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Inverse Scattering for Soft Fault Diagnosis in Electric Transmission Lines

Qinghua Zhang, Michel Sorine and Mehdi Admane

Abstract—Today’s advanced reflectometry methods provide
an efficient solution for the diagnosis of electric transmission
line hard faults (open and short circuits), but they are much
less efficient for soft faults, in particular, for faults resulting
in spatially smooth variations of characteristic impedance. This
paper attempts to fill an important gap for the application
of the inverse scattering transform to reflectometry-based soft
fault diagnosis: it clarifies the relationship between the reflection
coefficient measured with reflectometry instruments and the
mathematical object of the same name defined in the inverse
scattering theory, by reconciling finite length transmission lines
with the inverse scattering transform defined on the infinite
interval. The feasibility of this approach is then demonstrated
by numerical simulation of lossless transmission lines affected by
soft faults, and by the solution of the inverse scattering problem
effectively retrieving smoothly varying characteristic impedance
profiles from reflection coefficients.

Index Terms—inverse scattering, fault diagnosis, transmission
line, telegrapher’s equations, Zakharov-Shabat equations.

I. INTRODUCTION

The fast development of electronic devices in modern
engineering systems and in consumer products comes with
an increasing number of electric wires in these equipments,
and also inevitably with more and more failures related to
electric connections. This fact has motivated research projects
on methods for the diagnosis of faults in electric transmission
lines. In this context, the technology of reflectometry has been
extensively studied by different research groups [1], [2]. It
consists in injecting electric signals from one end or from
both ends of a line and in analyzing the reflected electric
waves. At least for laboratory experimentations, currently this
technology is able to detect and to locate hard faults (open
circuit or short circuit) up to an accuracy of about 10 cm. For
soft faults, however, no satisfactory result has been reported,
to our knowledge.

If the term “hard fault” refers to (almost) open or short
circuits, any other kind of conduction faults may be qualified
“soft”. In [3] the difficulty for detecting soft faults has been
investigated, mainly assuming weak (but abrupt) characteristic
impedance changes caused by soft faults (such faults are
called “frays” in [3]). The reported results show that wave
reflections caused by the discontinuities at the borders of fray
segments are comparable to, or even smaller than, the effects
of noises and disturbances (cable movements, vibrations, etc.).
For this reason, it seems impossible to detect and to locate such
faults with reflectometry-based methods in real application
environments.
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In this paper, the considered soft faults correspond to
spatially smooth and arbitrary variations of characteristic
impedance. Though there is no impedance discontinuity when
such a fault occurs, the (smooth) impedance inhomogeneity
can cause wave reflections. In addition to the difficulty related
to the weakness of such reflections, it is conceptually difficult
to deal with such faults, because they cannot be located in
terms of impedance discontinuities. Moreover, no particular
form of the characteristic impedance variations is assumed a
priori. It is clear that any reflectometry-based method aiming at
detecting and locating impedance discontinuities is not suitable
for this problem.

The purpose of this paper is not to handle the problem
reported in [3], namely weak reflections of soft faults drowned
out by noises and disturbances. Instead, the particular case of
“smooth soft faults” are investigated, under the assumption
that noises and disturbances are limited by well controlled
experimental conditions. Though this assumption is not real-
istic in many applications, the considered non-trivial problem
merits investigations, while waiting for a satisfactory solution
to noise and disturbance attenuation. Indeed, by making ex-
periments at the ends of a transmission line, it is obviously
difficult to inspect spatially smooth and arbitrary variations of
characteristic impedance.

If computing reflection coefficients from specified trans-
mission line characteristics is called a direct problem, its
inverse problem corresponds to the purpose of this paper,
namely retrieving distributed characteristics of a transmission
line from reflection coefficients. This problem is related to
the inverse scattering theory. Some early investigation on this
topic was reported in [4]. It then attracted the attention of
more researchers in 1970’s and 1980’s. For instance, time
domain approaches were studied with continuous and discrete
transmission line models respectively in [5] and [6]. The
frequency domain inverse scattering approach is adopted in
this paper for its direct connection with the measurements
of frequency domain network analyzers. By transforming
the telegrapher’s equations to Schrédinger equation and to
Zakharov-Shabat equations, Jaulent’s pioneer work [7] has
founded the theoretic basis for the inverse scattering problem
of transmission lines in frequency domain. More recently,
multiconductor lines have been studied in [8], but uniform
transmission lines were assumed.

Despite these theoretic results, mostly dated a quarter of a
century ago, to our knowledge, no successful experiment on
their application to real transmission line fault diagnosis has
been reported. The studies presented in this paper constitute
an important step towards practical applications. Following
Jaulent’s frequency domain approach [7], the first contribution
of this paper is to clarify the relationship between the reflection
coefficient measured in practice and the mathematical object of



the same name in the inverse scattering theory, by reconciling
finite length transmission lines with the inverse scattering
transform defined on the infinite interval. The feasibility of
this approach is then illustrated by numerical simulations of
lossless transmission lines with smooth variations of charac-
teristic impedances, and by the solution of the inverse scat-
tering problem, which effectively retrieves the characteristic
variations of the simulated transmission lines.

Only lossless transmission lines are considered in this
paper. In practice, the lossless assumption is reasonable for
high quality transmission lines of moderate length. The more
general lossy case, shortly discussed in Section IV, is currently
under study. Some preliminary results will be reported in [9].

This paper is organized as follows. Section II is about
the formulation of the inverse scattering problem for trans-
mission lines, with, in particular, Section II-D clarifying the
relationship between the reflection coefficient measured with
reflectometry instruments and the mathematical object of the
same name defined in the inverse scattering theory. Simulation
results are presented in Section IIl. Concluding remarks are
made in Section IV.

II. TRANSMISSION LINE AND INVERSE SCATTERING

This section is devoted to the transformations of the tele-
grapher’s equations leading to the Zakharov-Shabat equations
and the related inverse scattering problem. The basic result
has been established by Jaulent [7], but it was not clear how
to reconcile finite length transmission lines with the inverse
scattering transform defined on the infinite interval. The main
purpose of this section is to fill this gap.

A. The telegrapher’s equations and the reflection coefficient

In this subsection the telegrapher’s equations for lossless
transmission lines will be recalled, so will the reflection
coefficient as defined in electric engineering.

Consider a lossless transmission line connected to an alter-
nating voltage source of frequency k at the left end and to
a load at the right end, as illustrated in Figure 1 (k will be
treated as a wavenumber in the inverse scattering problem). Let
L(z) and C(z) be respectively the distributed inductance and
capacitance along the longitudinal axis z of the transmission
line, then, following [7], the voltage V (k, z) and the current
I(k, z) at any point z along the longitudinal axis of the line
are governed by the telegrapher’s equations

diZV(k:, z) —ikL(2)I(k,z) =0 (la)
%I(k, z) —ikC(2)V(k,z) =0 (1b)

where 7 is the imaginary unit.

In Figure 1, if the source connected to the left end of the
transmission line is an instrument for reflection coefficient
measurement, typically a network analyzer, then the measured
reflection coefficient is

Z (k, Zs) -7 S

"0 Zhzs) 7 2 @

where
V(k, Zs)
I(k, Zs)

is the input impedance of the transmission line, and Zg is the
internal impedance of the source.

In textbooks on transmission lines, reflection coefficients
are often defined at the load end or at the source end of
uniform transmission lines, such as in [10, page 17] and in
[11, page 193]. These reflection coefficients characterize more
the adaptation of the load or the source than the transmission
line itself. The reflection coefficient r.(k) expressed in (2)
characterizes better the transmission line. Its definition is
related to the S-parameters of transmission lines [12, chapter
13].

The quantity r.(k), as a function of k, will be referred
to as engineering reflection coefficient in this paper, as it
corresponds to a measurement frequently used in engineering
practice.

Z(k,zs) = 3)

B. From telegrapher’s equations to Zakharov-Shabat equa-
tions

To connect the telegrapher’s equations to the scattering
theory, the first step is to replace the space coordinate z by the
wave propagation time through the Liouville transformation

x(z) = OZ vV L(s)C(s)ds. 4)

As 1/4/L(s)C(s) is the wave propagation velocity at the point
s, x(2) is clearly the wave propagation time from the position
0 to the position z.

After this coordinate change from z to z, by abuse of nota-
tion, L(z(x)) will be simply written as L(z), and similarly for
C(x),V(k,z),I(k,x). Then the telegrapher’s equations (1)
become

W = ikZy(x)I(k,x) (52)
dI(k, .
% = ikZ; Y (2)V (k, z) (5b)
with
L
Zo(x) = CE”; ; ©6)

being the characteristic impedance of the lossless transmission
line at the point z. Accordingly, the circuit of Figure 1 is
redrawn, by simply replacing z, zg and zp, respectively by z,
xgs = x(zg) and zy, = x(zr), as shown in Figure 2.

In the new coordinate system, define the reflected and
incident waves!

o (b, ) = % (25 @)V ko) - 2 @)1k 2) (o)
va(k, ) = % (Zg%(x)x/(k,x) s (x)](k:,o:)) (7b)

IThe pair v1(k,z)-v2(k,z) defined here is slightly different from the
corresponding notation Y in [7], to be better in agreement with the definition
of scattering parameters in engineering practice. Accordingly, a negative sign
is also added to the potential function g(x) defined in (9).



Some direct computations from (5) and (7) then lead to
dvy(k, x)

7 + ikvy (k,x) = q(x)ve(k, x) (8a)
x
DoD) ik 2) = glahnlha) (8
with
__ldf L) __ 1 d
alw) = 4 dx [ln C’(x)}  27(x) deO(x)' ©)

These computations have implicitly used the following as-
sumption.

Assumption 1: For x ranging within the transmission line,
the functions L(z) and C(z) are such that the characteristic
impedance Zy(x) as defined in (6) is differentiable. O

Equations (8), known as Zakharov-Shabat equations, con-
stitute the main mathematical object connecting the electric
transmission line to the scattering theory. The related inverse
scattering transform computes the so-called potential function
q(z) from the reflection coefficient (in a sense to be recalled
in this paper). It is clear that the characteristic impedance
along the z-axis as defined in equation (6) can be deter-
mined from this potential function ¢(z) through the ratio
L(x)/C(x). Hence the inverse scattering transform provides a
powerful mathematical tool for the monitoring of characteristic
impedance variations in electric transmission lines.

C. Jost solutions of the Zakharov-Shabat equations and the
theoretic reflection coefficient

In this subsection recalling some concepts of the scattering
theory, the pair v4(k,z) and vo(k,x) denotes a solution of
the Zakharov-Shabat equations (8), and for the moment let us
forget their relationship with V' (k, x) and I(k, x) through (7).

In [13]-[15], inverse scattering problems are studied for
systems modeled by equations (8) with = ranging over the
infinite interval (—oo,+00). It is assumed that the potential
function ¢(z) involved in (8) decays sufficiently fast when
r — =oo, so that the solutions of the Zakharov-Shabat
equations (8) have their limiting behaviors expressed in terms
of exp(Likz).

Consider a particular solution of (8) (not necessarily given
by (7)) with its limiting behaviors satisfying

hrf vi(k,z) =0 (10a)
lim vo(k, ) exp(—ikz) =1 (10b)

This solution is known as a Jost solution. Its left limiting
behavior defines a reflection coefficient r, (k):

. vi(k,x
Tth(k) - wgrfnoo V;Ek‘ x;

exp(2ikx) (11)
This coefficient ry(k) is sometimes referred to as the left
reflection coefficient, because it represents the ratio between
the incident wave v5(k, ) coming from —oo and the reflected
wave v (k,z). Similarly, the right reflection coefficient can
also be defined.

Through the inverse scattering transform, the potential func-
tion ¢(z) can be retrieved from 7 (k) [13]-[15]. This quantity

V(k,zs) V(k,zL)
.................. VN
—> —>
Zs I(k,zs) 1(k,zL)
C(2) pr— ZL
wg T "7
Zs zL

Fig. 1. A transmission line connected to a voltage source and a load,
illustrated in z-coordinate. The source internal impedance Zgs = Zo(zg) and
the load impedance Z;, = Zo(zr) are locally matched to the characteristic
impedance of the line.
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Fig. 2. The circuit of Figure 1 re-illustrated in z-coordinate.

rm(k), defined with the limiting behaviors of a Jost solution
of the Zakharov-Shabat equations, will be referred to as the
theoretic reflection coefficient in this paper.

D. The relationship between the two reflection coefficient
definitions

The purpose of this subsection is to clarify the relationship
between the definitions of the engineering reflection coeffi-
cient (2) and the theoretic reflection coefficient (11).

The theoretic reflection coefficient ry, (k) has been defined
with a solution of the Zakharov-Shabat equations for x
ranging from —oo to 4oc0. To relate this definition to the
finite length transmission line circuit illustrated in Figure 2,
the circuit will be replaced by an equivalent circuit as
specified in the following proposition.

Proposition 1: Build a new circuit, as shown in Figure 3,

by modifying the circuit of Figure 2 as follows:

e insert a uniform transmission line of length a with
characteristic impedance Zy(x) = Zs between the source
and the left end;

o insert a uniform transmission line of length b with cha-
racteristic impedance Zy(z) = Zj, between the right end
and the load;

o add a phase shift —ka to the source voltage.

Then, for any positive values of a and b, the new circuit of
Figure 3 and the one of Figure 2 are equivalent, in the sense
that they have the same values of V'(k,z) and I(k, ) for any
x € [xg,zL].

O

Proof of Proposition 1. See the Appendix at the end of this

paper.

As this proposition holds for any (arbitrarily large) positive
values of a and b, the quantities V(k,z), I(k,z) and Zy(z)
of the extended circuit are virtually defined for all x € R, so
are the related vy (k, x), vo(k, z) and gq(x).

To ensure well defined potential function ¢(z) as formulated
in (9) at the two connection points zg and xr, in the extended
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Fig. 3.

The same transmission line as in Figure 2, but now the source is connected through a uniform line of length a with characteristic impedance

Zo(x) = Zg, the load is connected through a uniform line of length b with characteristic impedance Zo(x) = Z1,, and the source phase is shifted by —ka.

circuit of Figure 3, the characteristic impedance Z(z) should
be smooth at these two points, implying the following assump-
tion.

Assumption 2: The transmission line in Figure 2 is locally
adapted at its left and right ends such that

7 7
i 20@) _ oy, d000)
zozl dx T—xT, dx
S L

and

Zs = Zp(xzg) = 1im+ Zo(x) (12)

w—>ws

Zy, = Zo(xr) & lim Zy(x). (13)

[

Proposition 2: When a and b both tend to 400, for the
circuit of Figure 3, the pair v (k, ) and vo(k, ) formed by (7)
constitutes a solution of the Zakharov-Shabat equations (8) for
all x € R. The theoretic reflection coefficient (k) defined
in (11) with the limiting behaviors of v4 (k, z) and vo(k, z) is
related to the engineering reflection coefficient r.(k) defined
in (2) through the equality

rm(k) = re(k) exp(2ikzg) (14)

(I

Proof of Proposition 2. This proof will consist of the
following steps: (i) The pair v (k,z) and wo(k,x) is a
solution of the Zakharov-Shabat equations for all x € R.
(ii) The pair v4(k,x) and vo(k, ) is a Jost solution, up to a
coefficient common to vy (k,z) and vo(k,x). (iii) The limit
in the definition (11) of the theoretic reflection coefficient is
reached at z = xg. (iv) rn(k) = re(k) exp(2ikxg).

All the transformations and equations (4)-(9) are valid for
the circuit of Figure 3 with arbitrary a and b. It means
that the Zakharov-Shabat equations (8) are derived from the
telegrapher’s equations with vy (k, x) and vo(k,z) defined in
(7) for all x € [zg—a,zr+ b]. It is then clear that the pair
v1(k,z) and vo(k,z) is a solution of the Zakharov-Shabat
equations (8) for x € [xg—a,x+ b]. When a and b tend to
+00, the solution is valid for z € R.

It will be shown in the following that the pair v (k, x) and
vo(k, x) satisfies the limiting conditions (10), up to a factor
common to vy (k,z) and vo(k, ).

Let us first examine the value of vy (k,z) for any = €
[xL,x+b]. As the load Z, is matched to the extended uniform
line, the equalities

Vik,z) = Zo(z)I(k,x) = ZpI(k,x)

hold for any z € [z, x+ b]. Therefore, following (7a),

()1 (k)

vi(k,z) = (Zo‘%(x)zo(x)f(m) .

S N

for all x € [z, +00) when b — +o0. It is then clear that the
first limiting condition (10a) is satisfied.

Now consider the case of x € [zg—a, 2g]. As the characte-
ristic impedance Zy(x) = Zg is constant over the uniform line
extension, the potential function ¢(z) = 0, according to (9).
Hence the Zakharov-Shabat equations (8) become

dvi(k,x .
% + ik (k) = 0
dvs(k, x .
% —ikvy(k,z) =0

for all # € (—oo,zg], when a — +o0. These are two
decoupled first order differential equations, whose solutions
are the reflected and the incident waves

vi(k,x) = c1(k) exp(—ikz)
vo(k, x) = co(k) exp(ikx)

(15)
(16)

with some coefficients ¢; (k) and co(k) independent of z.

As equation (16) holds for all € (—o0,xg], the second
limiting condition (10b) is satisfied up to the coefficient co (k).
The limiting condition (10) would be fully satisfied if v (k, x)
and v5(k, z) were both divided by co(k). This normalization
is not necessary in view of the definition of the theoretic
reflection coefficient as formulated in (11), as v1(k,z) and
vo(k,z) share the same factor. It is thus confirmed that the
limiting behaviors of v4(k,z) and vo(k,x) are in agreement
with the definition of the theoretic reflection coefficient.

Because (15) and (16) both hold for all * < zg, the
limiting value in the definition (11) of the theoretic reflection
coefficient is reached at x = xg. Hence this definition can be
replaced by

141 (k‘,xs) .
= —1= 2 1
rn (k) ook s) exp(2ikxg) 17
It then follows from (7) that
7% — 73 (xs)I
Tth(k) _ 0 (Z‘S)V(k‘,l‘s) O;(J;S) (]4},1,‘5) eXp(Qikas)

Zo_ﬁ(xs)V(k, xg) + Z5 (l‘s)[(k,xs)
Vi(k,xs) — Zo(ws)I(k,xs)
V(k,xs) + Zo(ws)I(k,zs)
V(k, rs) — ZsI(k, its)

V(k,xs)+ ZsI(k,xs)

exp(2ikzg)

exp(2ikzg)

[ — | —



where the last equality is due to the fact that Zy(xzg) = Zg
following (12).
Rewrite (3) as Z(k,xs) =V (k,zs)/I(k,zs), then

_ Z(k,xs) —Zs
rw(k) = Z(k,z5) + Zs

Compare this result with (2) by reminding that Z(k, zs) and
Z(k, zs) denote the same quantity under different coordinate
systems, the relationship between the two reflection coeffi-
cients expressed in (14) is then proved.

d

exp(2ikxg).

This result indicates that the engineering reflection coeffi-
cient r.(k) and the theoretic reflection coefficient ry, (k) are
identical up to a phase shift of 2kxg. It appears that the
definition of ry(k) depends on the choice of the origin of
the x-axis. By choosing the origin such that g = 0, the two
reflection coefficients coincide exactly.

E. Inverse scattering for characteristic impedance monitoring

To retrieve the potential function ¢(x) (and thus the charac-
teristic impedance Zy(x)) from the reflection coefficient only,
it is assumed that the Zakharov-Shabat equations (8) have no
bound state (square integrable solution for x € R), following
[7].

The inverse scattering transform consists of the follow-
ing steps for computing the potential function ¢(z) and
L(z)/C(z) = Z3(z), from the reflection coefficient ry(k)
as defined in (11). See [13], [14] for more details.

1) Let the Fourier transform of the reflection coefficient

Tth(k) be
+o00
plx) = % /_DO rn(k) exp(—ikax)dk

2) Solve the integral equations (known as Gel fand-
Levitan-Marchenko equations) for its unknown kernels
Ai(x,y) and As(z,y):

(18)

T

Ai(z,y) +/

-y

As(z,s)p(y +s)ds =0

T

Ai(z,s)p(y +s)ds =0

-y

As(z,y) +p(z +y) +

3) Compute the potential function g(x) through
q(z) = 2As(z, 2)

4) By inverting equation (9), compute

£ = ey (4w

In practice, the integral equations have to be solved numer-
ically, by discretizing the kernels A;(x,y) and As(z,y) over
a grid in the z—y plane. By choosing the origin of the x-axis
such that zg > 0, the potential ¢(x) = 0 for x < 0. It is then
sufficient to compute the kernels A;(x,y) and As(x,y) in
the region = > |y|. The numerical inverse scattering algorithm
used for producing the simulation results presented in the next
section is the one of [16], which is an improved variant of the
algorithm of [17]. Both algorithms produce similar results in
our simulations, but the one of [16] is much faster.

III. SIMULATION STUDY

In this section, results of simulation will be presented to
confirm the validity of the approach presented in this paper.
The first step is to implement a numerical simulator generating
the reflection coefficient from the specified profiles L(z) and
C(z) of a transmission line.

A. Transmission line simulator

For the circuit of Figure 2, let
V(k,x)
I(k,z)

Z(k,x) = (19)
be the apparent impedance at any point x € [zg, zr]. It is then
straightforward to check that the telegrapher’s equations (5)
imply that Z(k, ) satisfies the Riccati equation

d
de(k, x) = ikZy(x) — ikZy (2) 22 (k, 2)
x
where Z(z) is the characteristic impedance as defined in (6).
For a given value of k, by initializing Z(k, ) with the load
impedance at the right end, namely

(20)

Z(k’,l‘L) = ZL

equation (20) can be solved for z < z,. In particular, the value
Z(k,zg) at the left end of the transmission line is obtained.
The reflection coefficient (k) is then computed with (2), and
rm(k) with (14).

It then appears that the main computation of the simulator
consists of the numerical solution of the Riccati equation (20)
for the value of the apparent impedance Z(k,xg). This
computation is repeated with different values of k to cover
a sufficiently large spectrum.

B. Simulation results

For the first example, a smoothly increasing L(z) profile
is simulated. The capacitance is kept to a constant value
C' = 0.1nF/m, and the corresponding ratio L/C is depicted
in Figure 4, in both z and x coordinates, where the units for
L/C are pH/mF. The simulated reflection coefficient (k)
(modulus and phase) is shown in Figure 5. The L/C profile
computed through the inverse scattering transform is compared
to the original simulated profile in Figure 6.

Remark that the inverse scattering transform computes the
ratio L/C as a function of z. In practice it would be more
useful to inspect the ratio as a function of z, the true spatial
coordinate of the transmission line. Like all reflectometry
methods, the information obtained by observing incident and
reflected waves is related to the wave propagation time z.
Without knowing the wave propagation velocity (varying along
the line in the considered case), it is impossible to convert the
result from = to z. However, for moderate variations of the
ratio L/C' (under the soft fault assumption), the two profiles in
z and in z are similar, as shown in Figure 4 for the considered
example. It is thus practically reasonable to assume a constant
wave propagation velocity to convert the computed L/C ratio
to the z-coordinate.
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For the second example, a hump-shaped L/C profile is
simulated, as illustrated in Figure 7. The simulated reflection
coefficient is plotted in Figure 8 (in solid line), and the L/C
profile computed by inverse scattering in Figure 9. Again the
simulated L/C profile is correctly retrieved by the inverse
scattering transform.

The above simulation examples have been made under the

Fig. 5. Simulated reflection coefficient r¢ (k) for the smoothly increasing
L/C profile.
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Fig. 9. The hump-shaped L/C profile computed by inverse scattering and

compared to the simulated profile. The two curves may not be distinguishable
if printed in black and white.
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Fig. 10. The hump-shaped L/C profile computed by inverse scattering from
noise-corrupted reflection coefficient.

assumption of perfect model and noise-free measurement. To
evaluate the robustness of the method to random uncertainties,
noises can be added in the simulation study. The second
simulation example is then repeated by adding a Gaussian
noise to each simulated value of the reflection coefficient. The
standard deviation of the added noise is equal to about 6%
of the maximum absolute value of the simulated ry, (k). The
noise-corrupted reflection coefficient (modulus and phase) is
also illustrated in Figure 8 (dashed lines). The hump-shaped
L/C profile is again computed by inverse scattering, but now
from the noise-corrupted reflection coefficient. The result is
illustrated in Figure 10. Though the reflection coefficient has
been significantly corrupted, the inverse scattering transform
is still capable of retrieving reasonably the L/C profile. This
example is mainly to investigate the numerical stability of the
inverse scattering method, not to simulate the disturbances in
real application environments, like those studied in [3].
Though in theory the computation of the Fourier transform
of the reflection coefficient requires the values of ry, (k) for
k ranging from 0 to +oo (in (18) it ranges from —oo to
+00, but rq(—k) = rj(k), since p(z) is real), in the above
simulation examples the values of ry(k) are truncated to
20MHz. The frequency bandwidth after truncation is related to
the details of the characteristic impedance to be reconstructed:
measurements of larger bandwidth capture more details.

IV. CONCLUSION

Though the theoretic basis for the inverse scattering problem
of electric transmission lines has been founded about a quarter
of a century ago, there has been a gap between such theoretic
results and their practical applications. By reconciling finite
length transmission lines with the inverse scattering transform
defined on the infinite interval, this paper constitutes an at-
tempt to fill this gap. Moreover, the simulation studies reported
in this paper confirm the feasibility of this approach.

The success of practical applications of this method will
depend on the accuracy of the reflection coefficients used for
solving the inverse problem. Though simulations have shown
that the inverse scattering algorithm behaves reasonably when
the reflection coefficients are slightly disturbed, in practice,
various noises and disturbances may hide the effects of small
faults. Some efficient noise and disturbance attenuation meth-
ods remain to be developed, so that methods for soft fault
diagnosis, like the one presented in this paper, can be widely
applied.

The lossless assumption made in this paper is only reason-
able for high quality transmission lines of moderate length. For
lossy transmission lines, as shown by Jaulent in [7], after the
transformations adopted in this paper, an extra step transforms
the telegrapher’s equations for lossy transmission lines to a
pair of Zakharov-Shabat equations similar to equations (8),
but with two distinct potential functions in the two equations.
Similar Gel’fand-Levitan-Marchenko integral equations can be
established in this case [14]. Though the numerical algorithms
solving these equations, like the one of [18], remain similar to
those of the single-potential Zakharov-Shabat equations, their
numerical stability in their applications to lossy transmission
lines is more delicate. Some preliminary results of our studies
on lossy transmission lines, extending the results presented in
this paper, will be reported in [9].

APPENDIX: PROOF OF PROPOSITION 1.

In Figure 3, because the extended uniform line at the right
side of z is connected to the matched load Zj, the total
impedance of the extended line plus the matched load is equal
to Zp,. Therefore, viewed from the left side of x,, the extended
line and the matched load behave as the simple load Z;, of
Figure 2.

When the telegrapher’s equations (5) is applied to the circuit
of Figure 3 for x € [xs—a,zgs] where Zy(z) = Zg, the
solution writes

V(k,z) = a(k) exp(—ikz) + B(k) exp(ikz)

(k) = Zis [—a(k) exp(—ikz) + B(k) exp(ikz)]

in which a(k) and ((k) are determined by the boundary
conditions
Vs (k) exp(—ika) — V(k,xs—a) = ZgI(k,zs—a)
V(k, xs) = Z(/ﬂ, Zs)I(k, xs)
with Z(k, zg) being the apparent impedance at the point g

of Figure 3, which is also equal to the input impedance of the
circuit of Figure 2. It then yields

_ 1Z(kaZS) —Zs
k) =5 7k 2e) T Zs

BUK) = 5 Vs(k) exp(~ikes)

Vs(k) exp(ikzs)

and
_ Z(k,2s)
V(k,,rs) - Z(k,ZS) +ZS Vs(k) (21)
Ik, 28) = ———— Vs (k) (22)

Z(k,z5) + Zg °

On the other hand, for the circuit of Figure 2, the transmis-
sion line and the load Z; can be viewed from the source
as an equivalent load of impedance Z(k,zs). With such
an equivalent circuit, it is easy to compute the values of
V(k,zs) and I(k,xg), which happen to coincide with those of
equations (21) and (22). It means that V(k,zs) and I(k,zg)
have the same values in Figure 2 and Figure 3. Consequently,
forany = € [xg,x1], V(k,x) and I(k, x) have the same values
in these two circuits.
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