelined
execution of tasks permit to increase the operational frequency while decompos-
ing its critical path. For that this execution is really pipelined, registers having
the same clock rate are introduced in different data paths. Tilers containing
registers in their data paths have been introduced in [32], they allow to generate
a flow of arrays in the data paths of task parallelism. This flow of arrays implies
that several tasks are executed at the same time but each iterates on a different
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instance on the temporal dimension in their repetition space. However, this
pipeline introduces a latency in the production of output arrays of a task as it
is necessary to fill the pipeline stages of tasks.

However, the limitations related to the utilization of the pipelined approach
in task parallelism are evident. A de-synchronization can occur when the data
dependency does not fills all the stages of a pipeline as shown in figure[21. It is
thus up to the designer of the application to guarantee that that use of a task
not does de-synchronize the computations.

Figure 21: A representation of de-synchronization in task parallelism

In order to avoid the de-synchronization of our hardware accelerator(s), we
have implemented a model transformation rule which aims to create Barriers
and Pipeline Stages for each compound component of the modeled application.
A pipeline stage corresponds to an actual pipeline stage in the application and
can be composed of several sub components. The barrier insures that the for
the next successive pipeline stage, the input values from the previous stage are
present and that data dependency fills all the pipeline stages. This model trans-
formation is implemented as a black box written in Java which is called from
typical MoOMOTE transformation rule. The algorithm of this transformation is
described in a non formal semantic.

CreateBarriersandPipelineStages (CompoundComponent hwcc)
{
//list of input port type
List <Port>InputPortList = new ArrayList ();
for (port hwp : hwcc.getPorts())
if (hwp instanceof InputPort)

InputPortList.add (hwp);

}

//list of conmector type
List <Connector>listconnector = new ArrayList ();
for (InputPort hwip : InputPortList)

{

listconnector.addall (hwip.getconnect ());

}

//list of component instance type
List <ComponentInstance>CIToschedule = new ArrayList ();
CIToschedule. addall (hwcec. getComponentInstance ());

int count = 1;

do

{

create PipelineStage ps;
ps.setName (”No”+count );
ps.setPosition (count);
hwcee.add(ps);
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create Frontier frontier;
hwece.add(frontier );

create PipelineStage (hwce, listconnector , CIToschedule, ps, frontier);
count—++;

while (!(CIToschedule.isEmpty ()));

The rule is composed of several parts (functions). The first part of the rule
initially determines if the compound component (CC) in question contains input
ports. If this is true, then the component is considered as an internal CC of
the main application other wise it is the main application component itself (as
at the UML modeling level, the top level main application entity does not have
any input or output ports). For an internal CC, the presence of input port(s)
determine the presence of data arrival. Afterwards we determine the connectors
connecting to these input ports and the number of all component instances
present in the CC. A Pipeline stage and a barrier are then created repeatedly
until the list of the component instances in the CC is not empty. This function
calls the second part of the rule.

CreatePipelineStage (hwce, listconnector , CIToschedule, ps, frontier)
{
//list of component instance type
List <ComponentInstance>locallist = new ArrayList ();
locallist .add (CIToschedule);

J//list of commector type
List <Connector>connectorfornextstage = new ArrayList ();
connectorfornextstage.addall(listconnector );

for (ComponentInstance hwei : locallist)
{
//list of port instance type
List <Port>hwpilist = new ArrayList ();
hwpi = getPI(hwei);

//list of port instance type
List <Port>locallist = new ArrayList ();
locallist .addall (hwpilist );

for (PortInstance hwpitemp : locallist)

if (listconnector.contains(hwpitemp.getconnect ().get(0)))
{hwpilist.remove (hwpitemp );}

if (hwpilist.isEmpty ())

ps.getComponentInstance ().add(hwci);
CIToschedule.remove (hwci);
// list of commector type
List <Connector>hwc = new ArrayList ();
hwe = getC (hwei);
frontier.getconnectors.addall (hwc);
connectorfornextstage.addall (hwc);
}
}
listconnector.addall (conenctorfornextstage);

}
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The second part stores the list of component instances to be placed in the
pipeline stages as well as the input connectors. For each component instance
hwei we determine the number of input ports (excluding the clk and reset ports
for that component) via the function getPI (not described here). This collection
of input ports is thus stored in a list. For each port instance of a component in-
stance, we determine if the connector connecting to this port instance is present
in the initial list of connectors connected to the CC itself. If so, this port in-
stance is considered active and removed from the list. When the list pertaining
to all the port instances of a component instance are empty, this component
instance is added in the pipeline stage ps and removed from the list of compo-
nent instances of the CC. The connectors connected to the outport ports of this
component instance are then calculated via the getC function (not described
here) and added to the barrier frontier. These connectors also replace the ini-
tial information related to the connectors and serve as input connectors for the
next pipeline stage. Figure[22 shows an illustration of the aforementioned rule.

Figure 22: A representation of the pipeline stages and barriers

7.4.3 Model Transformations : From MoMOTE to QVTO

As explained in the section related to Gaspard, due to the arrival of new
evolved transformation tools which can support the complex model transfor-
mations present in our framework, we have decided to rewrite the exiting GAS-
PARD2RTL MoMOTE based transformation rules in QVTO. As the gap be-
tween the concepts in MARTE and Gaspard metamodels is not large enough, the
significant but small details can be elevated to the MARTE level. This will allow
us to move directly from the MARTE metamodel to the RTL metamodel and
eventual code generation. This results in several advantages. The first results in
the decrease in the number of transformation rules (as the MARTE2GASPARD
model transformation and the Gaspard metamodel is no longer needed). This
also allows us to easily maintain the corresponding transformation changes due
to any changes in the MARTE standard and its metamodel. Thus the design
flow is standardized according to MARTE specifications. This is currently a
work in progress. It should be mentioned that the migration to QVTO does not
effect the generated code and the subsequent implementation results.

8 Future Works and Perspectives
Currently our design flow does not manages the loss of the data flow between

the configuration switching, and can inspire from [30]. At the moment, the final
placement of PRR and bus macros is determined by the designer; it is a tedious
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task and can effect the overall reconfiguration time. Works such as [47],
could complement our design flow and help the designer in automating the PDR
flow. Solutions such as presented in [38], can resolve the issues related to area
constraints for static/dynamic regions. At present, the modeled application
is placed as a single hardware accelerator. However, some key kernels of the
application could be implemented as hardware accelerators while other parts
can be executed in the RC. This adds an additional layer of complexity of
the synchronization of the control/data flow and the communication in the
overall system. Bitstream relocation between two PRRs is also an interesting
perspective as presented in [11], [5]. At the moment, the architecture of the
PDR system is absent at the high modeling level. An initial methodology was
introduced in [46] but model transformations are currently absent. At the RTL
level, the control mode automata is directly converted as a state machine code
for one of the PowerPCs available in the XUP board. In case of an architecture
modeled at UML supporting multiple processors, at the allocation level, the
correct processor must be linked to the control concept modeled at deployment.
Thus a link must be created to relate the two levels for a correct allocation.
A good comprise could be to introduce the notion of control at each of the
modeling levels (application, architecture, association and deployment).

9 Conclusion

This paper presents a novel model driven methodology to move from high
level MARTE specifications to reconfigurable architectures such as FPGAs,
and specifically those supporting partial dynamic reconfiguration (PDR). Our
methodology allows to specify complex intensive signal processing application
such as a multimedia codecs and digital filters in a graphical language, which via
model transformations, are implemented as hardware functionalities in a tar-
geted FPGA. These functionalities retain the inherent task and data parallelism
specified at the modeling level. Extensions have been made to the existing con-
trol/data flow concepts and the deployment level in our framework to integrate
the PDR aspects. A deterministic control approach has also been proposed to
integrate non regular control events in Gaspard. An initial version of generating
a complete IP core from model transformations has also been presented, along
with a solution to avoid de-synchronization related to task parallelism in the
modeled applications. The IP-core can be successfully integrated into a PDR ar-
chitecture in order to build a complete system. Finally a case study is illustrated
to validate our MDE based design flow. Using MDE and model transformations,
we can produce as output, the source code for the reconfiguration controller and
the dynamically reconfigurable module. The code can then be used as input for
commercial tools for final FPGA synthesis. Currently we adhere to the Xilinx
based PDR design flow due to its availability and extensible nature. However
our PDR based methodology can be used as a template in order to implement
other existing or future PDR based fine grain reconfigurable architectures. A
potential extension could be to target coarse grain reconfigurable architectures
supporting multiple FPGAs.
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