
HAL Id: inria-00366942
https://inria.hal.science/inria-00366942v2

Submitted on 27 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual graph grammars characterizing
context-sensitive languages

Christophe Morvan

To cite this version:
Christophe Morvan. Contextual graph grammars characterizing context-sensitive languages. [Re-
search Report] PI 1926, 2009, pp.19. �inria-00366942v2�

https://inria.hal.science/inria-00366942v2
https://hal.archives-ouvertes.fr

Publications Internes de l’IRISA
ISSN : en cours
PI 1926 – Mars 2009

Contextual graph grammars characterizing context-sensitive languages*

Christophe Morvan**

christophe.morvan@irisa.fr

Abstract: Deterministic graph grammars generate a family of infinite graphs which characterize context-free (word)
languages. In this paper we presents a context-sensitive extension of these grammars. We achieve a characterization of
context-sensitive (word) languages. We show that this characterization is not straightforward and that unless having some
rigorous restrictions, contextual graph grammars generate non-recursive graphs.

Key-words: Graph grammars, Context-sensitive languages, Contextual graph grammars

Des grammaires de graphes contextuelles qui charactérisent les langages contextuels

Résumé : Les grammaires de graphes sont un outil permettant de définir une famille générale de graphes infinis. Les
graphes en question constituent une caractérisation des langages algébriques. En elle-même la caractérisation en terme de
grammaire permet de mettre en évidence la structure de chaque graphe.

Une généralisation naturelle des grammaires de graphes est obtenue par les grammaires contextuelles de graphes. Jusqu’à
présent ces dernières n’ont été que très peu étudiées. La principale faiblesse de ces grammaires est que, en l’absence d’une
restriction, elles engendrent des familles de graphes non-récursif (autrement dit, étant donné un tel graphe, il est indécidable
de savoir si un arc donné est présent dans le graphe). Cette limitation est totalement rédhibitoire.

Dans le présent rapport, on identifie un ensemble de restrictions sur les grammaires contextuelles de graphes permettant
d’assurer la récursivité du graphe. Plus encore on présente une famille qui caractérise précisément les langages contextuels
(il s’agit des langages engendrés par les grammaires contextuelles de mots). Ce travail présente donc une continuité directe
par rapport aux grammaires de graphes ordinaires.

Mots clés : Grammaires de graphes, Langages contextuels, Grammaires de graphes contextuelles

* The present document is a second version of this research report. It has been enhanced by several figures, as well as a couple of straightforward
applications.
** Vertecs - University Paris-Est

c©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 2 99 84 71 00 – www.irisa.fr

2 Christophe Morvan

Contents

1 Introduction 2

2 Preliminaries 2
2.1 Mathematical notations . 2
2.2 Graph grammars . 3
2.3 Context-sensitive languages and rational graphs . 4

3 Contextual graph grammars 5
3.1 Contextual graph rewriting systems . 5
3.2 Contextual hyper-edge-replacement graph grammars . 7
3.3 Graphs obtained from a tree-separated contextual grammar are rational graphs 8
3.4 Handling context-sensitive rewriting in arbitrary regular graphs . 10

4 Applications and conclusion 11

1 Introduction

In 1956, and then in 1959 Noam Chomsky wrote two articles which defined the Chomsky hierarchy. This hierarchy has had
a tremendous impact on the development of the theory of formal languages. Since the early sixties, it has been a reference
for the classification, and the evaluation of the expressive power of formal languages.

There is a deep connection between this hierarchy and graphs. It is obvious for type 3 languages (regular languages)
which are characterized by finite automata. But from the mid eighties on, there has been an increasing effort to characterize
the families of the hierarchy in terms of graphs.

For type 2 languages (context-free languages) one of the first attempt to establish properties on structures characterizing
these languages is from Muller and Schupp who established the decidability of the monadic second order theory of the graphs
of pushdown automata [MS85]. In their work, the vertices of the graphs are configuration of the pushdown automaton, and
the arcs are transitions between configuration. That kind of characterization is called internal, as it thoroughly depends
on the choice of the machine, and it gives an explicit name to each vertex. Courcelle in [Cou90] extended the decidability
of monadic second order theory to graphs generated by deterministic graph grammars. Indeed these graph grammars were
classical graph rewriting system used to characterize families of graphs. In this paper they were used to define infinite graphs.
Indeed these graphs are very close to graphs of pushdown automata ([CK01]) but it is an external characterization: each
grammar generates a set of isomorphic graphs. The name of the vertices are not stated explicitly along the generation of
the graph. This is really important as it provides a higher level of abstraction. Another slight extension of these graphs is
the prefix-recognizable graphs from [Cau96]. In this paper Caucal provides both an external and internal characterization of
these graphs. He also proves that they have a decidable monadic second order theory, and that they characterize context-free
languages.

For type 1 languages (context-sensitive languages), there are also several graph characterizations: transition graphs of
linear bounded Turing machines [KP99], rational graphs [Mor00], automatic graphs [BG00, Ris03] or linear bounded graphs
[CM06a]. All these work provide internal characterizations.

In this paper we propose an external characterization of context-sensitive languages, in terms of contextual rewriting
system. It is organised in two parts. The first one precisely recalls the definition of regular graphs (which are generated by
deterministic graph grammars), it also presents rational graphs which characterize context-sensitive languages using rational
transductions. Then, the second part explores context-sensitive graphs rewriting systems. First we examine a natural,
unrestricted, contextual extension of graph grammars. We show that it is too general, as it produces non-recursive graphs.
Then we propose a restriction, which contains all rational graphs, and therefore context-sensitive languages. Afterwards, use
a slightly more limited rewriting system which permits to establish converse inclusion. Then we show that the most obvious
relaxations of this limitation yield families of non-recursive graphs.

2 Preliminaries

2.1 Mathematical notations

For any set E, its powerset is denoted by 2E ; if it is finite, its size is denoted by |E|. Let the set of non-negative integers
be denoted by N, and {1, 2, 3, . . . , n} be denoted by [n]. A monoid M is a set equipped with an associative operation

Collection des Publications Internes de l’Irisa c©IRISA

Contextual graph grammars characterizing context-sensitive languages 3

(denoted ·) and a (unique) neutral element (denoted ε). A monoid M is free if there exist a finite subset A of M such
that M = A∗ :=

⋃
n∈N A

n and for each u ∈ M there exists a unique finite sequence of elements of A, (u(i))i∈[n], such that
u = u(1)u(2) · · ·u(n). Elements of a free monoid will be called words. Let u be a word in M , |u| denotes the length of u and
u(i) denotes its ith letter.

Graphs

A (simple oriented labelled) graph G over V with arcs labelled in P is a subset of V ×P × V . An element (s, a, t) in G is an
arc of source s, goal t and label a (s and t are vertices of G). We denote by Dom(G), Im(G) and VG the sets respectively of
sources, goals and vertices of G. Each arc (s, a, t) of G is identified with the labelled transition s

a−→
G

t or simply s a−→ t if G

is understood.
A graph G is deterministic if distinct arcs with same source have distinct label: r

a−→ s ∧ r
a−→ t ⇒ s = t. A

graph is (source) complete if, for every label a, every vertex is source of an arc labelled a: ∀a ∈ P, ∀s ∈ VG, ∃t s
a−→ t.

The set 2V×P+×V of graphs with vertices in V , labelled by elements of P+, is a semigroup for the composition relation:
G ·H := {r a·b−−→ t | ∃s, r a−→

G
s∧ s b−→

H
t} for any G,H ⊆ V ×P+×V . The relation u−−→

G+
denoted by u==⇒

G
or simply u==⇒ if G is

understood, is the existence of a path in G labelled u in P+. For any subset L of P+, we denote by s L=⇒ t that there exists
u in L such that s u=⇒ t.

A graph morphism g is a mapping from a graph G to a graph G′ such that if there is an arc u a−→
G
v, then there is an arc

g(u) a−→
G′

g(v).

2.2 Graph grammars

When dealing with infinite graphs, having a finite presentation is a very precious tool. It allows to manipulate or to devise
algorithms for these objects. Deterministic (hyperedge replacement) graph grammars are a very nice example of finite
(external) characterization of infinite graphs. These grammars were initially defined to be an extension to graphs of word
grammars. Indeed such a graph grammar derived, from an axiom, an infinite family of finite graphs. Courcelle in [Cou90] used
the deterministic form of these grammars to obtain a single infinite graph as the least solution of a finite set of deterministic
graph equations. In 2007 Caucal made a very in-depth survey on deterministic graphs grammars [Cau07]. In particular he
devised several techniques which allowed the presentation of these results in a very unified manner.

In order to define formally graph grammars, we recall some elements on hypergraphs. Let F be an alphabet ranked by a
mapping ρ : F → N, this mapping associates to each element of F its arity. Furthermore, for a ranked alphabet F , we denote
by Fn the set of symbols of arity n. Now given V an arbitrary set, a hypergraph G is a subset of ∪n>1FnV

n. The vertex
set of such a hypergraph is the set VG = {v ∈ V | FV ∗vV ∗ ∩G 6= ∅}, in our setting, this set is either finite or countable.
A hyperarc of arity n is denoted by f v1 v2 · · · vn. Notice that for hyperarcs of arity 2 which are plain arcs, we will use,
depending on the context, either this notation or the previous one.

Definition 2.1 (Hypergraph grammar). A hypergraph grammar (hr-grammar for short) G, is a 4-tuple (N,T,R,H0), where
N and T are two ranked alphabets of respectively non-terminals and terminals symbols; H0 is the axiom, a finite graph
formed by hyperarcs labelled by N ∪ T , and R is a set of rules of the form f x1 · · · x%(f) → H where f x1 · · · x%(f) is an
hyperarc joining disjoint vertices and H is a finite hypergraph.

Remark 2.2. In this paper, we consider graphs, therefore, the terminal symbols will have either rank one, or two. Further-
more, we see such a graph as a simple subset of T2V V ∪ T1V . Rank 1 symbols will be called colours rather than labels (we
use label to identify (hyper) arcs). A single vertex may have several colours.

A grammar is deterministic if there is a single rewriting rule per non-terminal:

(X1, H1), (X2, H2) ∈ R ∧X1(1) = X2(1)⇒ (X1, H1) = (X2, H2)

Now, given a set of rules R, the rewriting −→
R

is the binary relation between hypergraphs defined as follows: M rewrites

into N , written M −→
R
N if there is a non-terminal hyperarc X = Av1v2 . . . vp in M and a rule Ax1x2 . . . xp → H in R such

that N is obtained by replacing X by H in M : N = (M −X) ∪ h(H) for some injection h, mapping vi to xi for each i, and
every other vertices of H to vertices outside of M . This rewriting is denoted by M −−−→

R,X
N . Now, this rewriting obviously

extends to sets of non-terminal, for E such a set, this rewriting is denoted: M −−→
R,E

N . The complete parallel rewriting =⇒
R

is the rewriting relative to the set of all non-terminal hyperarcs of R.

Collection des Publications Internes de l’Irisa c©IRISA

4 Christophe Morvan

Now given a deterministic graph grammar G = (N,T,R,H0), and a hypergraph H, we denote by [H] := H ∩ (T VH VH ∪
T VH) the set of terminal arcs, and colours of H. A graph H is generated by G, if it belongs to the following set of isomorphic
graphs:

Gω =
{
∪n>0[Hn] | ∀n > 0, Hn =⇒

R
Hn+1

}
Example 2.3. We present here a simple example of deterministic graph grammar and propose a representation of the
resulting graph. An important observation on this graph is that it does not provide any naming scheme for the vertices. But
there is of course an obvious connection between the vertices and the sequence of graph rewriting producing them.

A rule An axiom A graph
(2)

(1)

(1) (2)

A

A A

a

cb

a

cb

A A

a

cb

a a

Graph grammars characterize regular graphs. This external characterization is very efficient to extend to these infinite
graphs techniques which work for finite graphs (for example computing the connected components of a regular graph is
very simple from the grammar). Furthermore these graphs correspond (in a precise sense) to transition graphs of pushdown
automata. Nonetheless, algorithms which only depend on the structure of these graphs often make technical assumptions
on the form of the automaton: for example that the states carry some information, such as the configuration belongs to
a certain regular set. These assumptions only affect the internals of the automaton, it does not affect the structure of its
configuration graph. In such case, grammars are very efficient as there is no assumption on vertices identification, only the
structure is explicit.

Subsequently we will extend graph grammars in order to characterize context-sensitive languages. The way we enrich
these grammars is similar to what is done for word grammars: contextual rewriting is necessary. However, in order to avoid
being too general, we will have to separate context arcs from non-terminal ones. In a certain sense our characterization
corresponds to do a graph rewriting inside a regular graph which serves as a skeleton upon which the rational graph is built.

2.3 Context-sensitive languages and rational graphs

In this section we recall the classical definition of context-sensitive languages. Then we present with some details the definition
of the family of rational graphs. These graphs are very general, and provide a graph characterization of these languages.
More details can be found in [Mor00, MS01].

Context-sensitive languages are defined as the level 1 of the Chomsky hierarchy (0 being recursively enumerable sets).
Which means they are characterized by growing word grammars. Another popular characterization of these languages is by
linear bounded Turing machines [Kur64].

This family of languages is very expressive, for example, the sets of words of the form ww, or anbncn, with n a natural
number are context-sensitive sets of words. The set of ap where p is a prime number is context-sensitive as well. One of the
most stunning property of these languages is that they are closed under complementation. These languages have countless
characterizations. In this paper we will use rational graphs.

The family of rational subsets of a monoid (M, ·) is the least family containing the finite subsets of M and closed under
union, concatenation and iteration.

A transducer is a finite automaton labelled by pairs of words over a finite alphabet X, see for example [Ber79]. A
transducer accepts a relation in X∗× X∗; these relations are called rational relations as they are rational subsets of the
product monoid (X∗×X∗, ·).

Now, let us consider the graphs of X∗ × Σ × X∗. Rational graphs, denoted by Rat(X∗ × Σ × X∗), are extensions of
rational relations, which are defined by labelled rational transducers.

Definition 2.4. A labelled rational transducer T = (Q, I, F,E, L) over X and Σ, is composed of a finite set of states Q, a
set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite set of transitions (or edges) E ⊆ Q × X∗× X∗× Q and a
mapping L from F into 2Σ.

An arc u a−→ v is accepted by a labelled transducer T if there is a path from a state in I to a state f in F labelled by
(u, v) and such that a ∈ L(f).

Definition 2.5. A graph in X∗ × Σ×X∗ is rational if it is accepted by a labelled rational transducer.

Collection des Publications Internes de l’Irisa c©IRISA

Contextual graph grammars characterizing context-sensitive languages 5

Let G be a rational graph, for each a in Σ we denote by Ga the restriction of G to arcs labelled by a (it defines a rational
relation between vertices); let u be a vertex in X∗, we denote by Ga(u) the set of all vertices v such that u a−→ v is an arc of
G.

Example 2.6. In Figure 2.1, the graph on the right-hand side is generated by the labelled transducer on the left-hand side.

The path p
0/0−−→ q1

0/1−−→ r2
1/1−−→ r2 accepts the couple (001, 011), the final state r2 is labelled by b thus there is a arc

001 b−→ 011 in the graph.

p

q1

q2

r2 b

r1 a

r3 c

0/0

0/1

1/⊥

ε/0

1/ε

0/1

1/1

0/0

1/1

1/1

0/0

ε

⊥

0

1

a

c

b

00

01

a

b

000

001

a

b

11

01

c

b

111

011

c

b

b

Figure 2.1: A rational graph and its labelled transducer

Rational graphs have been introduced in order to extend existing families of graphs. They provide a very general family
of graphs. They have few decidable properties, but they characterize context-sensitive languages [MS01]. If we only consider
trees (rooted connected acyclic-graphs such that each vertex has at most one predecessor) these trees have a decidable first
order theory [CM06b].

Using transducers to characterize a family of graphs induce that each graph is defined in a very precise way. In particular,
each vertex is a word, and thus each arc is defined between two precise words, which are not interchangeable. In contrast,
for finite graphs, every algorithm, every characterization, is given up to renaming of the vertices. in fact, when dealing with
infinite graphs it is difficult to avoid explicit naming of the vertices. Still, there are characterizations which overcome this
problem. These characterizations are said external, they elude explicit naming of the vertices. Most of these characterizations
rely on graph transformations unaffected by the name of the vertices.

Formally, two graphs G1 and G2 in X∗ × Σ ×X∗ are isomorphic, if there is a bijection ψ : V (G1) → V (G2) such that:
s1

d−−→
G1

s2 if and only if ψ(s1) d−−→
G2

ψ(s2).

Two isomorphic graphs have the same structure: they are the same up to a renaming of the vertices.
Finally, we recall the characterization of context-sensitive languages by rational graphs:

Theorem 2.7. [MS01] The sets of path between regular sets of vertices of rational graphs corresponds precisely to context-
sensitive languages.

3 Contextual graph grammars

3.1 Contextual graph rewriting systems

Let NR be a finite ranked set of non-terminals, and TR a finite ranked set of terminals.
We propose here a natural definition of contextual graph rewriting system.

Definition 3.1 (Contextual graph rewriting system). A contextual graph rewriting system S, is a set of rules of the form
Hc ∪ f x1 · · · x%(f) → Hc ∪ H where f x1 · · · x%(f) is a non-terminal hyperarc, Hc is a finite context graph, and H is a
finite hypergraph, that can share some vertices with Hc and f . Furthermore, Hc is composed only of terminal hyperarcs,
and Hc ∪ f x1 · · · x%(f) forms a connected hypergraph.

Figure 3.1 illustrates a contextual rewriting rule, {a, b, c} is the set of terminals, and the set of non-terminal is {fwd,bck}.
Now, given a rewriting rule Hc ∪ f x1 · · · x%(f) → Hc ∪ H, a rewriting step in a graph G consists in finding the non-

terminal f in G, such that there is a morphism h of Hc ∪ f x1 · · · x%(f) into G then removing f from G, and adding H to

Collection des Publications Internes de l’Irisa c©IRISA

6 Christophe Morvan

a

a

b

c

c

c

fwd

a

a

b

c

c

c

a

bck

b

fwd

Figure 3.1: A contextual graph-rewriting rule

G according to the rule, and to the morphism h. Given a contextual graph rewriting system S, and a finite graph H, we
define Sω(H) in the same way as Gω for a hr-grammar G. Recall that this graph is a restriction to terminal symbols, in
particular in our setting it only has hyperarcs of arity 1 or 2.

We say that such a contextual rewriting system is deterministic, if there is, at most, one rule for each non-terminal. This
restriction only limits non-determinism, as there might be some situations where the context of a non-terminal can be found
more than once. In such situation, it means that the rewriting system may generate at least two non-isomorphic graphs.

Unfortunately this natural generalization of context-free graph grammars is much too general (even restricted to systems
where there is always a single morphism to match the context).

First recall a classical undecidable problem: the Post correspondence problem (PCP). An instance of PCP is a sequence
of couples of words in Σ∗: ((Ui, Vi))i∈[n], and the problem is to determine whether there is an integer k, and a sequence
(i`) ∈ [n]k such that Ui1Ui2 . . . Uik

= Vi1Vi2 . . . Vik
.

Proposition 3.2. Given (Ui, Vi)i∈[n] an instance of PCP, there exists a graph obtained from a finite axiom A by a contextual
graph rewriting system which possesses an arc labelled # between the two vertices v0 and v1 of A if and only if (Ui, Vi)i∈[n]

is a positive instance.

Example 3.3. The proof of Proposition 3.2 is in the full paper. But the construction is straightforward, and illustrated by
this example. Consider ((Ui, Vi))i∈[n] an instance of PCP, and observe the following contextual rewriting system:

1 12 2
fwd

nxt nxt nxt

U1 U2
Un V1

V2 VnR1

chkA

chkA, chkB

chkA/chkB

nxt

chkA, chkB

fwd

AA A
A

root root

#

R2

R3A

R4

The axiom is simply the following finite graph: {root v0 v1, fwd v0 v1}. Furthermore there is a rule R3B similar to R3A

for the rewriting of chkB.
Now, the rule R1 uses arc fwd to produce two partial binary trees corresponding to the Ui’s and Vi’s. For each sequence

of indexes (kj)j∈[m], the extremity of the path (Ukj
)j∈[m] is connected to the extremity of (Vkj

)j∈[m] by an non-terminal arc
nxt. Then the rules R3A and R3B will ultimately reach the arc root if and only if (Ui, Vi)i∈[n]) is a positive instance of PCP.

Proof. Let us first suppose, without loss of generality that this instance is over a two letters alphabet (say X = {A,B}). Our
set of terminal symbols will be composed of A,B, root and #. Using classical encoding techniques (like A→ AB,B → ABB
and root→ ABBB) we might as well use only a two letters terminal alphabet. The set of non-terminals is formed of arity 2
labels: {fwd, chkA, chkB, chk}. The axiom A is simply the following finite graph: {root v0 v1, fwd v0 v1}. We construct
two deterministic finite trees (denoted respectively by ΓU and ΓV) labelled on X derived respectively from the set of words
{Ui | i ∈ [n]} and {Vi | i ∈ [n]} (each word in each set is the label of precisely one path in the corresponding tree).

Now our rewriting system is the following: the non-terminal fwd under no context produces from its source the tree ΓU ,
and from its goal ΓV . Then, for each i ∈ [n], it puts 4 non-terminals fwd, chkA, chkB, chk between the pair of vertices
extremities of respectively Ui and Vi.

The rule for chk if simple: under context root va vb, the arc chk va vb rewrites into # va vb. The rule for chkA (resp.
chkB) is as follows: the arc chkA vs2 vg2 (resp. chkB vs2 vg2), under the context: A vs1 vs2 (resp. B vs1 vs2), and A vg1 vg2

(resp. B vg1 vg2), rewrites into the three non terminal arcs chkA vs1 vg1, chkB vs1 vg1, and chk vs1 vg1 (roughly speaking
it moves up along two arcs A or two arcs B).

Now, if the instance (Ui, Vi)i∈[n] has a solution, we may construct a sequence of rewritings producing the two corresponding
trees. Then the arcs chk will be able to reach the roots back, and produce the arc # va vb. Conversely, if there is such an
arc in the graph, the arcs chk have reached the origin, and as these arcs are only introduced at the extremities of paths of

Collection des Publications Internes de l’Irisa c©IRISA

Contextual graph grammars characterizing context-sensitive languages 7

the form Ui1Ui2 · · ·Uik
and Vi1Vi2 · · ·Vik

, according to the rewriting rules of chk we have: Ui1Ui2 · · ·Uik
= Vi1Vi2 · · ·Vik

for
such a sequence of indexes.

The most direct consequence of this proposition is the following:

Corollary 3.4. Graphs generated by deterministic contextual graph rewriting systems are not recursive.

This result imposes to introduce tighter constraints on such a graph rewriting systems in order to characterize context-
sensitive languages. We introduce such restriction in the next subsection.

3.2 Contextual hyper-edge-replacement graph grammars

In this section we present a more restrictive contextual rewriting system which will be used to characterize context-sensitive
languages.

Definition 3.5. A contextual hyper-edge-replacement hypergraph grammar (chr-grammar for short) is a tuple (C,N, T,Rc, H0),
where C,N and T are finite ranked alphabets of respectively contextual, non-terminal and terminal symbols; Rc is a finite
set of contextual rules (for each rule Hc ∪ fx1 . . . x%(f) → Hc ∪H, the graph Hc is formed only by arcs labelled in C, and H
by arcs labelled in T ∪N); and H0 is the axiom: a deterministic regular graph formed by arcs with labels in C, and a single
non-terminal hyperarc.

This definition imposes that the axiom is a deterministic regular graph. This restriction ensures that for each rule R, of
non-terminal A, and each occurrence of A in the graph, there is at most a single morphism which maps the context of the
left-hand side of R to the neighbourhood of A. This restriction may be checked, since verifying that a given graph grammar
generates a deterministic graph is decidable (it a direct consequence of Proposition 3.13 in [Cau07], which states that the
set of degree is finite (and computable) for a regular graph, which can be done for each label, ensuring determinism).

Later in this paper we will discuss on other structural restrictions, and indeed we will see that it is difficult to allow
graphs that are not trees. And we will also have to impose stricter restrictions to the form of the rules Rc in order achieve
our characterization.

First we will show that using a n-ary tree as axiom is sufficient to obtain all the rational graphs up to isomorphism,
achieving the goal of containing the context-sensitive languages.

Proposition 3.6. Any rational graph on X∗ × Σ×X∗ is obtained from a chr-grammar.

Example 3.7. Like for Proposition 3.2, the proof is in the full paper. But the construction is straightforward, and illustrated
by this example. Let G be a rational graph in X∗ × Σ ×X∗ (and T a transducer representing it), let H0 be the complete
n-ary tree labelled on X (with a non-terminal p0 on the root). For each state p of T , we have the following rule Rp.

u1 u2
un v1

v2 vn Rp u1 u2
un v1

v2 vn

p

q1 q2 qm

L(p)

Here, we suppose that there are transitions p
ui/vi−−−→ qi for some states (qi)i∈[m], and also L(p) represent all labels produced

at state p (if p is a terminal state). Now each pair of path in H0 correspond to a pair of paths in T . Thus the graph obtained
from the contextual rewriting system is the same as the graph obtained from the transducer.

Proof. Let G be a rational graph in X∗ × Σ ×X∗, and let T = (Q, {q0} , F, E, L) be a labelled transducer realising it. We
will use for context a graph grammar generating the complete |X|-ary tree labelled on X, we denote this tree by ΓX . We
define the following chr-grammar GΓ = (X,Q,Σ, Rc,ΓX ∪ {q0 vε vε}): X is the set of contexts (the labels of the ΓX), the
set of states of the transducer (Q) is the set of non-terminals, each of them is of arity 2, vε is the root of ΓX , more generally,
if u ∈ X∗, we will denote by vu the vertex of ΓX reached by the path labelled byu.

Now the rules of Rc copy the rules of the transducer: for each state p ∈ Q, there is a rule in Rc, the left-hand side of
this rule is formed by a graph with the arc p vs vg on top, and two finite trees (t1 and t2) from the vertices vs and vg, t1
is the minimal deterministic tree corresponding to the paths Ui for each transition p

Ui/Vi−−−−→ qi in T , similarly t2 is the tree
corresponding to the Vi. Now the right-hand side does not have the arc p vs vg anymore but there is an arc qi vUi vVi for

Collection des Publications Internes de l’Irisa c©IRISA

8 Christophe Morvan

each qi, and the vertices vUi
and vVi

are the extremities of the paths labelled respectively Ui and Vi from vs and vg (as ΓX

is deterministic, there is only one path for each word). Furthermore, if p ∈ F , for each a ∈ L(p) there is an arc a vs vg. Now
the chr-grammar GΓ puts an arc labelled a between vu and vu′ if and only if there is a path labelled u/u′ in the transducer
leading to a final state labelled a. Therefore the graph derived from the axiom, using GΓ is precisely isomorphic to G.

From the proof of this result, we can also add that the vertices belonging to a certain rational set can be marked by a
certain terminal symbol of arity 1. Now in conjunction with Theorem 2.7 we obtain the following corollary (the construction
is effective):

Corollary 3.8. Any context-sensitive language L is the set of paths between two colours in a graph obtained from a chr-
grammar.

3.3 Graphs obtained from a tree-separated contextual grammar are rational graphs

In this section we provide a converse for Proposition 3.6.
First, we designate interesting restrictions of chr-grammar. A chr-grammar (C,N, T,Rc, H0) is called a tree-chr-gram-

mar if the axiom H0 is a tree, and left-hand side of each rule of Rc is formed by trees rooted in the vertices of the non-terminal
(some vertices of this non-terminal may be non-root vertices of theses trees). Furthermore, if each such tree possesses a single
vertex belonging to the non-terminal (its root) this grammar is called a tree-separated-chr-grammar. These grammars are
captured by rational graphs:

Proposition 3.9. Any graph obtained from a tree-separated-chr-grammar, is isomorphic to a rational graph on X∗×Σ×X∗.

There are several difficulties for establishing this result: the axiom is not a complete tree, so we need to ensure that at
no moment we put an arc on a vertex that does not exist. We also need to take into account hyperarcs of arity greater than
2. And finally, we need to take into account that there may be twists: in the right-hand side of a rule, the path from the
goal of the original non-terminal may lead to the source of some other non-terminal.

In order to prove Proposition 3.9 we first establish two technical lemmas.

Lemma 3.10. Any tree-separated-chr-grammar G = (C,N, T,Rc, H0), can be effectively transformed into a tree-separated-
chr-grammar G′ = (C,N ′, T,R′c, H0) generating the same set of graphs and such that each non-terminal of N ′ that appears
in the right-hand side of rules of R′c has at most one vertex in each subtree.

Proof. Let r = Hc ∪ f x1 · · · x%(f) → Hc ∪H be a rule of Rc. Let f ′ v1 · · · v%(f ′) be a non-terminal hyperarc of H. For
each vertex xi of f , let us denote by Γi the tree rooted in xi. Now suppose that there are two distinct vertices vk and vk′

belong to Γi for some i. Then it means that there is a vertex v0 of Γi which is an ancestor of both vk and vk′ . So we remove
f ′ from the right-hand side of r, and we set a new non-terminal f ′′ in H, such that it is connected to each vertices of f ′

exept for vk and vk′ , it is instead connected to v0.
Now the rule for f ′′ is simply a copy of the rule of f ′, but f ′′ has one less vertex, and the context corresponding to the

to vertices vk and vk′ is merged from their ancestors in the rule r. Indeed this process is done for the rule r simultaneously
in order to remove all such multiple occurrence of vertices in the context.

This process is done in turn for each initial rule of Rc, resulting in a set Rc1 of extra rules. Observe that each non-terminal
on the left-hand side of rules of Rc1 has at least one vertex less than its original version in Rc. Then this process is iterated
for the rules of Rc1, and again for Rc2, and so on, so forth. At each step the maximal number of vertices for non-terminal is
reduced by 1, ensuring the termination of the process.

The following Lemma is just a technical necessity which is a classical result.

Lemma 3.11. The set of paths labels leading to a colour (arc of arity 1) in a regular tree is a regular set of word.

Proof. Let G = (N,T,R,H0) be a graph grammar generating a tree, we want to construct a regular set of paths reaching
some colour c0. From Theorem 3.12 in [Cau07] we may assume that G is complete-outside, meaning that every vertex of a
left-hand side is not the goal of a vertex of the right-hand side. We furthermore assume each terminal c0 is produced replacing
some non-terminal of arity 1, C0. As a tree is connected, we may also assume that H0 is a single arity 0 non-terminal (let S
be this terminal). Let Q be the following set:

Q := {Ak | A ∈ N ∧ 0 < k 6 %(A)} ∪ {S}
and let us define the transitions as follows

∆ :=
{
Ai

u−→ Bj | Ai, Bj ∈ Q ∧ vi
u===⇒

R(A)
v′j

}
,

where R(A) denotes the right-hand side of the rule associated to A in R, and the path between vi and v′j denotes that
there exists a u path leading from vertex vi of A to the vertex v′j of B. Then using classical finite automata techniques we

Collection des Publications Internes de l’Irisa c©IRISA

Contextual graph grammars characterizing context-sensitive languages 9

may add extra states to remove each arc labelled by a word, and keep only T -labelled transitions. Let S be the initial state
of this finite automaton, and let C0 be the only final state, we have constructed a finite automaton characterizing the set of
path leading to a vertex in a graph generated by G.

We are now able to formulate the proof of Proposition 3.9.

Proof. Let H be a graph generated by a tree-separated-chr-grammar G = (X,N, T,Rc,Γ ∪
{
A0v1 · · · v%(A0)

}
), Γ is a

deterministic tree, and the vertices of non-terminal arcs in Rc are the root of distinct trees. Without loss of generality, from
Lemma 3.10, we may assume that for each rule, each non-terminal appearing in the right-hand side of the rule has at most
a single vertex in each subtree. Also up to adding a few rules, we suppose that each terminal arc is produced between two
vertices of the non-terminal of the left-hand side.

We will first try to characterize the set of arcs of graphs in Gω, for colours (terminal hyperarcs of arity 1), it would be a
similar argument, limited to a single path.

Observe that the production of each terminal arc only requires 2 paths along Γ. We will construct a first transducer
T0 = (Q0, I0, F0, E0, L0). For each non-terminal A of arity greater or equal to 2, we have a state in Q0 for each ordered pair
of vertices of A in the rule of Rc. Precisely,

Q0 =
{
A(a,b) | A ∈ N ∧ (A v1 · · · a · · · b · · · v%(A) ∈ Dom(Rc) ∨A v1 · · · b · · · a · · · v%(A) ∈ Dom(Rc))

}
∪ {Sε}

with Dom(Rc) representing the set of left-hand side of the rules in Rc. The idea behind the subscript (a, b) is to take into
account swaps along the path leading to the production of a terminal arc, A(a,b) means that for the transducer, the left-hand
side of the path leads to vertex a of the hyperarc A, and the right-hand side leads to the vertex b. We will elaborate on this
with the description of the set of transitions.

The set I0 has a single element: Sε. The set of final state is:

F =
{
A(a,b) | A(a,b) ∈ Q0 ∧ ∃c ∈ T, c a b ∈ Rc(A)

}
where Rc(A) represents the right-hand side of the rule associated to A in Rc. Following this, the labelling function associates
to each state A(a,b) in F the set of terminal arcs c ∈ T such that c a b ∈ Rc(A).

Now the set of transitions is as follows:
let A and B be two non-terminals, such that B v1 · · · v%(B) ∈ Rc(A), for each ordered pair of vertices (a, b) of A such

that there is a path leading to a pair (a′, b′) of vertices in B, there is a transition A(a,b)
u/v−−→ B(a′,b′), where u is the path

from a to a′ and v the path from b to b′ (from the assumption, at the beginning of the proof there is at most a single path
from each vertex of A to a vertex of B). The transition from Sε are defined in the same way: for each ordered pair (a, b) of

vertices of A0 there is a transition Sε
u/v−−→ A0(a,b) where u is the path from the root to vertex a, and v the path to vertex b.

Now, let us suppose that Γ, is ΓX the complete |X|-ary tree. Then the context of each rule may be satisfied, and thus,
each path in T0 corresponds to a pair of path in ΓX . And from the definition of L0, each such path is labelled by the correct
arc.

If Γ is not the complete binary tree, from the Lemma 3.11 we have that the set of path leading to the vertices of Γ is a
regular set let LΓ be this set (and A its deterministic automaton). It is not sufficient to check if the final vertices belongs to
LΓ: consider for example a non-terminal arc of arity 3, a terminal arc may be produced between the vertices 1 and 2, but if
the third one does not belong to Γ, this non-terminal does not exist, and thus neither does the terminal.

In order to solve this problem, we simply have to synchronize T0 and A. The new transducer T1 is derived from T0 in the
following way (we will not go into the details of each state and each transition, as it is a classical construction): each state of
T1 is composed of a state of T0, say A(a,b) and for each vertex of A there is a state of A representing the path leading to this
vertex. It is important to notice that it does not matter that the state singles out only vertices a and b, the position of each
vertex of A is kept in the state (we denote by (A(a,b), q1, . . . , q%(A)) such a state) . For each such state (A(a,b), q1, . . . , q%(A))
we check whether the context of Rc(A) can be satisfied (from states q1, . . . , q%(A)), if not the state is removed. Finally the
transitions of T1 are derived from those of T0 updating the set of states according to the path leading from each vertex of
the initial arc, to the new one.

The transducer T1 recognises a rational graph that belongs to Gω. Proving the desired result.

Now combining this result with Theorem 2.7 and Corollary 3.8 we obtain the desired result.

Theorem 3.12. The set of paths (between colours) of any graph obtained from a tree-separated-chr-grammar, is a context-
sensitive language. And conversely, any context-sensitive language can be obtained as the set of paths of such a graph.

Now we show that the natural extension of the previous result by allowing the non-terminal (of the left-hand side) to be
set anywhere in the context produces another non-recursive family of graphs.

Collection des Publications Internes de l’Irisa c©IRISA

10 Christophe Morvan

Proposition 3.13. There is a graph obtained from a chr-grammar, such that the axiom is a deterministic tree, and having
a loop on the root of the axiom if and only if a given instance of PCP has a solution.

Example 3.14. Proposition 3.13 is proved using a simple modification of the proof of Proposition 3.2. We illustrate the
modifications by this example. Consider ((Ui, Vi))i∈[n] an instance of PCP, the axiom is the complete n-ary tree with a loop
fwd on the root, and an extra terminal arc labelled root connecting the root to some extra vertex. The rules are the same
apart from R1:

U1 U2
Un V1

V2 Vn R1 U1 U2
Un V1

V2 Vn

fwd

nxt nxt nxt

This negative result is a consequence of some arbitrary copy moving backward the arcs. A nice solution to overcome
this problem, would be to only allow a single context “above” the non-terminal. But this slight extension already induces
non-recursivity of the graph. In fact, simply allowing context arcs between vertices of the non-terminal of a left-hand side is
enough to obtain a non-recursive graph.

Proposition 3.15. There is a graph obtained from a tree-chr-grammar, and having a loop on the root of the axiom if and
only if a given instance of PCP has a solution.

Proof. Again, the rules are similar to the one in Proposition 3.13 but now there is no rule to return to the root of the tree.
There is a simple observation: as the tree is deterministic if a sequence produces two identical words, they reach the same
vertex. So the rules R2 and R4 are modified in the following way:

nxt

chk

fwd chk

A A
A A

sol
R2 R4

The rule R4 may only be applied (and thus produce a sol-labelled arc) if and only if there is a sequence of rules leading
to a single vertex. In fact we put the sol-arc on the vertex solution. In order to put this arc at the root of the axiom, we
have to increase the arity of each non-terminal by 1 in order to leave a vertex of each non-terminal on the root. This vertex
does not produce any rewriting until rule R4 is reached, then the sol-loop is added on it.

3.4 Handling context-sensitive rewriting in arbitrary regular graphs

As we have seen the situation is already quite intricate when the axiom is a tree.
Still, some observation may prove interesting: first it is important to have a deterministic graph, ensuring that only one

graph is generated up to isomorphism. As we have already seen, this is decidable for an ordinary graph grammar.
In order to consider this problem we will examine a simple example of deterministic regular graph, and a contextual

chr-grammar on this graph.

Example 3.16. Consider the following axiom:

i

fwd

A

B

A

B

A

B

B

A

B

A

And let us consider the graph generated from this axiom by the following contextual rewriting system (labels identifying
the vertices of the context are omitted for simplicity):

fwd

A A

fwd

bck

;

bck

B B

bck

chk

;
ichk ia

Collection des Publications Internes de l’Irisa c©IRISA

Contextual graph grammars characterizing context-sensitive languages 11

This graph is very simple. Indeed it simply produces a loop on the vertex coloured i: the first rule moves to the right
the non-terminal fwd, and produces a bck non-terminal which will go back to the root (using the second rule). The second
rule also produces a non-terminal chk which produces the terminal a when it has reached the origin.

Direct application of our previous method, to this chr-grammar, would, at some point produce the relation: {(ε, anbn) | n ∈ N}.
First it does not correspond to the graph we are looking for, but more importantly, this relation is not rational, so there is
no hope in obtaining it from a rational transducer.

The most natural way to try to solve this problem would be to transform the regular graph into a regular tree. And
the less transforming operation would be to obtain a vertex cover of all the vertices reached from a certain colour (which is
possible from [Cau07] Proposition 4.4).

Unfortunately, applying this proposition to Example 3.16 from colour i (which is the most obvious choice) results in
removing the B arcs leading back to the origin (and the A arcs leading to it as well). But the transformation of the second
rule would result in a rule where the context-arc B is replaced by the arc A in the other direction. Allowing such a rule
would produce non recursive graphs, as stated in Proposition 3.13. Therefore this transformation is also hopeless.

4 Applications and conclusion

Applications

In this subsection we provide two direct applications and give some hints on the current lack of tools in order to manipulate
the tree-separated-chr-grammar effectively.

We first establish a result which fails for ordinary graph grammars.

Proposition 4.1. The synchronization product of two tree-separated-chr-graphs is a tree-separated-chr-graph.

sketch. The construction is straightforward: it relies on an explicit encoding of the couples of vertices. Given two graphs G1

and G2 derived from axioms H1 and H2, and sets of rules R1 and R2. Each couple (u1, u2), vertex of G1 ×G2, is encoded
by a vertex which is reached by a path u1#u2 in a regular tree which is the concatenation of a copy of H2 following an arc
from each vertex of H1.

Now the set of rules producing G1 ×G2 corresponds to the rules of R1, modified to produce the initial configuration of
R2 each time the produce a terminal arc (say a).

The modifications for the rules of R2 are slightly more complicated: for each non-terminal A of arity n, the rule is
duplicated placing each of the vertex in either the source part of the graph or the target part: AI , where I ⊆ [n]. Because
the rules are tree-separated it is not difficult to keep track of these sets.

Then you produce a terminal arc a, when there is such a production, and the source of it is in the source part of the rule,
and the target in the target part of the rule.

An classical consequence of this result is the following corollary:

Corollary 4.2. The intersection of two context-sensitive languages is a context-sensitive language.

Using a similar technique we are able to prove the following:

Proposition 4.3. The concatenation of two tree-separated-chr-graphs is a tree-separated-chr-graph. The iteration of a
tree-separated-chr-graph is also a tree-separated-chr-graph.

This establishes the following result:

Corollary 4.4. The context-sensitive languages are closed under concatenation and Kleene star.

One of the most stunning result for context-sensitive languages is closure under complementation [Sze88, Imm88]. It
would be very interesting to be able to establish this result using a graph approach. Still at the moment we are not able to
propose a new proof of this result because the graphs we obtain are not deterministic, and most probably, the deterministic
restriction of these graphs would produce a strict sub-family.

Conclusion

In this paper we have presented a family of infinite graphs generated by contextual graph grammars. This family characterizes
context-sensitive languages. We also have examined several variants which are too general and generate non-recursive graphs.

From the connection with rational graphs we are already able to state several negative decidability results for this family.
But elaborating on techniques from context-free graph grammars we hope to provide algorithms for this family. In fact it

Collection des Publications Internes de l’Irisa c©IRISA

12 Christophe Morvan

would be essential, first, to elaborate a toolbox for manipulating these graphs and then being able to provide elegant proofs
of already known results.

Another interesting approach would be to identify graph rewriting systems characterizing higher order pushdown au-
tomata. Indeed the connection between deterministic graph grammars and classical pushdown automata is very natural, but
there is no similar characterization for the graphs of higher order pushdown automata. Such a characterization would be a
fine tool to further investigate these graphs.

More generally external characterizations are interesting for themselves, as they permit to focus on the structural prop-
erties of graphs, and to elude explicit encoding of vertices. These characterizations are the key to extend the techniques that
have been used for finite graphs.

References

[Ber79] J. Berstel. Transductions and context-free languages. Teubner, 1979.

[BG00] A. Blumensath and E. Grädel. Automatic Structures. In 15th IEEE Symposium on Logic in Computer Science
LICS 2000, pages 51–62, 2000.

[Cau96] D. Caucal. On transition graphs having a decidable monadic theory. In Icalp 96, volume 1099 of LNCS, pages
194–205, 1996.

[Cau07] Didier Caucal. Deterministic graph grammars. In Texts in logics and games 2, pages 169–250. Amsterdam Uni-
versity Press, 2007.

[CK01] D. Caucal and T. Knapik. An internal presentation of regular graphs by prefix-recognizable ones. Theory of
Computing Systems, 34(4), 2001.

[CM06a] A. Carayol and A. Meyer. Context-sensitive languages, rational graphs and determinism. Logical Methods in
Computer Science, 2(2), 2006.

[CM06b] A. Carayol and C. Morvan. On rational trees. In Zoltán Ésik, editor, CSL 06, volume 4207 of LNCS, pages 225–239,
2006.

[Cou90] B. Courcelle. Handbook of Theoretical Computer Science, chapter Graph rewriting: an algebraic and logic approach.
Elsevier, 1990.

[CW03] A. Carayol and S. Woehrle. The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown
automata. In P. K. Pandya and J. Radhakrishnan, editors, FSTTCS 03, volume 2914 of LNCS, pages 112–123,
2003.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal on computing, 17(5):935–
938, October 1988.

[KP99] T. Knapik and E. Payet. Synchronization product of linear bounded machines. In FCT, volume 1684 of LNCS,
pages 362–373, 1999.

[Kur64] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and Control, 7(2):207–223, June
1964.

[Mor00] C. Morvan. On rational graphs. In J. Tiuryn, editor, Fossacs 00, volume 1784 of LNCS, pages 252–266, 2000.

[MS85] D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-order logic. Theoretical Computer
Science, 37:51–75, 1985.

[MS01] C. Morvan and C. Stirling. Rational graphs trace context-sensitive languages. In A. Pultr and J. Sgall, editors,
MFCS, volume 2136 of LNCS, pages 548–559, 2001.

[Ris03] C. Rispal. The synchronized graphs trace the context-sensitive languages. In ENTCS, volume 68, 2003.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26(3):279–
284, November 1988.

Collection des Publications Internes de l’Irisa c©IRISA

