
HAL Id: inria-00365874
https://inria.hal.science/inria-00365874

Submitted on 4 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial table testing dynamically adaptive systems
Freddy Munoz, Benoit Baudry

To cite this version:
Freddy Munoz, Benoit Baudry. Artificial table testing dynamically adaptive systems. [Research
Report] RR-6866, INRIA. 2009, pp.29. �inria-00365874�

https://inria.hal.science/inria-00365874
https://hal.archives-ouvertes.fr

IS
SN

 0
24

9-
63

99

appor t
 de r ec h erche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

N° 6866

 March 2009

Thème COM

Artificial table testing dynamically adaptive systems

Freddy Munoz, Benoit Baudry

INRIA

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie +33 2 99 84 71 71
www.irisa.fr

Artificial table testing dynamically adaptive systems

Freddy Munoz1, Benoit Baudry2

Thème COM – Réseaux et systèmes
Projet Triskell

Rapport de recherche n° 6866 – March 2009 - 29 pages

Abstract: Dynamically Adaptive Systems (DAS) are systems that modify their
behavior and structure in response to changes in their surrounding environment.
Critical mission systems increasingly incorporate adaptation and response to the
environment; examples include disaster relief and space exploration systems.
These systems can be decomposed in two parts: the adaptation policy that
specifies how the system must react according to the environmental changes
and the set of possible variants to reconfigure the system. A major challenge for
testing these systems is the combinatorial explosions of variants and envi-
ronment conditions to which the system must react. In this paper we focus on
testing the adaption policy and propose a strategy for the selection of envi-
ronmental variations that can reveal faults in the policy. Artificial Shaking
Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a
technique widely used in civil engineering to evaluate building’s structural re-
sistance to seismic events. ASTT makes use of artificial earthquakes that simu-
late violent changes in the environmental conditions and stresses the system
adaptation capability. We model the generation of artificial earthquakes as a
search problem in which the goal is to optimize different types of envi-
ronmental variations.

Keywords: Testing of dynamically adaptive systems, Artificial shaking table
testing, Adaptation policy testing, Search based testing.

1 INRIA – freddy.munoz@inria.fr
2 INRIA – benoit.baudry@inria.fr

INRIA

Artificial table testing dynamically adaptive systems

Résumé: Dynamically Adaptive Systems (DAS) are systems that modify their
behavior and structure in response to changes in their surrounding environment.
Critical mission systems increasingly incorporate adaptation and response to the
environment; examples include disaster relief and space exploration systems.
These systems can be decomposed in two parts: the adaptation policy that
specifies how the system must react according to the environmental changes
and the set of possible variants to reconfigure the system. A major challenge for
testing these systems is the combinatorial explosions of variants and envi-
ronment conditions to which the system must react. In this paper we focus on
testing the adaption policy and propose a strategy for the selection of envi-
ronmental variations that can reveal faults in the policy. Artificial Shaking
Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a
technique widely used in civil engineering to evaluate building’s structural re-
sistance to seismic events. ASTT makes use of artificial earthquakes that simu-
late violent changes in the environmental conditions and stresses the system
adaptation capability. We model the generation of artificial earthquakes as a
search problem in which the goal is to optimize different types of envi-
ronmental variations.

Mots clés: Testing of dynamically adaptive systems, Artificial shaking table
testing, Adaptation policy testing, Search based testing.

 Artificial table testing dynamically adaptive systems 3

RR n° 6866

1 Introduction

Software is expected to do more for us today in more situations than we ever
expected in the past. Nowadays, there exist more users, interacting systems, re-
sources and goals than before. That is translated into system operating non-stop
on complex, rapidly changing, and possibly hostile environments. It is unac-
ceptable for these systems to crash when confronted with changes; they must
instead fluidly adapt to the ongoing circumstances and find the way to continue
accomplishing their functionalities. Such systems, called dynamically adaptive
systems (DAS), play increasingly vital roles in society’s infrastructures. The
demand for DAS appears in application domains ranging from crisis manage-
ment applications such as disaster management [17], space exploration [12],
and transportation control to entertainment and business applications such as
mobile interactive gaming and business collaborations (e.g., through virtual or-
ganizations and dynamic service compositions). This demand is accentuated by
the mobile and nomadic nature of many of these domains. Indeed, future appli-
cations will need to cope with advanced properties such as context awareness
and mobility. The IDC3 analysts forecast a global increase in the number of
mobile workers to more than 850 million by 2009 [10].

DAS responds to environmental changes by modifying their internal configu-
ration in order to continue meeting their functional and non-functional require-
ments.

Designing a DAS consists in two phases. The first is the identification of the
system parts that may vary during the execution. Typically, designers address
this step using software product lines techniques (SPL) [3]. SPL proposes to
define a family of software starting from a core system and encoding its varying
parts into variation points. These variation points enable determine the system’s
changeable structure while maintaining its overall organization. In this way, the
structural changes performed in adaptation are reflected as the transition be-
tween variants of the system. During the second step, designers specify which
environmental fluctuations should have an impact on the system as well the as-
sociated strategies to perform the structural changes. Typically, designers ad-
dress this step by defining adaptation policies that encode the courses of actions
to be adopted when the environment changes [2, 13, 18, 21]. Adaptation poli-
cies drive the adaptation process and compute the right system variant that
should be adopted given an environmental condition.

We distinguish two activities for testing an adaptive system. The first activity
consists in testing the system variants. That is, for each variant, a set of test sce-
narios is executed to check the variant validity. However, due to the exponential
growth of system variants with the number of variables, it is impossible to per-
form this activity for all of them. Instead, it is necessary to select a representa-

3 IDC is an analyst company and a global provider of market intelligence, advisory services, and events
for the information technology, telecommunications, and consumer technology markets

4 Munoz & Baudry

INRIA

tive subset of variants to be tested. Existing testing techniques for software
product lines can be applied to address this issue [5].

The second activity consists in testing whether the adaptation policies are cor-
rectly implemented and well suited for their working environment. That is,
simulate environmental changes and check whether the system adapts correctly
with respect to those changes and with respect to the adaptation policy. Doing
so is challenging because again there is a problem lying on exponential growth.
Simulating environmental changes requires moving the environment from one
condition to another (environmental transition). Simulating the whole environ-
ment is impossible due to: (i) the extremely large number environmental condi-
tions, and (ii) the even larger number of environmental transitions.

In this paper we address the selection of representative environmental condi-
tions, and environmental transitions to test the adaptation policies of DAS. Our
strategy is based on the metaphor of a civil engineering testing technique, where
structural engineers test the structural resistance of building by simulating natu-
ral earthquakes. This kind of test is referred as shaking table testing (STT) [11],
because it involves placing a structure scale model over a table capable of oscil-
lating in such a frequency and cadence that simulate a natural earthquake.
Analogous to STT we propose artificial shaking table testing (ASTT) for testing
adaptation policies and their realization. ASTT consists in laying a DAS into a
virtual shaking table, which produces artificial earthquakes (AEQ) that test its
adaptation capabilities. AEQs are series of environmental conditions, where at
least two consecutive conditions are very different, i.e. series with strong and
smooth environmental variations.

Generating AEQs embodies several challenges: (a) selecting series of envi-
ronmental conditions that are consistent with the real occurrence of the envi-
ronment; (b) selecting as much series as necessary to cover a testing criterion
for adaptive systems; (c) selecting series containing as much violent variations
as possible.

In order to address these challenges, we model the generation of AEQs as a
functional optimization problem that consists in optimizing the compromise
between the previous challenges. This allows us to adapt existing search-based
techniques such as hill-climbing, tabu-search and simulated annealing to auto-
matically generate AEQs. The virtual table is now a set of optimization goals
and search algorithms.

The contribution of this paper is a technique to automatically generate AEQs
in such a way that they simulate representative environmental changes. The ex-
perimental results of performing mutation analysis over an adaptive web server
indicate that automatically generating violent and smooth environmental varia-
tions are beneficial to uncover faults in adaptation policies and their realization.

The reminder of this paper proceeds as follows. Section 2 gives a background
on dynamically adaptive systems. Section 3 describes the challenges in testing
adaptation policies. Section 4 introduces artificial shaking table testing. Section
4 presents the results of an experimental study over an adaptive web server.

 Artificial table testing dynamically adaptive systems 5

RR n° 6866

Section 5 presents the related work. Finally, in section 6 we conclude and pre-
sent our perspectives.
2 Dynamically adaptive systems

Consider a simple adaptive web server, which processes file requests over the
http protocol. It answers the requests it receives as fast as possible while opti-
mizing the resources it consumes. Additionally, it provides a non-stop service
and thus it needs to modify its internal structure in order to respond to its
changing working environment. The working environment of the web server is
characterized by the variable amount of requests over time.
2.1 Environment and variants

Dynamically adaptive systems (DAS) encode the environment into an abstrac-
tion called a context.

DEFINITION 2.1. A context consists on an n-tuple of fields <p1, p2, …, pn>,
where each field pi represents an environmental property. The type of each field
is defined by the encoding chosen for the property it represents.

In our adaptive web server example, the environment is modeled as a context
with the properties p1: number of request per second (request density); p2: the
amount of files that can be requested (file number); and, p3: dispersion of the
request (request dispersion). The last one corresponds to the percentage of re-
quests that point to different files (among file number). The domain or type of
each property has a lower and an upper bound. For instance, Request density
and file number are integer numbers with lower bound 1 and upper bound 1000,
whereas request dispersion is a real number with period 0.1, lower bound 0 and
upper bound 1. The request density domain indicates that the minimum amount
of request in one second is 1 and the maximal is 1000. Analogous, request dis-
persion indicates that when every request points the same file it has a value 0,
and when all the requests are uniformly distributed among the possible files has
a value 1.

DEFINITION 2.2. Specific environmental conditions at an instant t are drawn
by an instance I of the context representing the environment. Such instance is
an n-tuple of values corresponding to the punctual value of a particular prop-
erty.

The context instance <12, 3, 0.5> designates a particular environmental con-
dition, where 12 files are requested each second, the requests point to 3 differ-
ent files, and out of 12 requests 6 point the same file. A series of context in-
stances I0, I1, I2, …, In ordered by their occurrence over time is called context
flow (F).

6 Munoz & Baudry

INRIA

Figure 1: Architectural and feature diagram view of the simple adaptive web server.

Since the adaptive web server works on a changing environment, it dynami-
cally modifies its internal structure to continue running. Figure 1 presents dif-
ferent views of the web server structure. On the top, an architectural view de-
scribes the structure in terms of components and connections. It states that the
web server is composed of a single request receiver, which receives the http
requests, encodes and passes them to a request handler. The request handler
verifies through a cache handler whether the requested file exists in an optional
cache. If the document exists, then the request is immediately answered. Oth-
erwise the handler passes the request to one of the available data severs, which
loads the file from a resource and answer the request. On bottom, a feature dia-
gram [9] describes the software product line (SPL) comprising the different
variation points of the web server. More precisely, it states that a web server
must deploy exactly one (black dot) request receiver, one request handler, one
request dispatcher, optionally one cache handler (0 or 1), and any number of
data servers (1 or more). Besides, when a cache handler is deployed, the size
and duration validity (seconds the files are present) of the cache must be speci-
fied.

The variation in DAS is commonly represented by an abstraction that encodes
the system variants.

DEFINITION 2.3 Variation is a n-tuple of field <v0, v1, …, vn>, where each
field vi corresponds to a variation point (actually varying). Analogously to envi-
ronmental properties, each field bears a type encoding the variation point they
represent.

The variation of the adaptive web server includes the variation points previ-
ously described: v1: cache existence, v2: cache size, v3: cache duration validity,
and v4: amount of data servers. The domain for cache existence is a Boolean
indicating that either the cache exists or not. When the case exists, its size cache

Adaptive Web Server

DataServerCacheHandler

RequestHandler RequestDispatcherRequestReceiver

Adaptive Web Server

Request

receiver

Request

Handler

Cache Handler Request

Dispatcher

Data

Server

[1..*][0..1]

+ int: size
+ double: validity

 Artificial table testing dynamically adaptive systems 7

RR n° 6866

size varies between 10 and 1024. The number of data servers varies between 1
and 100, which means that always must be at least one data server and no more
than 100.

DEFINITION 2.4. A specific configuration of the system at a moment t is
drawn by a system variant δ. Each value in δ matches to the variation points
values selected for that particular variant.

The system variant <true, 10, 2,1> designates a configuration with a cache of
size 10, a duration of 2 seconds per file, and only one data server. Analogously
to a context flow, a variant flow reflects the configuration changes over time.

Context and variation raise a space containing all the possible instances / vari-
ants that can produce the combination of the properties / variation point values.
For example, the context of the adaptive web server raises a space containing
all its possible context instances.

DEFINITION 2.5 Context instances (I) as well as system variants (δ) must
satisfy a series of constraint (ζ) specific to their encoding and domain. Any con-
text instance or system variant violating these constraints is invalid and does
not belongs to the context / variant space they represent.

Two constraints are defined for the adaptive web server. The first is a con-
straint on the variant space and states that when a cache exists its size and dura-
tion must be great than 0, otherwise they should be 0. An example of a system
variant violating this constraint is <false, 10, 2,1>. The second constraint re-
stricts the context space and states that the number of files that can be requested
cannot be superior to the number of requests per second. That is, the number of
possible files grows linearly with the number of requests per second.
3 Adaptation driver

Adaptation in DAS is driven by a series of adaptation policies (adaptation
model) that use different formalisms to describe the variant to adopt given a
context change.

DEFINITION 2.6. An adaptation policies fp defines a relation between con-
text and system variants. It is a function fp: ℘ (I) x ℘ (δ) → δ that receives a
context flow (context history), a variant flow (variation history), and gives the
next variant the system must adopt.

There exist several strategies to implement adaptation policies, a few exam-
ples are: action-based adaptation [18], where adaptations are triggered when a
condition is satisfied; goal based adaptation [13], where adaptations are per-
formed to reach a specific goal; and utility function based adaptation [21],
where adaptations are calculated according to a cost function based on envi-
ronmental conditions and variation point value.

8 Munoz & Baudry

INRIA

 The adaptation policies of the adaptive web server use a class of action-based
strategy [18]. In this case the adaptation policy is a set of rules that, for each
event (environmental change) evaluate if a set of conditions are satisfied, and if
it is so, they perform a series of adaptation actions. In particular, this strategy
encodes the condition values using fuzzy logic transformations [23]. This en-
able designers to write conditions based on adjectives (fuzzy values) such as
high, medium, low instead of precise value. The use of such adjectives allows
designers to abstract from low-level details and qualitatively define the system
adaptations [2].

Listing 1: Excerpt of the adaptive web server adaptation rules.

Listing 1 presents an excerpt of the adaptive web server adaptation policy4. It
contains 2 rules (lines 1-3 and 5-7), which state the utility of adding a cache
(adaptation action), given certain request dispersion. The first (lines 1-3) states
that whenever the request dispersion is low or medium (line 1) and there is no
cache (line 2), deploying a cache is very useful (line 3, value high). The utility
of adding a cache is also an adjective, in this way the adaptation policy remains
abstract from the application domain. Later on, a fuzzy engine assigns numeri-
cal values to this adjective and whether it reaches a threshold, the system de-
ploys a cache. The second rule (lines 5-6) is analogous to the first; nonetheless,
it states that when the dispersion is high, adding a cache is not very useful.
4 Testing the adaptation policy

Definition 2.6 introduces the concept of adaptation policy as the driver of the
adaptation. Testing the realization of such driver means verifying whether the
system is capable of adapting to environmental changes, and whether such ad-
aptations proceed as specified in the adaptation policy. Additionally, tests as-
sess the adequacy of adaptation policies with respect to the possible environ-
mental changes. That is, they can help uncovering unforeseen environmental
conditions that may not be covered by the adaptation policy.

Testing adaptation policies involves generating context instances, and evaluat-
ing the results of exposing the system to such context instances.

Figure 2, illustrates the testing process for adaptation policies. It is composed
of the three steps. (1) Initially, testers synthesize a context flow from a series of

4 The full adaptation policy can be found at http://freddy.cellcore.org/research/cherokee/rules.html

1: WHEN REQUESTDISPERSION IS ’LOW’ OR ’MEDIUM’
2: IF CACHEHANDLER.ISEMPTY
3: THEN UTILITY OF ADDCACHE IS ’HIGH’

5: WHEN REQUESTDISPERSION IS ’HIGH’
6: IF CACHEHANDLER.ISEMPTY
7: THEN UTILITY OF ADDCACHE IS ’LOW’

 Artificial table testing dynamically adaptive systems 9

RR n° 6866

context instances. (2) Then, they execute and expose the system to the gener-
ated context flow. That is, varying the system environment as described by the
instances in the flow. Additionally, tester must analyze the adaptation policy in
order to calculate the expected variant for each instance in the context flow; this
generates an expected variant flow. (3) Finally, testers evaluate whether the
variants adopted by the system (variant flow) when exposed to environmental
changes are equivalent to the expected variant flow. If it is the case the process
may start again until a stop criterion is reached. Such criterion may be for in-
stance the coverage of the whole environment. Otherwise, there is a fault and
must be localized and corrected.

Figure 2: Testing of adaptation policies

Executing the testing process previously described raises two challenges. The
first challenge relates to generating test data. Ideally we may want to generate
all the context instances in order to assure the validity of adaptation policies
over the whole environment. However, the number of context instances (con-
text space) grows exponentially with the number of properties modeled by the

Dynamically

adaptive

system

<12, 3, 0.5>

context flow

Test data

Expected result

function – fp: ! (I) x ! (!) " ! –

variant flow

actual result

!?

<true, 10, 2,1>

variant flow

Test data generation

<Requests per second, # files, >

10 Munoz & Baudry

INRIA

context. For example, the context of the adaptive web server models 3 proper-
ties that generate a space of 106 (1000 x 10 x 500) instances. Moreover, since
adaptation policies use the history of the context flow that has occurred before
the new context instance, the configuration chosen by the adaptation policy may
change according to the system history. It is possible that context flows contain-
ing identical context instances, but with different order of occurrence over time
may lead to completely different variants. For this reason, the order of occur-
rence of context instances in a context flow cannot be disregarded. This creates
a flow space containing the different context flows of a context. The length n of
the flows determines the size of such space, which is equal to j x k, where there
are k possible ways to choose n values from the context space, and j possible
combinations of n context instances (j=n x (n-1)). For example, the size of the
adaptive web server‘s flow space of the, with context flows of length 106 is 1012
(106 x (106-1) x 1). This means that for testing the adaptation policies of our
adaptive web server against all the possible environmental variations it is nec-
essary to execute the testing process at least 1012 times. Rapidly we notice that
executing such amount of tests is not feasible in reasonable time. Synthesizing
context flows is challenging because it involves selecting the minimal represen-
tative amount of context instances and arranging them in the right way to pro-
duce context flows that adequately represent environmental variations.

The second concerns the evaluation of the variant flow produced by the sys-
tem. Generally adaptation policies are hard-coded into the system without a
proper specification. Since there is no proper specification, it is difficult to cal-
culate the expected variant flow. Moreover, some adaptation policies may not
produce deterministic results, and rather produce a set of possible results or
template results. In such cases, evaluating whether the expected and the pro-
duced variant flow are equivalent is complex because they may share only some
commonalities.

In this paper we propose a strategy to explore the context flow space and to
cope with the first challenge. Inspired by civil engineering structural testing we
propose to synthesize context flows with particular properties that stress the
system’s environment. Such flows may exercise the adaptation policy and un-
cover faults. Concerning the evaluation of the expected result, we propose a so-
lution specific to our case study.
5 Artificial shaking table testing

Consider the following scenario for the adaptive web server. Initially, the
server receives 10 requests per second equally distributed between 5 files, has a
configuration of 1 file server and no cache deployed. Suddenly, it receives 1000
requests per second distributed between 300 files of which 2 repeats 300 times.
The adaptation policy specifies that the server should deploy as fast as possible
the cache with a sufficient size to hold the 300 files, and enough file servers to
fetch 300 files. After a few seconds, the server request rate returns to its initial

 Artificial table testing dynamically adaptive systems 11

RR n° 6866

value and the server should remove the deployed cache and file servers in order
to save resources.

This scenario is an example of violent changes in the environmental condi-
tions of a DAS. The realization of the adaptation policy should drive the sys-
tem’s adaptation responding to such changes and produce the described con-
figuration changes. However, if it fails to do so, the system may not meet its
functional and nonfunctional requirements, and will not be able to provide the
expected service. We can speculate about a variety of faults that lie on the adap-
tation policy realization or specification, and that can be revealed by the de-
scribed scenario. Three faults that may occur are the following. (1) Consider
that the adaptive web server is faced to the described scenario, but, when re-
quired, it does not deploy the file servers, or the cache, or the size of the cache
is too small to hold 2 different files. If request response quality of service re-
quirements were bounded to the system, it will not be able to meet them. Since
the adaptation policy specification stipulates the way the adaptation must pro-
ceed, the source of misbehavior is located in the policy realization. (2) Con-
sider that the adaptive web server is capable of deploying the file servers and
the cache with the right size, but with a long delay. Again, if quality of service
requirements were bounded to the system, it will not be able to meet them be-
cause the response time will be too long, and probably when deployed, the file
server and the cache will be useless. (3) Now, consider that the adaptive web
server actually deploys the servers and the cache as needed, but it does not re-
move them after the request rate descends. If memory and calculation resources
are scarce, the server will be over-consuming them and eventually crash. This
misbehavior can be due to a faulty realization of the adaptation policy, or to a
fault in the adaptation policy; for example, the adaptation policy does not spec-
ify what to do when the server request rate decreases, or there exist some con-
tradictory rules.

In the previous section we stated the challenges of testing the adaptation pol-
icy realization. Particularly we highlighted the challenge of synthesizing flows
representative of the context flow space. Such context flow must aim at uncov-
ering faults due to violent environmental changes and ensure that the system is
capable of adapting in violent and non-violent environment.

We address this issue by proposing a strategy to synthesize context flows,
which contain violent and non-violent environmental changes. Based on the
metaphor of a civil engineering testing technique referred as shaking table test-
ing, we propose to generate artificial earthquakes: context flows with several
violent environmental changes. Our hypothesis is that synthesizing context
flows with the described property will help testers finding faults in the adapta-
tion policy implementation and design. Additionally, such context flows may
help developers checking whether the DAS meets its requirements. For in-
stance, whether the adaptation is carried within 5 seconds.

In the reminder of this section we present the underlying idea of shaking table
test to later introduce our strategy to artificial shaking table testing.

12 Munoz & Baudry

INRIA

5.1 Shaking table testing & Artificial shaking table testing
Shake table testing (STT), or earthquake testing is a technique widely used in

civil engineering to test the structural resistance of buildings to ground move-
ments such as earthquakes. It consists in simulating the shaking effect of earth-
quake over a target structure. It uses a table (shaking table) that sustains the
structure under test and oscillates with different intensities and cadence rates
over time; this produces waves that stress the tested structure’s material resis-
tance and design [11]. STT is used to test the structural integrity, construction
material, and structural configuration of a building facing the effects of an
earthquake or another ground movement. STT helps civil engineers to develop
structures that better resist natural disasters such as earthquakes without risking
human lives in the process.

Analogous to STT, we propose using a virtual shaking table to test the resis-
tance of adaptation policies to smooth and violent environmental changes. We
refer to such testing strategy as artificial shaking table testing (ASTT). ASTT
operates by generating data we refer as artificial earthquakes, in reference to
natural earthquakes that produce sudden and violent ground movement. Artifi-
cial earthquakes are context flows embodying violent and sudden context
changes, which are transitions between two instances located as far as possible
from each other in the context space. Our hypothesis is that such changes may
stress the implementation of the adaptation policy and help testers uncovering
faults related to transitions between context instances with different degree of
separation. Furthermore, through the exploration of the context flow space, arti-
ficial earthquakes may help testers uncovering design faults in the adaptation
policy specification and therefore assess their adequacy with respect to their
working environment.
6 Artificial Earthquakes

Artificial shaking table testing (ASTT) uses artificial earthquakes as the core
element for testing an adaptation policy. We define an artificial earthquake and
its component elements as follows.

DEFINITION 5.1 An artificial earthquake (AEQ) Æ is a context flow f, which
exhibits an earthquake profile (EP).

An earthquake profile EP is the fundamental property of an AEQ, and, as its
name suggests, it is the presence of a virtual earthquake among the elements of
a context flow. Consider a context flow f composed of a series of context in-
stances I0, I1, ..., In, ordered in such a way that at some point the distance be-
tween a series of consecutive instances increases violently in relation with the
prior distances. We call such violent variation of the distance between consecu-
tive context instances and EP. A precise definition of an EP relies on the defini-
tion of distance between a pair of context instances.

 Artificial table testing dynamically adaptive systems 13

RR n° 6866

DEFINITION 5.2 The distance between two context instances Ii, Ii+1 is defined
as D(Ii, Ii+1) where D : I × I→  is a function that assigns a distance (continu-
ous value) to a pair of context instances.

The function fd depends on the application domain of the system under test. It
basically maps a pair of context instances (tuples of values) into a single value
representative of their location in the context space. For instance, such function
for the adaptive web server context corresponds to the Euclidian distance be-
tween two triplets of values.

DEFINITION 5.3 The origin ⊗ of a context space is a single instance that rep-
resents a reference point in the context space.

The origin of the context space gives us a stand ground to define EP, and al-
lows us to state important properties that an EP must have.

Figure 3: Graphical representation of a context flow with an EP

DEFINITION 5.4 An earthquake profile in a context flow f consists in a violent
variation of the distance between two or more context instances.

(1) ∃ <Ik, Ik+1,...,Ik+j> ⊆ f ⁄
 (D(Ik,Ik+1) << D(Ik+j-1, Ik+j)) ∨
 (D(Ik,Ik+1) >> D(Ik+j-1, Ik+j)) , k=1..n

(2) ∀ Ii, Ii+1, Ii+2 ∈ f ,
 (D(Ii, ⊗) ≥ D(Ii+1, ⊗) ∧ D(Ii+1, ⊗) ≤ D(Ii+2, ⊗)) ∨

 (D(Ii, ⊗) ≤ D(Ii+1, ⊗) ∧ D(Ii+1, ⊗) ≥ D(Ii+2, ⊗)), i=1..n

A context flow f has an earthquake profile if it has the following properties
(earthquake profile): (1) It must contain at least one sequence of context in-

t

I
k

I
k+j-1

I
k+j-1 I

k+j

!

(1) !<Ik, Ik+1,...,Ik+j> " f ⁄ D(Ik+1,Ik) << D(Ik+j, Ik+j-1) , k=1..n

(2) ! Ii, Ii+1, Ii+2# f / (Ii, $) % D(Ii+1, $), D(Ii+1, $) & D(Ii+2, $), i=1..n

(D
(I

k
,I

k
+

1
)
 <

<
 D

(I
k

+
j-

1
,

I k
+

j)
)
!

(D

(I
k,

I k
+

1
)
 >

>
 D

(I
k+

j-
1
,
I k

+
j)

)
,
k=

1
..
n

(D
(I

k
,I

k
+

1
)
 <

<
 D

(I
k

+
j-

1
,

I k
+

j)
)
!

(D

(I
k,

I k
+

1
)
 >

>
 D

(I
k+

j-
1
,
I k

+
j)

)
,
k=

1
..
n

(1) !<Ik, Ik+1,...,Ik+j> " f ⁄ D(Ik+1,Ik) << D(Ik+j, Ik+j-1) , k=1..n

(2) ! Ii, Ii+1, Ii+2# f / (Ii, $) % D(Ii+1, $), D(Ii+1, $) & D(Ii+2, $), i=1..n f / D(Ii, !) "

D
!

14 Munoz & Baudry

INRIA

stances Ik, Ik+1,...,Ik+j , such that the distance between the first pair of elements is
very different from the distance between the last pair. This property forces a
context flow to contain violent and smooth variations in the context transitions.
(2) Property two forces a context flow to contain context instances, whose dis-
tance to the origin oscillates.

Figure 3 graphically illustrates a context flow with an EP. In the figure, the
abscissa axis represents the occurrence of context instances over time, whereas
the ordinate axis represents the distance of such context instances with respect
to the origin ⊗. The sequence of instances Ik, Ik+1,...,Ik+j in figure 3 satisfies the
first property, because the distance between Ik and Ik+1 is much smaller than the
distance between Ik+j-1 and Ik+j. We can also notice that the distance between all
the instances and the origin oscillates.

Figure 4: Examples of the different shapes that an AEQ can adopt

It is worth mentioning that the graphical representation of an earthquake pro-
file can have a variety of shapes, figure 4 illustrate three of them. At the left it
shows an AEQ with smooth transitions but incremental distance between the
instances and the origin. At the center it shows an AEQ with smooth transitions
with approximately equal distance between the context instances and the origin.
Finally, at the right it shows an AEQ with transitions whose distance incremen-
tally increase until reaching a pick.

An AEQ with a particular shape may uncover a particular set of faults. For in-
stance, the first one can detect faults due to defective handling of context transi-
tions incrementally far from the origin. That is, subtle and smooth transitions
between instances that are not very far from each other, but globally increase
their distance to the origin. The second one can detect faults due to defective
handling of oscillating context transitions, which are continuous transitions be-
tween context instances relatively close. The distance between the oscillating
instances defines if this profile is capable of detecting faults on smooth context
transitions. Finally, the last one can detect faults due to defective handling of
incrementally violent context transitions. That is, transitions between context
instances increasingly far from each other.
6.1 Artificial Earthquake synthesis

ASTT comprises the generation and use of artificial earthquakes to uncover
faults. Generating AEQ consists in selecting context flows containing at least
one occurrence of an EP. That is, explore the context flow space searching for a
context flow with the properties described in definition 5.4. Additionally, the

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

,!-'" &-'" +-'" #&-'" #+-'" $&-'" $+-'"

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

,!-'" &-'" +-'" #&-'" #+-'" $&-'" $+-'"

!"

#"

$"

%"

&"

'!"

'#"

'$"

('" $")" '$" ')" #$" #)"

 Artificial table testing dynamically adaptive systems 15

RR n° 6866

candidate flows must represent a particular set of the environment qualities, i.e.
they must fulfill an adequacy criterion.

When searching for AEQs we must also consider that, in the real world, con-
text instances generally do not occur randomly, and thus, the candidate flow
should be as similar as possible to the real occurrence of context instances.
Typically the occurrence of context instances over time is described by the aid
of a probabilistic distribution function, and therefore, the candidate context flow
must fit such distribution.

Our strategy to generate AEQ consists in translating the selection of context
instances and the assembly of context flows into a functional optimization or
search problem. In this way, a search algorithm such as genetic algorithm, or
ant colony optimization will search a compromise between the different goals
of an AEQ, (1) the presence of EP, (2) the similarity with reality, (3) and the
satisfaction of a particular criterion. Moreover, it is possible that no single AEQ
completely satisfies the search goals; hence, the search should select as much
AEQ as needed to accomplish the goals.

We model this search problem as a two-fold optimization. At the top level, the
objective is selecting the smallest set of AEQ that maximizes coverage of a par-
ticular criterion, and the number of AEQ with different shapes. At the bottom
level, the objective is selecting the AEQ that maximizes the occurrences of
earthquake profile, and better approximates the real occurrence of the instances
over time.

These two-folds help us defining a global, and a local optimization functions
based on the following elements.

DEFINITION 5.5 A coverage criterion µ captures a set of context instances
that must be covered by a context flow (or a set of them). Let CL: F × µ →  be
a function mapping context flows to an integer value indicating the number of
elements of µ covered by a single context flow. Let CG: ℘(F) × µ →  be a
function mapping a set of context flows to an integer value indicating the num-
ber of elements of µ covered by set of context flows.

Examples of coverage criteria are the coverage of all the pairs of instances,
the coverage of all the transitions between the pairs of instance, coverage of
X% of the transitions, etc. Such criteria drive the generation of AEQ, forcing the
search on the uncovered context space.

DEFINITION 5.6 Let EP : F →  a function mapping context flows to a real
value indicating the amount of occurrences of EP (property 1 definition 5.4) in
a single context flow.

DEFINITION 5.7 Let S : ℘(F) →  a function mapping context flows to an
integer value indicating the amount of different EP shapes in a sequence of
context flows.

16 Munoz & Baudry

INRIA

DEFINITION 5.8 A probabilistic distribution ϖ defines the real occurrence of
context instances over time. Let RE: F × ϖ →  a function mapping context
flows to a real value indicating the distance between the actual context flow
and the real occurrence of the instances in the context.

Globally, the optimization goal consists in finding the maximum value for a
global function to optimize.

DEFINITION 5.9 Given CG, S, and the set of context flows sf we define the
global function to optimize:

 G (sf) = w0 * CG (sf, µ) + w1*S (sf) – sizeof (sf), w0+w1=1

Where w0 and w1 are the respective weight of covering a target criterion and
having different AEQ shapes. Greater the value of w0 or w1, greater is the im-
portance of optimizing that particular goal. G (sf) aims at optimizing the cover-
age of a criterion, and AEQ shapes of a set of AEQ while minimizing the num-
ber of AEQs.

Locally, the optimization goal consists in finding the maximum value for a lo-
cal function to optimize.

DEFINITION 5.10 Given CL, EP, RE, and a context f we define the local
function to optimize:

L (f)=w0 * CL (f, µ) + w1 * EP (f) + w2* RE (f,ϖ),
w0+ w1+w2=1

Where w0, w1, and w2 are the respective weight of the elements of a particular
criterion covered by the context flow, the amount of occurrences of EP and dis-
tance of the approach of the context flow with the reality. This function
searches to optimize the trade-off between the different search goals when se-
lecting a particular AEQ.

Given the global and local optimization functions we propose an algorithm for
searching the optimal sequence of AEQ for a given context. Since any local
search meta-heuristic such as tabu-search or simulated annealing can be
adapted for performing the local search, we describe only the global search al-
gorithm. In this paper we decided to use tabu-search [14] for local search.

Listing 2 shows the pseudo code of our global search algorithm. Initially, two
memory structures are created (lines 2-3). The objective of the first memory
structure MEM is storing context flows that could be useful in the future. Each
element in MEM has an associated iteration number, which is updated itera-
tively (line 21). The second memory structure T stores the shapes and criterion
elements already covered by the candidate solution. It is used by the local
search to avoid exploring the areas already covered by existing solution.

 1: procedure globalSearch : SOL: Sequence[ContextFlow]
 2: MEM: Set[ContextFlow]
 3: T: MemoryStructure

 Artificial table testing dynamically adaptive systems 17

RR n° 6866

 4: while stop criterion not met do
 5: for each Æ in MEM do
 6: if G(SOL U Æ) > G(SOL) then
 7: add Æ to SOL
 8: else
 9: if maximal amount of iterations of Æ then
11: remove Æ from MEM
12: end if
13: end for each
14: Æ <- localSearch(T)
15: if G(SOL U Æ) > G(SOL) then
16: add Æ to SOL
17: else
18: add Æ to MEM
19: end if
20: update T with the new elements in SOL
21: update iteration number of each element in MEM
22: end while
23: end procedure

Listing 2: Global search algorithm for the generation of AEQ

Once the data structures are initialized and while a stop criterion such as a

minimum value for G or a maximal number of iterations is not met, the algo-
rithm proceeds (line 4). Otherwise, it returns the candidate solution SOL. For
each AEQ in MEM, the algorithm evaluates the utility of adding it to the candi-
date solution (line 6). If adding it increases the value of G, then it is added to
the candidate solution (line 7). Otherwise, if it has reached a maximum amount
of iterations in the memory structure MEM it is deleted (line 11). Next, a local
search algorithm generates an AEQ that does not overlap the elements in T. The
algorithm evaluates the utility of adding it to the candidate solution. If adding it
increases the value of G, then it is added to the candidate solution (line 7). Oth-
erwise, it is added to the memory structure MEM with an initial iteration count
of 0. Finally, the data structure T is updated with the new elements in the can-
didate solution, and the MEM iteration number is updated.

We have implemented this algorithm as well as a taboo local search as a
~7000 LOC java program we refer as shaker.
7 Experiments

In the previous section we presented ASTT and proposed a strategy to synthe-
size AEQ (context flows with particular properties). Our hypothesis is that such
data may help testers finding faults in the adaptation policy specification and its
realization. This section describes the empirical evaluation of this hypothesis.
Section 6.1 presents our test subject and describes the instrumentation we per-

18 Munoz & Baudry

INRIA

formed in order to obtain the experimental data. Section 6.2 describes the set-
ting of the experiment. Finally section 6.3 presents and discusses the results.
7.1 Test subject

In order to validate our hypothesis about the ability of ASTT to uncover faults
in adaptation policies, we use the adaptive web server presented in section 2 as
a test subject.

Figure 5: Architecture of the adaptive web server adaptation policy realization

Figure 5 presents the architectural realization of the adaptation policy pre-
sented in section 2. It is composed of a sensor component, which is aware about
the environment and collects the data produced by environmental changes. It
encodes the data into values representing the environmental properties of inter-
est (context instance) and passes them to a fuzzy engine. The fuzzy engine con-
verts these values into fuzzy values (adjectives such as high, low, or medium)
and passes them to a reconfiguration engine. Finally, the reconfiguration en-
gine loads the adaptation rules and matches the fuzzy values against the adapta-
tion rules. If an adaptation rule matches the values, then it requests the system
implementation to reconfigure as described by the rule.

Figure 6: Instrumented architecture of the adaptive web server adaptation policy realiza-

tion

Adaptation policy realization

Fuzzy
engine

sensor
reconfiguration

engine

environment

environmental properties

context
values

Fuzzy
values

adaptation

rules

reconfiguration request

Adaptation policy realization

Fuzzy
engine

sensor
reconfiguration

engine
context
values

Fuzzy
values

adaptation

rules

reconfiguration request

environment

 emulator
context flow

reconfiguration probe

 Artificial table testing dynamically adaptive systems 19

RR n° 6866

In order to inject context instances and collect reconfiguration data we have
instrumented the adaptation policy realization. Figure 6 presents the instru-
mented architecture. We have modified the source code of the sensor compo-
nent and replaced the environment sensing mechanism with an environment
emulator. This emulator reads context flows from a text file and injects them
into the system provoking the instrumented sensor to respond identically to the
non-instrumented one. We have also added a reconfiguration probe that records
the reconfiguration requests produced by the reconfiguration engine. These re-
quests constitute a variant flow as described in section 2.
7.2 Experiment set up

We prepared and executed our experiment in the following way. (1) Initially
we introduced a series of faults into the adaptation policy realization generating
a set of mutant versions of it. (2) Next using the algorithm described in section
5.1 we generated 3 series of AEQs (test data). (3) Finally, we executed the sys-
tem exposing it to the environmental variations described by the AEQs. We col-
lected and compared the traces generated by the reconfiguration probes in the
original and mutant versions of the web server. Whenever the traces produced
by the original version where different from the mutant version we declared that
the test data killed that mutant. In the reminder of this section we detail the
faults we introduced into the instrumented adaptation policy, the settings we
used to generate the sets of AEQs, and finally we detail the support we used to
execute the mutants and evaluate their results.
7.3 Mutants

We have introduced 90 faults into instrumented version of the adaptation pol-
icy realization generating 90 mutants of it. We classify the introduced faults in
4 groups:
F1. Faults introduced in the values transmitted from the sensor component to

the fuzzy engine (3 faults). This fault consists in changing the order and
magnitude of the property values of each context instance.

F2. Faults introduced in the calculation of the fuzzy values in the fuzzy engine
(25 faults). These faults consist in permuting the fuzzy values passed from
the fuzzy engine to the reconfigurations engine. For instance, whether the
values (adjectives) passed from the fuzzy engine were high, low, and me-
dium, we replaced high by low and low by high.

F3. Faults introduced in the adaptation policies leaving gaps in the adaptation
(34 faults). These faults consist in changing the adaptation rules fuzzy val-
ues, one each time. For instance, on listing 1 in section 2.2 we changed the
value high by low (line 5). Such change leaves a gap in the possible events
the adaptation rules capture; in this case when the fuzzy value is high no
action is performed.

F4. Faults introduced in the adaptation rules without leaving gaps in the adap-
tation (28 faults). These faults are similar to F3, however, instead of

20 Munoz & Baudry

INRIA

changing one value each time, we permuted pairs of fuzzy values. For in-
stance, on listing 1 in section 2.2 we changed the value high by low on the
first rule (line 1), and low by high on the second (line 5). These changes
invert the action that may take place when a fuzzy value occurs for a given
property.

7.4 Data generation parameter settings
Using shaker, our java implementation of the algorithm described in section

5.3, we have generated 3 sets of 100 AEQ. For this experiment we decided to
fix the length of each AEQ to 60 context instances.

Concerning the coverage of the generated data, we used pairwise testing tech-
niques [4, 22] to generate all the possible context instance pairs, and employ
them as a coverage indicator. That is, try to cover the entire valid context in-
stances generated by the possible pair combination of their property values. We
calculated such combinations using the AllPairs5 tool. Since this tool does not
take into account the context constraints when generating the pairs, we filtered
them extracting those that satisfied the constraints. For example, we removed
the context instance <5,100,1> because having more files than requests is not
relevant.

On the global search, we fixed the permanence of each AEQ in the MEM
structure to 10 iterations. We implemented the memory structure T (section 5.1,
listing 2, line 3) as a list containing the instances already covered by the candi-
date solution. We established as stop criterion a total of 100 iterations with no
amelioration of the G value. Besides, whether the G value continued increasing,
we fixed a hard limit of 1000 iterations.

Regarding the local search, we used a tabu-search meta-heuristic with a sim-
ple tabu list [14] of size 30 (half of the AEQ length). The movement we imple-
mented for this search consisted in the changing the property values of a single
context instance in order to increase or decrease the distance with its neighbors.
In order to minimize the amount of overlap in the criterion coverage, we
matched the elements memorized by the global search against the elements
generated by the tabu-search. Whenever a maximum of three context instances
were in the memory, we forced the algorithm to move the solution away from
them.

We have parameterized the global and local optimization functions in the fol-
lowing way. In the global optimization function G, we have assigned the same
importance to the coverage criterion and the EP shape (definition 5.9, w0=0.5,
w1=0.5). In the local optimization function, we have assigned a major impor-
tance to the occurrence of an EP (definition 5.10, w0=0.6), and a relatively mi-
nor importance to the coverage criterion (definition 5.10, w1=0.4). Notice that
we have disregarded the similitude of the AEQ with the reality (definition 5.10,
w3=0); the rationale for doing so is that file requests can arrive with a very large
range of probabilistic distributions over time. Such distribution depends on the

5 http://www.mcdowella.demon.co.uk/allPairs.html

 Artificial table testing dynamically adaptive systems 21

RR n° 6866

application domain of the web server such as online sales, content management,
etc. Since the adaptive web server is intended to work on multiple domains, we
decided to disregard it.
7.5 Execution

We have simulated the environmental variations drawn by the 3 sets of AEQs
over the 90 mutants. To do so we executed the initially instrumented policy re-
alization, as well as the 90 mutants on a grid composed of 90 computers
equipped each with two Intel Xeon processors at 3.4Ghz, and 4 Gb of main
memory. The execution of the 27300 simulations (91 program * 100 simula-
tion/AEQ * 3 AEQ/program) took about 55 minutes, and each computer exe-
cuted in average 600 simulations.

Once the simulations were completed, we compared the traces (variant flows)
produced by each mutant with those produced by the initial policy realization.
We performed such comparison using a custom program written in java, which
interprets and compares each trace with the system configuration at each point
where a context instance arrives. This tool enabled us to determine the precise
points where the adaptation policy produced the wrong configuration (with re-
spect to the initial realization). We then say that whenever the simulation of an
AEQ on a mutant t produces a trace that differs from the trace produced by the
original server, it kills the mutant t.

In the next section we present and discuss the results of comparing of the
traces produced by the 27000 simulations.
7.6 Results and analysis

Figure 7 presents a chart containing the average amount of the 3 sets of AEQ
killing each mutant. Vertical bars represent the different mutants from 1 to 90,
their color indicated the different groups of faults they belong to, and the value
at left is the average amount of AEQ killing the mutants. This chart helps us
reasoning about to illustrate whether ASTT was capable of detecting faults, and
if some of these faults were more or less difficult to detect.

In general the sets of AEQ were capable of killing the 96% of the mutants.
Nevertheless, we analyzed the survival mutants noticing that they were equiva-
lent with the original adaptation policy realization. This means that our test data
was capable of killing the 100% of the mutants. This result is positive because
it indicates that AEQs were capable of finding each fault we introduced. Notice
that 56% of the mutants were killed by all the AEQs, and that 4% by more than
60% of the AEQs.

22 Munoz & Baudry

INRIA

Figure 7: Amount of AEQ killing each mutant

In the following we analyze the results by each group of faults. At this point it
is worth mentioning that the adaptive web server adaptation policy encodes
property values using adjectives such as low, high, and medium.
F1: The totality of AEQs was capable of killing the mutants of this group. The

rationale behind this success is that mutants realizing these faults are very
sensitive to environmental variations. Since this group consists in permut-
ing environmental properties with different domains (request density, re-
quest dispersion), the variations introduced by AEQs always produced
wrong configurations. Therefore, this group of faults does not help us de-
termining whether AEQ can actually find more subtle faults in the adapta-
tion policy.

F2: The mutants of this group are those introducing permutations between low
and high for the request density, and request dispersion properties. They
are killed by more than 60% of the generated AEQs. Interestingly, the mu-
tant 14 permuted medium by low values of the request dispersion property.
This fault can be detected only by AEQs that contain smooth changes on
the property request dispersion. Mutants 16 and 17 show another interest-
ing result. They introduced permutations were high values of the property
request density are always replacing medium values. This fault can only be
detected by smooth variations on the request density property. The low
amount of AEQs killing the last mutants indicates that only a few of them
contain smooth changes between high and low values of the properties re-
quest density and request dispersion.

F3: The mutants of this group, killed by more than 60% AEQs were those in-
troducing gaps on the adaptation to violent environmental changes. The
major part of such gaps consists in replacing the adaptation facing high
values by those facing low values (and vice versa) of the request density
property. Consequence of this, AEQs introducing violent context variations
from low to high values on this property were able to detect these faults. A

!"

#!"

$!"

%!"

&!"

'!!"

'
('
)
"

'
$
"

'
*
"

'
%
"

'
+
"

'
&
()
)
"

)
$
"

)
*
"

)
%
(*
!
"

*
'
(*
&
"

*
,
(%
!
"

%
'
(%
#
"

%
$
(%
+
"

%
&
"

%
,
(&
!
"

&
#
"

&
)
"

&
$
"

&
*
"

&
%
(&
+
"

&
&
"

&
,
(,
!
"

-'" -#" -)" -$"

Mutants

A
E
Q

 k
il
li
n

g
 e

a
c
h

 m
u

ta
n

t

 Artificial table testing dynamically adaptive systems 23

RR n° 6866

different situation occurs with faults replacing medium by high, and low
values on the request dispersion and request density properties (Mutants
34, 51-58). This fault can only be detected by smooth environmental varia-
tions passing from high to medium, and low to medium values. Mutants
61, 62 produce another interesting result. They replace the high values of
the request density property by medium or low values. These values were
used by the adaptation policy handling the removal of data servers. This
fault is particularly dependant of the system history, and is sensible only to
context changes introducing initially low values, followed by a high and a
low value.

F4: Analogous to the previous group, in this group the mutants killed by more
than 60% AEQs were those permuting low to high, and high to low values
in the request density and request dispersion properties. We pay special at-
tention to mutant 68, which permutes high by medium values in the adapta-
tion handling the removal of cache. This fault is sensible only to context
changes with initially high values, followed by low values on both, request
density and request dispersion properties. Mutants 83 and 85 are a particu-
lar case of the fault introduced by mutant 16 and 17. They permute the val-
ues high and low by middle on the request density property. More pre-
cisely, the property values used by the adaptation handling the deployment
of data servers. The faults introduced by mutants 86, 87 are equivalent to
those introduced by mutants 89, 90. These faults permute medium by high
and low values in the rule stating the removal of data servers. Only smooth
environmental variations from high to medium request density can detect
such faults.

The results obtained on each group of faults allows us to infer the following
conclusions:

1. The experimental data obtained for fault groups F2, F3, and F4 supports
our hypothesis: ASTT can detect faults in DAS’s adaptation policy. Evi-
dence of this is the high amount of mutants killed, as well as the high per-
centage of AEQs killing mutants that introduce faults affecting the handle
of violent environmental variations. Furthermore, the experiments show
evidence that several AEQs are needed in order to detect different types of
faults.

2. Although AEQs were initially meant to detect faults caused by wrong han-
dling of violent context variations, and not particularly smooth variations,
experimental evidence show that they were capable of detecting such
faults. This is explained by the fact that the AEQ generation algorithm al-
lows the generation AEQs containing smooth context changes. That is,
AEQs with different shapes.

3. A number of the introduced faults were sensible only to particular se-
quences of context instances. The empirical evidence demonstrates that

24 Munoz & Baudry

INRIA

AEQs contained such sequences, and that the order in which the instances
composing an AEQ must be assembled cannot be disregarded.

4. The parameter setting of the AEQ generation algorithm on listing 2 pro-
duced AEQs with tendency to particularly violent context variations. Evi-
dence of this is the large portion of test cases detecting faults caused by
wrong handling of violent context changes. Furthermore, we were capable
of automatically generating particular AEQs with different EP shapes, and
that globally cover all the context pairs (pairwise testing criterion).

7.7 Threats to validity
There are three threats to the validity of our experiments. The first comes from

the application of our strategy to only a single test subject. In order to make
more general statements about the effectiveness of ASTT, it will be necessary
to apply the strategy and algorithms introduced in this paper to a large scope of
DAS. We plan to do so in the context of the European project DiVa [1], which
comprises two large case studies.

The second threat comes from the use of only one parameter setting for the
experiment. We have generated 3 sets of AEQ using the identical parameter set-
tings for the generation algorithm. This implies that the 3 test sets produce ap-
proximately the same results, which allows us to make statements about the av-
erage results. However, in order to make more precise statements about the ef-
fectiveness of ASTT, it will be necessary to generate AEQs with a variety of
parameters. Particular threats to validity are the length of each AEQ and the pa-
rameterization of global, and local optimization functions. The length of each
AEQ can affect the number of AEQ needed to find a particular fault, such as
those requiring smooth context variation, and the time consumption of the tests.
Moreover, the compromise between the coverage of a particular criterion and
the EAQ shape can also affect the number of AEQs that can detect a particular
fault.

Finally, the third threat to validity comes from the choice of the faults we in-
troduced. We did not introduce every possible fault into the adaptive web
server. Instead we introduced the faults we thought meaningful to our case
study, such as modification in the adaptation policy bearing violent and smooth
context variations. Considering every possible mutant will allow testers to pre-
cisely identify the faults that ASTT is more, or less suitable to find.
8 Related work

A number of researchers have addressed the validation of adaptive systems.
Zhang et al. [25] address the verification of dynamically adaptive systems
through modular model checking. For each transition between systems variants,
they model check only the parts of the system that have change product of an
adaptation. In [24], they introduce a model-based adaptive software develop-
ment process that uses Petri nets to model the behavior, and uses existing Petri
net-based model checking tools to verify these models gain interesting proper-
ties. Kramer and Magee [19] use property automata to specify the properties of

 Artificial table testing dynamically adaptive systems 25

RR n° 6866

adaptive program, and labeled transition system analysis to verify these proper-
ties. These works diverges form ours because instead of verifying the system
and its adaptations, we propose to validate the adaptation driver (adaptation pol-
icy) independently from the underlying platform. Besides they are founded on
formal methods and verification, whereas our work on testing techniques.

Lu et al. [16] study the test of pervasive context-aware software. They assume
context awareness as a series of if-then cases, and starting from that point they
formalize the notions of context aware data flow entities, i.e. entities that ma-
nipulate data coming from the context. By using this formalization they propose
a family of test adequacy criteria that measure the quality of test sets with re-
spect to the context variability. The underlying idea of this work is pretty simi-
lar to ours testing the driver of potential adaptations. However we do not per-
form any data flow analysis on the context data, and our proposition can ad-
dress a much larger variety of reasoning strategies, including those relying on
the system state.

Combinatorial interaction testing [4] consists in sampling a test data space in
such a way that its t-possible combinations are included; pairwise or 2-way
combinations are the most commonly studied. Many researchers [6-8, 15, 22]
have explored the generation of such combinations with the prime objective of
producing the smallest subset of test data to achieve the desired t-way. Al-
though combinatorial testing is efficient reducing the size of test to run, it is not
sufficient for testing adaptation policies. This is because besides considering the
context space, it is necessary to consider the transitions between the elements of
such space (flow space). The benefit of AEQs over selecting the t-wise is that
they ensure the presence of specific properties that targeting specific kind of
fault. Furthermore, even if the t-wise is not enough for testing the adaptation
policy, we have used the pairwise as a coverage criterion.

Search based testing consists in the use of random or directed search tech-
niques (hill climbing, genetic algorithms etc.) to address problems in the soft-
ware testing domain [20]. Our contribution comes to form part of such body of
work because we search to generate the better set of AEQs capable of finding
faults in adaptation policies.

The combinatorial test of software product lines also relates our work. Since it
searches to check whether a set of product is valid we think it can be used in
combination to our strategy. Cohen et al. [5] study the coverage and adequacy
criteria for testing software product lines. They propose mapping a variability
model into a simple relational model that satisfies the requirements of interac-
tion testing. In this way the relational model is used as a covering array, which
defines test adequacy and coverage criteria.
9 Conclusions and perspectives

Testing whether adaptation policies are correctly implemented and well suited
for their working environment is challenging not because of the process itself,
but for the large amount of testing data.

26 Munoz & Baudry

INRIA

Although simulating environmental changes is not particularly hard, it is hard
to simulate each possible environmental condition and the transitions between
them (environmental space). That is because the amount of possible environ-
mental conditions grows exponentially with each environmental property. This
drawn the simulation of all the environmental conditions and their transition not
feasible in a reasonable amount of time.

 In this paper we proposed a strategy for selecting only a portion of the envi-
ronmental space. Inspired by a civil engineering technique called shaking table
testing, we proposed artificial shaking table testing (ASTT). ASTT put forward
the use of artificial earthquakes (AEQ) to test the resistance of adaptation poli-
cies to violent environmental changes. Basically, an AEQ is a sequences of en-
vironmental conditions characterized by an earthquake profile (EP), which is
the presence of violent variation in the transitions between each condition in the
sequence. Our hypothesis was that ASTT is capable of detecting faults due in
the adaptation policy implementation and design. More precisely, faults that are
due to erroneous specification or handling of violent environmental changes.

We automated the generation of AEQ by translating their formulation into a
search problem and defining two optimization functions. Next, we proposed an
initial algorithm to explore the environmental space. The experimental results
exhibit evidence that corroborate our hypothesis. Out of 90 faults introduced
into an adaptation policy realization, ASTT was capable of detecting the 100%
of them. AEQs resulted to be particularly good in the detection of faults lying
on violent environmental changes. Furthermore, the experiments show that
AEQs are also capable of detecting faults due to smooth environmental varia-
tions.

The benefits of using ASTT for testing adaptation policies are various. It can
help testers uncovering faults related to violent and smooth environmental
changes. Furthermore, it can help testers uncover design faults in adaptation
policies specification and assess their adequacy with respect to their working
environment.

In future work we plan experimenting with different case studies, particularly
large scale dynamically adaptive systems. This will give use a more precise in-
dication of the scalability and effectiveness of ASTT. We also plan improving
the algorithms for local and global search, and study the use of different cover-
age criteria in the generation of AEQs.
10 ACKNOWLEDGMENTS

This work was partially supported by the European project DiVA (EU FP7
STREP).

11 Bibliography
[1] DiVA EU FP7 STREP - http://www.ict-diva.eu/, 2008.
[2] Chauvel, F., Barais, O., Borne, I. and Jezequel, J.M., Composition of Qualitative Adaptation Policies.

in 23rd IEEE/ACM International Conference on Automated Software Engineering (2008), 455-458.
[3] Clements, P. and Northrop, L. Software product lines: practices and patterns. Addison-Wesley

Longman Publishing Co., Inc., 2001.

 Artificial table testing dynamically adaptive systems 27

RR n° 6866

[4] Cohen, D.M., Siddhartha, R.D., Fredman, M.L. and Patton, G.C. The AETG System: An Approach to
Testing Based on Combinatorial Design. IEEE Transactions on Software Engineering, vol.23 (7).
437-444.

[5] Cohen, M.B., Dwyer, M.B. and Shi, J. Coverage and adequacy in software product line testing Pro-
ceedings of the ISSTA 2006 workshop on Role of software architecture for testing and analysis,
ACM, Portland, Maine, 2006, 53-63

[6] Cohen, M.B., Dwyer, M.B. and Shi, J. Interaction testing of highly-configurable systems in the pres-
ence of constraints Proceedings of the 2007 international symposium on Software testing and analy-
sis, ACM, London, United Kingdom, 2007, 129-139.

[7] Cohen, M.B., Gibbons, P.B., Mugridge, W.B. and Colbourn, C.J., Constructing test suites for interac-
tion testing. in Proceedings of the 25th International Conference on Software Engineering (Hilton
Portlan, Oregon, USA, 2003), 38-48.

[8] Cohen, M.B., Snyder, J. and Rothermel, G. Testing across configurations: implications for combina-
torial testing Second Workshop on Advances in Model-based Software Testing ACM, Raleigh, North
Carolina, USA, 2006, 1-9.

[9] Czarnecki, K., Helsen, S. and Eisenecker, U. Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and Practice, vol.10 (1). 7-29.

[10] Drake-Giusto, Boggs, Sandler and Burden. Worldwide Mobile Worker Population 2005-2009 Fore-
cast and Analysis, IDC, 2005.

[11] Duarte, R.T. Report of Working group 11: Development of shaking table testing techniques 10th
European conference on Earthquake engineering, Vienna, Austria, 1994, 3135-3144.

[12] Dvorak, D., Rasmussen, R., Reeves, G. and Sacks, A., Software architecture themes in JPL's Mission
Data System. In IEEE Aerospace Conference Proceedings, (Big Sky, Montana, 2000), 259-268.

[13] Eliassen, F., Eli, G., Eide, V.S.W. and Jorgen Andreas, M. Evolving self-adaptive services using
planning-based reflective middleware Proceedings of the 5th workshop on Adaptive and reflective
middleware, ACM, Melbourne, Australia, 2006.

[14] Fred, G. and Fred, L. Tabu Search. Kluwer Academic Publishers, 1997.
[15] Hartman, A. and Raskin, L. Problems and algorithms for covering arrays. Discrete Mathematics,

vol.284 (1-3). 149-156.
[16] Heng, L., Chan, W.K. and Tse, T.H., Testing pervasive software in the presence of context inconsis-

tency resolution services. in Proceedings of the 30th international conference on Software engineer-
ing. (Leipzig, Germany, 2008), ACM, 61-70.

[17] Hughes, D., Greenwood, P., Blair, G., Coulson, G., Pappenberger, F., Smith, P. and Beven, K. An
intelligent and adaptable grid-based flood monitoring and warning system In Proceedings of the 5th
UK eScience All Hands Meeting, 2006.

[18] John, K. and Vinny, C. Chisel: A Policy-Driven, Context-Aware, Dynamic Adaptation Framework
Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and Net-
works (POLICY'03), IEEE Computer Society, 2003, 3-14.

[19] Kramer, J. and Magee, J. Analysing Dynamic Change in Software Architectures: A Case Study Pro-
ceedings of the International Conference on Configurable Distributed Systems, IEEE Computer Soci-
ety, 1998, 91.

[20] McMinn, P. Search-based software test data generation: a survey: Research Articles. Software Test-
ing Verification Reliability, vol.14 (2). 105-156.

[21] Walsh, W.E., Tesauro, G., Kephart, J.O. and Das, R. Utility functions in autonomic systems Proceed-
ings. International Conference on Autonomic Computing, 2004, 2004, 70-77.

[22] Yilmaz, C., Cohen, M.B. and Porter, A.A. Covering Arrays for Efficient Fault Characterization in
Complex Configuration Spaces. SIGSOFT Software Engineering Notes, vol.29 (4). 45-54.

[23] Zadeh, L.A. Fuzzy logic and approximate reasoning. in Fuzzy sets, fuzzy logic, and fuzzy systems:
selected papers by Lotfi A. Zadeh, World Scientific Publishing Co., Inc., 1996, 238-259.

[24] Zhang, J. and Cheng, B.H.C. Model-based development of dynamically adaptive software Proceed-
ings of the 28th international conference on Software engineering, ACM, Shanghai, China, 2006,
371-380.

[25] Zhang, J., Goldsby, H. and Cheng, B.H.C. Modular Verification of Dynamically Adaptive Systems
Proceedings of Eighth International Conference on Aspect-Oriented Software Development, Char-
lottesville, Virginia, USA, 2009.

