Multi-scale Real-time Grid Monitoring with Job Stream Mining

Xiangliang Zhang 1, 2 Michèle Sebag 1, 2 Cecile Germain-Renaud 1, 2, 3
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7161
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : The ever increasing scale and complexity of large computational systems ask for sophisticated management tools, paving the way toward Autonomic Computing. A first step toward Autonomic Grids is presented in this paper; the interactions between the grid middleware and the stream of computational queries are modeled using statistical learning. The approach is implemented and validated in the context of the EGEE grid. The GS T R AP system, embedding the S T R AP Data Streaming algorithm, provides manageable and understandable views of the computational workload based on gLite reporting services. An online monitoring module shows the instant distribution of the jobs in real-time and its dynamics, enabling anomaly detection. An offline monitoring module provides the administrator with a consolidated view of the workload, enabling the visual inspection of its long-term trends.
Type de document :
Communication dans un congrès
CCGrid, May 2009, Shangai, China. 2009
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00367544
Contributeur : Cecile Germain <>
Soumis le : mercredi 11 mars 2009 - 16:19:04
Dernière modification le : jeudi 10 mai 2018 - 02:06:41
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 13:30:16

Fichier

ccgrid09_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00367544, version 1

Collections

Citation

Xiangliang Zhang, Michèle Sebag, Cecile Germain-Renaud. Multi-scale Real-time Grid Monitoring with Job Stream Mining. CCGrid, May 2009, Shangai, China. 2009. 〈inria-00367544〉

Partager

Métriques

Consultations de la notice

490

Téléchargements de fichiers

176