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FuRIA: An Inverse Solution based Feature
Extraction Algorithm using Fuzzy Set Theory for

Brain-Computer Interfaces
Fabien LOTTE, Anatole ĹECUYER and Bruno ARNALDI

Abstract—This paper presents FuRIA, a trainable feature
extraction algorithm for non-invasive Brain-Computer Interfac es
(BCI). FuRIA is based on inverse solutions and on the new
concepts of fuzzy Region Of Interest (ROI) and fuzzy frequency
band. FuRIA can automatically identify the relevant ROI and
frequency bands for the discrimination of mental states, even for
multiclass BCI. Once identified, the activity in these ROI and
frequency bands can be used as features for any classifier. The
evaluations of FuRIA showed that the extracted features were
interpretable and can lead to high classification accuracies.

Index Terms—brain-computer interface (BCI), feature extrac-
tion, inverse solution, fuzzy sets, electroencephalography (EEG)

EDICS Category: Biomedical Signal Processing (BIO)

I. I NTRODUCTION

Brain-Computer Interfaces (BCI) are communication sys-
tems that enable a user to send commands to a computer only
by means of brain activity [1]. Designing a BCI requires a
researcher to measure the brain activity and to identify patterns
in it. Brain activity measurements are generally achieved
using ElectroEncephaloGraphy (EEG) which is portable, non
invasive, cheap and offers a good time resolution [1]. Hence,
identifying patterns in EEG signals is a major challenge in
the design of efficient BCI. Two key points are involved in
this identification, namely, feature extraction and classification
[2]. Feature extraction aims at describing the EEG signals by
some relevant values called features while classification aims
at automatically assigning a class to these features.

A good feature extraction algorithm should capture the
relevant information related to each targeted brain activity
pattern (or mental state) while filtering away noise or any
unrelated information. Moreover, EEG signals are known to be
highly subject-specific, in terms of spatial or spectral contents
for instance [1]. Consequently, an ideal feature extraction
algorithm for BCI should be trainable in the sense that it
should learn and use subject-specific features.

Inverse solutions are methods that attempt to reconstruct the
activity in the brain volume by using only scalp measurements
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[3]. Hence, they may localize the neural sources of activity
within the brain, thus recovering a physiologically relevant
information. Recently, inverse solutions were shown to be
promising feature extraction methods for EEG-based BCI [4].

In this paper we propose a trainable feature extraction algo-
rithm for BCI which relies on inverse solutions. This algorithm
is called FuRIA which stands forFuzzy Region of Interest
Activity. FuRIA aims at automatically identifying what are,
for a given subject, the relevant Regions Of Interest (ROI)
and their associated frequency bands for the discrimination
of mental states. The activity in these ROI and associated
frequency bands can be used as features for any classifier.

The paper is organized as follows: Section II details the
concept of inverse solution and reviews its use for BCI design.
Section III describes in details the FuRIA algorithm we pro-
pose. Section IV presents the results of the FuRIA evaluations.
Finally, Section V discusses the results and concludes.

II. BACKGROUND: INVERSE SOLUTIONS ANDBCI

A. Inverse solutions

When using EEG, the signalsm(t) (m ∈ ℜNe,1 with Ne

being the number of electrodes used) recorded at timet on
the scalp can be modeled by a linear combination of brain
dipole activity c(t) (c ∈ ℜ3×Nv,1 with Nv being the number
of dipoles considered). This is called theforward problem[3],
which can be modeled by:

m(t) = Kc(t) (1)

where K is an Ne × (3 × Nv) matrix called theleadfield
matrix which represents the physical properties (conduction)
of the head. This matrix is a head model in which each dipole
is modeled by a volume element known as avoxel. Typical
head models are composed of thousands of voxels [3]. The
c(t) vector holds the orientation and amplitude of each dipole,
according to the three dimensions of the head model space.
Inverse solutions aim at estimating the brain dipole activity
ĉ(t) by using only the scalp measurementsm(t) and the
leadfield matrix (head model)K, which can be modeled by:

ĉ(t) = Tm(t) (2)

where T is the generalized inverse ofK. As Nv >> Ne,
this problem has no unique solution and additional constraints
must be added to solve it. Depending on the constraints used,
different inverse solutions are obtained which leads to different
T matrices [5]. There are two main kinds of inverse solutions:
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distributed solutions and equivalent dipole solutions [5][3].
Distributed solutions estimate the amplitudes and orientations
of a large number of voxels distributed in all the cortex or in
all the brain whereas equivalent dipole solutions estimatethe
position, amplitude and orientation of few sources (typically
one or two), each one modeled by an equivalent dipole.

Congedo has shown that with any linear and discrete inverse
solution the amplitudeγv (also known as current density) in
voxel v could be formulated as a quadratic form [6]:

γv(t) = m(t)T Qvm(t) (3)

Here,Qv is anNe×Ne matrix denoted as theinverse operator
for voxel v [6]. The superscriptT denotes transpose. Typically
Qv = TT

v Tv with Tv being thevth row of T . Such aγv

measure has been used as a feature for BCI (see next section).
The current density in a given Region Of Interest (ROI)Ω,
i.e., in a set of voxels, can be computed as follows:

γΩ(t) =
∑

v∈Ω

γv(t) = m(t)T QΩm(t) with QΩ =
∑

v∈Ω

Qv (4)

This notation is very convenient as it allows very fast compu-
tations, whatever the number of voxels in the ROIΩ. Actually
the QΩ matrix can be computed offline, and the size of this
matrix depends only on the number of electrodes used.

B. A review of inverse solution-based BCI

Concerning BCI, inverse solutions extract physiologically
relevant information which appears as an attractive type of
feature. Recently, a few studies have focused on inverse
solutions for feature extraction and have obtained promising
results [4] [7] [8]. In order to design BCI, inverse solutions
are generally used in two different ways:

• As a direct feature extraction technique: in this case,
either the brain current density computed in a number
of ROI [9] or the neural source positions [10] [8] are
used as features to identify a mental state.

• As a preprocessing method preceding feature extraction:
in this case, the inverse solution is used to estimatec(t)
from which the features are extracted [11] [12] [7].

These methods have all obtained very satisfying results.
Moreover, it has been observed that extracting features from
c(t) (the source domain) is more efficient than extracting them
directly from m(t) (the sensor domain) [11] [7] [13].

In spite of these promising results, some limitations remain.
Indeed, current methods are either general-purpose, i.e.,they
have the ability to deal with any kind of mental state, or
they generate a consise set of discriminative features but
rarely both at the same time. Several methods require strong
a priori knowledge on the neurophysiological mechanisms
involved by the mental states used, and hence, are not general-
purpose at all [10] [8] [12]. With these methods, the ROI
to be used must be defined beforehand and by hand. These
methods are currently limited to the use of mental states
that involve the motor and sensorimotor areas of the brain.
Moreover, a non-general-purpose method, exclusively based
on a priori knowledge, will not be able to adapt to each

subject’s specificities, and will have, most probably, non-
optimal performances.

A few general-purpose methods, based on distributed in-
verse solutions, have been proposed [11] [7] [13]. Their main
drawback is that they must extract one or several features per
voxel, which generates a very large number of features. Thus,
this requires the use of feature selection techniques [11] [7]
[13]. Even though this solution gives good results, the number
of features used remains generally relatively high, particularly
in comparison with the number of features extracted by non-
general-purpose methods [10] [8]. Moreover, in these methods,
all voxels are processed independently, whereas the current
densities in neighboring voxels are generally correlated.As
such, these voxels should be gathered in brain regions.

Congedoet al have proposed a method which is general-
purpose and generates a small set of discriminative features,
which are determined after gathering the voxels into a few
non-overlapping ROI [9]. However, this method still needs
improvements as it is not completely automatic and currently
limited to the use of two ROI [9].

III. T HE FURIA FEATURE EXTRACTION ALGORITHM

FuRIA is an inverse solution-based algorithm which can
learn and use subject-specific features for mental state clas-
sification. A feature extracted with FuRIA corresponds to
the activity in a given ROI and its associated frequency
band. Contrary to existing methods, FuRIA can automatically
identify relevant ROI, as well as the frequency bands in which
these ROI current densities are discriminant. Finally, FuRIA
also introduces the concepts of fuzzy ROI and fuzzy frequency
bands to obtain increased classification performances.

FuRIA aims at being modular in the sense that various
kinds of inverse solutions could be used within it. This
section briefly describes the inverse solutions that could be
used within FuRIA and the specific one that we used in our
implementation. It then describes in details the FuRIA feature
extraction algorithm.

A. Inverse solutions for FuRIA

Equivalent dipole solutions have been popularly employed
for BCI as they can obtain satisfactory results with only
two features and without using a trained classifier [10] [8].
However, FuRIA is based on linear and distributed inverse
solutions. Actually, distributed solutions enable the useof a
large number of dipoles rather than a few equivalent dipoles.
As such they provide more information and are more flexible.

On the other hand, the use of linear inverse solutions appears
as essential for BCI applications. Indeed, the computational
demand of non-linear inverse solutions makes them inappro-
priate for online BCI operation. Several linear and distributed
inverse solutions have been used for BCI, such as ELECTRA
[11], sLORETA (standardized low resolution electromagnetic
tomography) [9] or the depth-weighted minimum norm tech-
nique [12]. FuRIA can be used with any of them.

In our implementation of FuRIA, we used sLORETA which
is an instantaneous, discrete and linear inverse solution [14].
sLORETA is known to have very good localization properties
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[14] including no localization bias in the presence of measure-
ment and biological noise [15]. Moreover, it has been proven
experimentally that sLORETA is suitable for the design of
EEG-based BCI [9]. With sLORETA, theinverse operator
Qv is computed byQv = TT

v S−1
v Tv with Sv = TvKv, T

being obtained with the minimum-norm method [14] [6]. More
details on sLORETA can be found in [14] [15]. Even if we
used sLORETA, it should be stressed that the principle of
the FuRIA algorithm is not dependent on the inverse solution
chosen. Consequently, any other distributed and linear inverse
solution could be used instead of sLORETA.

B. Overview of the FuRIA algorithm

1) Training of FuRIA: To be used, FuRIA has first to be
trained using a setΘ = {(m(t), C)1..Nt

} of labelled training
data.C is the class ofm(t), i.e., the mental state of the subject
while m(t) was recorded. This training phase aims at finding
subject-specific ROIΩl and frequency bandsΦl that contain
the most relevant information for mental state discrimination.
This phase is accomplished offline, in three steps:

• Identification of statistically discriminant voxels and
frequencies: The goal of this step is to identify the
ordered pairswk = (fi, vj) (k ∈ [1, Nk]), with fi

being a frequency andvj being a voxel, with the largest
discriminative power. In order to do so, we rely on
a statistical test for comparing, between the different
classes, the mean current density in each frequencyfi

(i ∈ [1, Nf ]) and in each voxelvj (j ∈ [1, Nv]).
• Creation of ROI and frequency bands: This step

aims at clustering the ordered pairswk selected in the
previous step into a smaller number of ordered pairsWl

(l ∈ [1, Nw]). Here Wl = (Φl,Ωl), with Φl being a
frequency band, i.e., a set of frequencies, andΩl being
a ROI, i.e., a set of voxels. In order to do so, we rely
on a clustering algorithm for finding clusters of voxels
and frequencies and for transforming these clusters into
ROI associated to frequency bands. Thus, by the end of
this step, we have created a set ofNw ordered pairsWl

(one pair per cluster) in which each ROI is associated
to a single frequency band. This frequency band should
gather the frequencies in which the activity of the ROI
voxels is discriminant.

• Fuzzification of ROI and frequency bands:The found
ROI Ωl are turned into fuzzy ROĨΩl and the frequency
bandsΦl into fuzzy frequency bands̃Φl. This aims at
giving more importance to the more discriminant voxels
and frequencies, while still using the information con-
tained in the less discriminant ones. The overall objective
is to increase the discriminative power of theWl pairs.

2) Use of FuRIA for feature extraction:Once the fuzzy
pairsW̃l = (Φ̃l, Ω̃l) have been identified, FuRIA can be used
for feature extraction.

The lth feature extracted is the average current density in
the fuzzy ROI Ω̃l after band-pass filtering EEG signals in
the associated fuzzy frequency bandΦ̃l. All these steps are
detailled hereafter.

In this paper, we evaluate a specific implementation of
FuRIA. However, it is worth noting that other implementa-
tions could be used (e.g., different clustering algorithmsor
different statistical tests) as long as they are consistentwith
the algorithm proposed.

C. First training step: identification of statistically discrimi-
nant voxels and frequencies

1) Algorithm: The first training step of FuRIA aims at
identifying the pairswk of voxels vj and frequenciesfi

which are the most discriminant, i.e., the pairs of voxels
and frequencies whose current density is the most different
between classes. To do so, we perform a statistical test that
compares the mean current density between classes for each
pairwk = (fi, vj). To this end, each training EEG recordm(t)
passes through the following procedure (see Fig. 1):

1) m(t) is decomposed into frequency bands by using a
set of filtershi. Each filterhi is a 2-Hz wide band-pass
filter centered on frequencyfi. We denote asmi(t) the
signal resulting from the filtering ofm(t) by hi.

2) the current densityγi,j(t) in voxel vj , for frequencyfi

is computed using the inverse solution:

γi,j(t) = mi(t)
T Qvj

mi(t) (5)

3) finally, γi,j(t) is averaged over a time window of inter-
est, which starts at samplet0 and isNs samples long.
The obtained value is then log-transformed:

< γi,j >= log

(

1

Ns

t0+Ns
∑

t=t0

γi,j(t)

)

(6)

Fig. 1. Computation of the average current densities< γi,j > in all
frequenciesfi and voxelsvj , from a training data m(t).

All < γi,j > are then gathered into statistical samples
according to the label of their corresponding training record
m(t). These samples are compared using the statistical test. In
other words, this statistical test compares the mean< γi,j >

between classes and thus gives the discriminative power of
each pairwk. Pairswk which obtained a p-value higher than
a given (user-selected) thresholdα are not considered anymore
in the remaining of the training process. The other pairs
are denoted as “significant”. This procedure should remove
numerous voxels and frequencies and should only keep the
ones that are related to the mental states considered. It should
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be noted that thewk selected can be different from one subject
to the other.

2) Implementation:In our implementation of FuRIA, thehi

filters were either Finite Impulse Response (FIR) or Infinite
Impulse Response (IIR) filters. We used windowed sinc filters
as FIR filters [16] and Yule-Walker filters as IIR filters [17].
These filters were chosen as they enable the design of custom
filters, which is needed for the fuzzification step (see section
III-E). Concerning the statistical test used, we employed Mul-
tiple Comparisons Randomization (MCR) tests as described by
Holmes [18]. More precisely, for BCI with only 2 classes, we
used MCR t-tests whereas for multiclass BCI (with 3 or more
classes) we used MCR ANOVA (ANalysis Of VAriance), as
ANOVA can compare multiple conditions, and as such, can
deal with more than 2 classes.

D. Second training step: creation of ROI and frequency bands

1) Algorithm: This step aims at gathering pairs of signifi-
cant voxels and frequencies into pairs of ROIΩl (l ∈ [1, Nw])
and frequency bandsΦl, each ROI being associated to a single
frequency band. Basically, a given ROI would gather signif-
icant voxels, and the frequency band associated to this ROI
would gather the frequencies in which these voxels activityis
discriminant. Creating such ROI and frequency bands aims at
obtaining a compact feature set. Indeed, using the activityin a
few ROI and frequency bands as features should lead to much
fewer features than when considering voxels and frequencies
alone, as generally done [11] [7]. Moreover, the activities
in neighboring voxels and frequencies tend to be statistically
correlated [5]. Thus, it may be appropriate to use these voxels
and frequencies together rather than independently.

We would like to gather voxels belonging to the same
neural source into the same ROI. We would also like to
gather into a single frequency band the frequencies in which
each ROI is discriminant. Thus, it is desirable to find clusters
gathering both voxels and frequencies. To do so, we associate
to each significant pairwk = (fi, vj) the feature vector
[xj , yj , zj , fi] in which xj , yj , zj are the spatial coordinates
of vj . Each one of these 4 coordinates was normalized to
zero mean and unit variance over allj in order to deal with
the different ranges between space and frequencies. Then, we
apply a given clustering algorithm to all these vectors. Finally,
for each one of theNw clusters obtained automatically, we
gather into the same ROIΩl all the voxels whose spatial
coordinates correspond to thexj , yj , zj coordinates of one of
the vectors from this cluster. We also associate to this ROI
Ωl the frequency bandΦl = [fmin, fmax]. Here, fmin and
fmax are respectively the minimal and maximal value of the
coordinatefi among all the vectors belonging to this cluster.
This clustering gives a set of ordered pairsWl = (Φl,Ωl)
which are expected to be discriminant.

2) Implementation: When using sLORETA, the neural
sources tend to appear as local maximums of the current
density [14]. Hence, we assume they would also appear as
local maximums of the statistics obtained in output of the
statistical test. Even though it is only an assumption, thisseems
to be often verified in practice (see results in Section IV-C

for instance). We used Mean Shift as the clustering algorithm
since it gathers vectors attracted by the same local maximum
of the underlying density function [19]. However, as the voxels
coordinates and frequencies considered are regularly spaced
within their numerical domain, the underlying density function
for the vectors[xj , yj , zj , fi] will be relatively flat, and thus
will prevent a proper use of Mean Shift. To cope with this
problem, we used a slightly modified version of the Mean
Shift algorithm for clustering. This slight modification simply
consists in replacinĝD, the standard density estimate at point
P used in Mean Shift:

D̂(P ) =
1

NkHd

Nk
∑

k=1

χ

(

1

H
(P − Pk)

)

(7)

by D̃, a weighted density estimate at point P :

D̃(P ) =
1

NkHd

Nk
∑

k=1

sk · χ

(

1

H
(P − Pk)

)

(8)

with H being the smoothing parameter,χ a kernel function,
here the Epanechnikov kernel (which was found to be the
optimal kernel for Mean Shift [19]),P the current vector,
Pk, thekth vector from the data set, andd the dimensionality.
Finally sk = 1−pk, with pk being the p-value obtained by the
wk pair, during the statistical test performed in the previous
step. The vectorPk is the vector corresponding to thewk

pair. This leads to the following form for thesample mean
shift vector :

MH(P ) =
1

nP

∑

Pi∈SH(P )

sk · (Pk − P ) (9)

Here,SH(P ) is thed-dimensional sphere of radiusH centered
at P , with nP vectors inside. This weighted version of Mean
Shift will gather into the same cluster all the vectors attracted
by the same local maximum of the statistics. As such, this
version of Mean Shift aims at gathering altogether the vectors
corresponding to the same neural source, as these sources are
assumed to be local maximums of the statistics (see above).

E. Third training step: fuzzification of ROI and frequency
bands

The last training step of FuRIA consists in fuzzifying
the previously obtained ROIΩl and frequency bandsΦl.
Actually, a ROI can be seen as a conventional (or “crisp”)
sets of voxels whereas a frequency band can be seen as a
crisp set of frequencies. However, in a ROI or in a frequency
band, all the voxels and frequencies do not have the same
discriminative power. Nevertheless, all these elements still
carry information that could be used, making it hard to
choose which of them should be kept. Consequently, we
believe that all significant voxels and frequencies should be
used, but the voxels and frequencies that are less discriminant
should belong “less” to their ROI and frequency band than
the others. Thus, we propose to consider ROI and frequency
bands as fuzzy sets [20] of voxels and frequencies, in which
all voxels and frequencies are given a degree of membership
into the ROI or frequency band to which they belong. We
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denote such kinds of ROI and frequency bands as fuzzy
ROI and fuzzy frequency bands. Thus, a fuzzy membership
functionµ is associated to each ROI and each frequency band.

1) Design of fuzzy ROI and fuzzy frequency bands from a
given fuzzy membership function:

a) Algorithm: As mentionned above, a crisp ROIΩl is
a set of voxels which current density is computed according
to Eq. 4. A fuzzy ROIΩ̃l is not defined by a set of voxels
anymore but by a fuzzy membership functionµSl. This
function provides the degree of membership, in[0, 1], of any
existing voxel to the fuzzy ROĨΩl. Contrary to crisp ROI for
which the activity in all its voxels is used equally (see Eq. 4),
we define the current densityγΩ̃l

(t) in a fuzzy ROI as follows:

γΩ̃l
(t) =

Nv
∑

j=1

µSl(vj)γvj
(t) (10)

This leads to:

γΩ̃l
(t) = m(t)T QΩ̃l

m(t) with QΩ̃l
=

Nv
∑

j=1

µSl(vj)Qvj
(11)

Similarly, we associate a fuzzy membership functionµFl to
each frequency bandΦl. The functionµFl provides the degree
of membership, in[0, 1], of any existing frequency to the fuzzy
frequency bandΦl. We can note that this function has exactly
the same form as the magnitude response of a digital filter.
This means that to band-pass filter a signal in a given fuzzy
frequency band we have to design a custom digital filter that
has the desired fuzzy membership functionµFl as magnitude
response.

b) Implementation:We used the window technique to
automatically design FIR filters from the desired magnitude
response, i.e., from a fuzzy membership function associated
to a fuzzy frequency band [16]. To design the IIR filters, we
used the Yule-Walker method [17]. This explains why we
used a windowed-sinc FIR filter or a Yule-Walker IIR filter
for the first training step of FuRIA (see section III-C).

2) Set up of the fuzzy membership functions:
a) Algorithm: To determine the kind of fuzzy member-

ship functions to be used as well as their parameters, we first
compute the discrimination scoresdvj

anddfi
of each voxel

vj and frequencyfi respectively, for each pairWl = (Φl,Ωl):

dvj
=

1

Nf

∑

fi∈Φl

svj ,fi
anddfi

=
1

Nv

∑

vj∈Ωl

svj ,fi
(12)

where svj ,fi
= 1 − pj,i with pj,i the p-value obtained

during the first training step, for voxelvj at frequencyfi.
In order to highly emphasize the contribution of the most
discriminative voxels and frequencies, which are generally
much less numerous than others, we chose exponential fuzzy
membership functions that are Gaussian:

µSl
(vj) =

{

exp(− 1
2 (

dvj
−dvmax

σv
)2) vj ∈ Ωl

0 otherwise
(13)

µFl
(fi) =

{

exp(− 1
2 (

dfi
−dfmax

σf
)2) fi ∈ Φl

0 otherwise
(14)

wheredvmax anddfmax are the maximal scores among voxels
and frequencies respectively. The values of theσ should be
optimized in order to maximize the discriminative power of
the pairsW̃l = (Φ̃l, Ω̃l). Consequently, we useσv = 1

card(Ωl)

and σf = 1
card(Φl)

as initial values, and then optimize these
values using the adaptive gradient ascent procedure described
in Algorithm 1. Hereλf and λv are positive learning rates,

Algorithm 1 Adaptive gradient ascent algorithm (ǫf ,ǫv,λf ,λv)

1: newF ← F (σv, σf )
2: repeat
3: oldF ← newF

4: ∆Ff ← F (σv, σf )− F (σv, σf + ǫf )

5: σf ← σf − λf
∆Ff

ǫf
{σf update}

6: newF ← F (σv, σf )
7: if newF < oldF then
8: λf ←

λf

2 {λf Adaptation}
9: else

10: λf ← λf + 0.1λf {λf Adaptation}
11: end if
12: oldF ← newF

13: ∆Fv ← F (σv, σf )− F (σv + ǫv, σf )
14: σv ← σv − λv

∆Fv

ǫv
{σv update}

15: newF ← F (σv, σf )
16: if newF < oldF then
17: λv ←

λv

2 {λv Adaptation}
18: else
19: λv ← λv + 0.1λv {λv Adaptation}
20: end if
21: until |∆Ff

ǫf
| ≤ 0.001 and |∆Fv

ǫv
| ≤ 0.001

and ǫv and ǫf are small positive increments used to estimate
the derivatives of the functionF . This function F is the
fitness function that we want to maximize and that evaluates
the discriminative power of a given pair̃Wl. This fitness
function is equal to the statistics obtained with a statistical
test that compares the current density inΩ̃l and Φ̃l between
the different classes. More precisely, for each training record
m(t), this record is first band-pass filtered in theΦ̃l frequency
band by using the corresponding IIR or FIR filter. Then, the
current density iñΩl is computed using Eq. 10, and averaged
over a given time window and log-transformed as in Eq. 6.
One should note that the obtained values< γΩ̃l,Φ̃l

> depend
on σv andσf which are used to compute the band-pass filter
and the ROI current density. These< γΩ̃l,Φ̃l

> are then
arranged by class label. The statistical test finally compares
the mean value of these< γΩ̃l,Φ̃l

> between the different
classes, the null hypothesisH0 being “the mean value of the
< γΩ̃l,Φ̃l

> is not different between the classes”. The obtained
statistics is used as the value of the fitness functionF . Thus,
algorithm 1 selects the values ofσf andσv that maximize the
discriminative power of a giveñWl. Naturally, this procedure
is performed for each pairWl. A gradient ascent optimization
seemed appropriate here as we experimentally observed that
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the fitness functionF was not monotonic. Rather, this fitness
function generally had an optimum for small values of theσ

parameter.
b) Implementation:Concerning the statistical test used

to compute the fitness functionF , we used a t-test for binary
BCI and an ANOVA for multiclass BCI. These tests are
the same ones as those used during the first training step
(see III-C). Concerning the values ofǫf , ǫv, λf and λv,
we performed extensive experimental tests and found that
ǫf = ǫv = 0.0001 and λf = λv = 10−5 were appropriate
values. We used these values in all our experiments.

At the end of this offline training, a set of fuzzy ROĨΩl

associated to fuzzy frequency bandsΦ̃l has been identified.
They can now be used for feature extraction, possibly online.

F. Feature Extraction with FuRIA

Once the training is achieved, feature extraction with FuRIA
consists in computing the current density in each fuzzy ROI
and fuzzy frequency band and in using these current density
values as features. More formally, it consists in filtering the
EEG signalsm(t), once for each one of theNw fuzzy ROI
Ω̃l obtained, using the FIR or IIR filter corresponding toΦ̃l.
Then, < γΩ̃l,Φ̃l

>, the current density iñΩl, is computed
using Eq. 10 and averaged over a given time window and log-
transformed as in Eq. 6. TheNw current densities< γΩ̃l,Φ̃l

>

are then concatenated into aNw dimensional feature vector
[< γΩ̃1,Φ̃1

>,< γΩ̃2,Φ̃2
>, . . . , < γΩ̃Nw ,Φ̃Nw

>]. Such a
feature vector can then be used as an input of any classifier,
e.g., a Support Vector Machine, this classifier being in charge
of estimating the class ofm(t) from the features. Figure 2
summarizes the principle of feature extraction using FuRIA.

Fig. 2. Feature extraction with FuRIA.

G. Model selection

In our implementation of FuRIA, two hyperparameters
should be defined by the user: 1)α, the significance threshold
used in the statistical test of the first training step (see Section
III-C) and 2) H, the smoothing parameters used in the Mean
Shift clustering during the second training step (see Section
III-D). The values of these hyperparameters have an impact
on the number of featuresNw and on the extension and
shape of the ROI and frequency bands. As this impacts the
performance of the recognition algorithm, we must select the

most appropriate hyperparameters. A solution could be to test
several values forH andα and select the couple that enables
the best classification on a training set, estimated using a given
classifier and Cross Validation (CV). However, we noticed that
this method favors models with numerous features, which is
not desirable. Furthermore, we observed experimentally that
there were generally models with a classification accuracy
only slightly lower than the best one, but with much less
features. Indeed, if we plot the number of features versus
the classification accuracy for several models, the resulting
curve tends to be relatively flat for large numbers of features,
and suddendly decreases for a smaller number of features
(see Figure 3). Ideally, we would like to use the model

Fig. 3. Example of a plot of the number of features versus the 10*10 fold
cross validation accuracy of several FuRIA models. The pointA corresponds
to the model we would like to automatically select. These data come from
subject S1 from the BCI competition 2005 (see Section IV-A2).

corresponding to the point of the curve situated just before
this sudden decrease of classification accuracy (point A, in
blue, on Figure 3), as it would be the best tradeoff between
a high classification accuracy and a small number of features.
Indeed, we believe that such a model with few features should
be prefered as it is probably more robust, less computationally
demanding, more easily interpretable and it should ease the
training of the classifier. Consequently, we propose a simple
model selection criterionCp:

Cp = 2 ·A−Nw (15)

whereA is the accuracy (in percent) obtained using CV on
a training set. The model with the highestCp is the one
that should be prefered. Thus, this criterion is still based
on CV but it penalizes models with many features. We also
consider that models with a number of features lower than
the number of mental states should be avoided. Actually, we
consider that a mental state is generated by at least one brain
region. In pratice, we observed that this proposed criterion
gave satisfactory results. This is shown in the next section
which is devoted to the evaluation of FuRIA.

IV. EVALUATIONS OF FURIA

These evaluations have two objectives. First we want to
assess the impact of the different hyper-parameters as wellas
the contribution of the fuzzification processes on the perfor-
mances. Then we also want to globally assess the efficiency
of FuRIA, by comparing a BCI based on FuRIA with other
state-of-the-art BCI systems used during BCI competitions.
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In order to assess FuRIA, we evaluated it on four different
subjects, available from two data sets of BCI competitions
2003 and 2005. For all these evaluations, we worked with a
standard head model, composed of three concentric spheres
and containing 2394 voxels. This head model has been ob-
tained using LORETA-Key, a software dedicated to inverse
solutions (see [21] for more details on this software). It could
have been better to use subject-specific head models, however,
the information needed to build such models was not available
in the BCI competition data. For the training of FuRIA, we
considered the frequencies located in the 3-45 Hz frequency
band with a step of 1 Hz between two consecutive frequencies.
Concerning the MCR tests, we used a value of 1000 for the
number of random permutations. The FuRIA features were
classified using a Gaussian Support Vector Machine (SVM),
as SVM is one of the most popular and efficient classifiers
used for BCI [2]. When dealing with multiclass problems,
several SVM were combined using the One-Versus-the-Rest
(OVR) scheme in order to design a multiclass classifier. The
optimal SVM hyperparameters were selected using 10*10 fold
stratified cross validation. The descriptions of the data sets and
the results obtained are presented in the following sections.

A. EEG data sets

1) BCI competition 2003 - data set IV:The first data set
used was the EEG data set IV of the BCI competition 2003
[22], provided by the Berlin group. These data contain EEG
signals recorded while a subject was performing self-paced
left and right finger tapping tasks. EEG signals were sampled
at 100 Hz, recorded using 28 electrodes and comprised the
500 ms before the actual movement. 314 trials were available
for training and 100 for testing. The goal of the competitors
was to forecast, for each trial, the hand that was used. For this
data set, we used FuRIA to learn and extract features on the
last 250 ms time window of the data, i.e., we usedt0 = 25
andNs = 25 in Eq. 6. According to several studies, this time
window should be the most informative [23] [9]. Here, we used
FIR and IIR filters with 24 points and an order 8 respectively.

2) BCI competition 2005 - data set IIIa:The second data
set used was the EEG data set IIIa of the BCI competition
2005 [24], provided by the Graz group [25]. These data were
recorded while three subjects S1, S2 and S3, were performing
a 4-class motor imagery task. They were instructed to imagine
left hand, right hand, foot or tongue movements. For both
training and testing, 60 trials were available per class. Trials
were sampled a 256 Hz and were recorded using 60 electrodes.
Each trial lasted 7 seconds without taking into account the inter
trial periods of random lengths. The subjects were instructed
to perform the motor imagery tasks during the last 3 seconds
of each trial. For all subjects, we subsampled the data at 128
Hz, and used as time window for FuRIA these last 3 seconds,
i.e., we usedt0 = 512 and Ns = 384 in Eq. 6. For training
FuRIA, we ignored all trials contamined by artifacts, leaving
approximatly between 25 and 45 trials per class, depending on
the subject. Here, we used FIR and IIR filters with 50 points
and an order 10 respectively.

B. Evaluation of the influence of hyperparameters and fuzzi-
fication processes

In this section, we evaluated FuRIA for different
values of the hyperparameterα (see Section III-C),
among {0.01, 0.05, 0.1, 0.25, 0.5}, and different values
of the hyperparameterH (see Section III-D), among
{0.75, 1, 1.25, 1.5, 1.75, 2}. The goal was to assess the impact
of these hyperparameters on the classification performances
and on the number of generated features. For all these data
sets we also compared the results obtained when using FuRIA
without the fuzzification process (i.e., using only crisp ROI
and frequency bands), with only the spatial fuzzification, with
only the frequential fuzzification and with the full (spatial
and frequential) fuzzification. In the following, these four
conditions are denoted as “Raw”, “Freq”, “Space” and “All”
respectively. We also computed the results for both FIR and
IIR filters. However, due to space limitations, only the results
for the filters that gave the best results are presented.

1) BCI competition 2003 - data set IV:Tables I and II
display the mean classification accuracies obtained on the
test set when using FIR filters, for different values ofα and
H respectively. The mean number of features, denoted as
“#Features”, is also displayed. In each table, the best result for
each condition and each subject is displayed in bold figures.
The differences between the Raw condition and the fuzzy
conditions, as revealed by a paired t-test, showed that all the
fuzzy conditions performed better than the Raw condition on
average. However, this difference is only significant for the
“All” ( p < 0.05) and “Space” (p << 0.01) conditions.

TABLE I
DATA SET IV, BCI COMPETITION 2003,TEST SET: CLASSIFICATION

ACCURACY (%) AND NUMBER OF FEATURES FOR DIFFERENT VALUES OF

α, AVERAGED OVER THE DIFFERENT VALUES OFH .

α #Features Raw Freq Space All
0.01 10.17 80.5 81 82 80.33
0.05 10.17 79.5 80.67 82.67 82.5
0.1 9.17 77 78.17 84.67 81.83
0.25 9.67 76.67 77.17 83.17 76.17
0.5 8.83 72.17 74.83 78 77.33

TABLE II
DATA SET IV, BCI COMPETITION 2003,TEST SET: CLASSIFICATION

ACCURACY (%) AND NUMBER OF FEATURES FOR DIFFERENT VALUES OF

H , AVERAGED OVER THE DIFFERENT VALUES OFα.

H #Features Raw Freq Space All
0.75 31.8 83.6 82 83.4 82.6

1 12.6 80.2 79.6 82.6 80.8
1.25 6.4 78.2 79 82.6 79.2
1.5 2.8 74.4 76.8 80 78.4

1.75 2 73.2 76.6 82 78.2
2 2 73.4 76.2 82 78.6

2) BCI competition 2005 - data set IIIa:Tables III and IV
display the mean classification accuracies obtained for each of
the three subjects on the test set, for different values ofα and
H respectively. Please note that, for subject S2, no results are
presented forα = 0.01 as no pairwk was found significant
with this threshold. Here again, only the results obtained with
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the best filter are displayed, that is IIR filters for S1 and S2
and FIR filters for S3.

TABLE III
DATA SET III A , BCI COMPETITION 2005,TEST SET: CLASSIFICATION

ACCURACY (%) AND NUMBER OF FEATURES FOR DIFFERENT VALUES OF

α, AVERAGED OVER THE DIFFERENT VALUES OFH .

Subject α #Features Raw Freq Space All
0.01 9.17 75.28 76.02 74.26 73.15
0.05 9.33 77.96 79.63 76.76 78.46

S1 0.1 10.67 75.93 77.22 79.17 77.78
0.25 7.83 60.93 67.96 72.31 68.98
0.5 9 62.13 66.76 75.19 71.39
0.05 7.83 54.58 44.31 58.19 55.278
0.1 11.17 53.33 50.97 57.78 56.11

S2 0.25 11.67 50.97 43.89 47.22 45.69
0.5 14.67 50.83 47.92 50.69 51.39
0.01 6.17 71.67 69.72 71.94 68.75
0.05 9.83 73.06 76.94 70.42 77.78

S3 0.1 9.17 70.42 72.08 72.92 72.5
0.25 11.83 66.39 75 67.92 68.75
0.5 12.5 64.17 71.39 68.47 67.08

TABLE IV
DATA SET III A , BCI COMPETITION 2005,TEST SET: CLASSIFICATION

ACCURACY (%) AND NUMBER OF FEATURES FOR DIFFERENT VALUES OF

H , AVERAGED OVER THE DIFFERENT VALUES OFα.

Subject H #Features Raw Freq Space All
0.75 25.4 86.22 88.67 87.44 89.33

1 12.2 84.22 85.67 86.56 85.89
S1 1.25 7.2 77.44 79.33 79.11 77.66

1.5 5 70.89 73.67 76.11 72.66
1.75 3.2 58.56 62.33 68.11 63.56

2 2.2 45.33 51.44 55.89 54.56
0.75 23.6 61.39 49.44 60.83 56.94

1 13 58.96 51.46 58.33 56.25
S2 1.25 8.6 57.50 55.28 56.67 55.83

1.5 5.2 54.44 53.06 55.56 55
1.75 2.6 55.56 53.89 56.67 55

2 1.4 56.11 45.83 54.44 50
0.75 26 81.67 80.17 83.5 81

1 13.4 78.33 80 80 80.17
S3 1.25 7.6 76 78.5 78.17 79.5

1.5 5.6 74.33 78.5 77.83 79.83
1.75 4 55.5 63.83 51.83 58.33

2 2.8 49 57.17 50.67 47

3) Discussion:We performed a paired t-test to investigate
the overall statistical differences between all the conditions,
across all subjects, filter kinds and hyperparameter values. This
revealed that globally, all fuzzy conditions performed better
than the “Raw” one, and that this difference was significant
(p < 0.001). This suggests that for a given set of ROI
and frequency bands, fuzzifying them is likely to increase
their classification performances. Both the “Space” and “All”
conditions performed significantly better than the “Freq” one
(p < 0.05). There was no significant difference between these
two conditions (p > 0.05), even though the “Space” condition
gave slightly better results than the “All” one, on average.
We then suggest to use, by default, the spatial fuzzification
only, or to try the different fuzzifications and select the most
appropriate one for a given subject. The superiority of the
spatial fuzzification over the frequential fuzzification could be
due to the spatial resolution (thousands of voxels) being higher

than the frequential resolution (tens of frequencies). As such,
the spatial fuzzification could be more deeply exploited.

Concerning the effects of the thresholdα, it can be noticed
that the “Raw” condition reached its best performances using
the traditional valuesα = 0.01 or α = 0.05 whereas the fuzzy
conditions generally reached their best results for the values
α = 0.05 or α = 0.1. This suggests that the fuzzification
process enables to use efficiently the information contained in
less discriminant voxels and frequencies in order to improve
the performances. Regarding the results for the hyperparameter
H, the best accuracy is almost always obtained for the lowest
value of H. However, accuracies very close to these ones
can be obtained with higher value ofH and hence, much
less features. This supports the use of the previously proposed
model selection criterion which penalizes models with a large
number of features (see section III-G).

C. Comparison with BCI competition results

In this section, we assess the global efficiency of the FuRIA
features by comparing a BCI based on FuRIA features with
BCI used by the BCI competition participants. To perform this
comparison, we needed to select some parameters without the
knowledge of the test set. Consequently, we only relied on
cross validation scores on the available training sets. Thus,
we selected the kind of filter (FIR or IIR) and the kind of
fuzzification (spatial, frequential or both) according to their
average cross validation score on the training set. To select
the optimal hyperparametersH andα, we relied on the model
selection criterion proposed in section III-G, Equation 15.

1) BCI competition 2003 - data set IV:Based only on the
training set, the parameter selection procedure describedabove
found thatH = 1.75, α = 0.05, FIR filters and only the
spatial fuzzification was the most appropriate configuration.
This resulted in only 2 features. These parameters led to an
accuracy of84% on the test set, that is, exactly the same score
as the winner of the competition [23]. This suggests that the
method is efficient, especially when considering the fact that
only two features were used.

Fig. 4 displays the two ROI and frequency bands learnt by
FuRIA. Interestingly, these ROI lie in the left and right motor
areas, and the frequency bands lie in theβ (≃ 13-30 Hz) band,
which is consistent with the literature on the subject [23] [9]
[26]. This suggests that the FuRIA features are interpretable
features, which can be used to check what has been learnt or
even to extract knowledge about the brain dynamics.

2) BCI competition 2005 - data set IIIa:Table V sums
up the parameters used for each subject and selected using
only the training set. The resulting number of features is also
displayed. Interestingly, different parameters are needed for
each subject. This highlights the high subject-specificityof
EEG signals and the need to use trainable feature extraction
methods. Concerning this data set, the goal of the participants
was to provide a continuous classification, i.e., a class label
for each time point, here from second 4 to second 7 of each
trial. It was indeed during this period that the motor imagery
tasks were performed. Hence, the FuRIA features were first
learnt on the time window from second 4 to second 7 of each
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14-31 Hz 14-28 Hz

Fig. 4. The fuzzy ROI (in red) and their corresponding frequency bands
that were automatically obtained by using FuRIA for data set IV of BCI
competition 2003. The brighter the red color of the voxel, thehigher the
voxel degree of membershipµSl(vj). The brain is seen from the top, nose
up. These pictures were obtained with the LORETA-Key software [21].

TABLE V
PARAMETERS USED FOR DATA SETIII A FROM BCI COMPETITION 2005

H α filter kind fuzzification feature number
S1 1 0.5 IIR fuzzy space 11
S2 1 0.05 IIR fuzzy space 12
S3 1.25 0.1 FIR all fuzzy 5

trial. We classified each point by using the FuRIA features
extracted from the last 1 second window. Classification outputs
were also aggregated across time, which is known to improve
accuracy [2]. In order to do so we used a different multiclass
Gaussian SVM (made of several binary SVM combined using
the OVR scheme) for each time point of the trial period from
second 4 to second 7. These SVM were trained on the FuRIA
features extracted on the 1 second window preceding their
corresponding time point. Then, to classify each trial, thefinal
outputOf (t) at time t was estimated by using the individual
outputsOi(t) of the SVM corresponding to the previous time
points situated from second 4 to the present time point:

Of (t) =

t
∑

k=0

wkOi(k) (16)

where the outputsOi are vectors containing the output of
each SVM used in the OVR scheme, i.e., one output per
class. Here,t = 0 corresponds to second 4 of the trial. We
definedwk = Ak − 25 with Ak being the 10*10 fold CV
accuracy (in percent) of thekth SVM on the training set.
Hence, this method is a weighted combination of classification
outputs across time. These weights were chosen so as to ignore
contributions from randomly performing classifiers (with a
CV error of 25 %, as there are 4 classes) and emphasize
contributions of well performing classifiers. The final class
Cf attributed to a given pointt was the one for which
Cf = argmax(Of (t)).

The performance measure used was the maximal classi-
fication accuracy. Performances obtained using our methods
as well as performances obtained by BCI competition 2005
participants on data set IIIa [27] are reported for comparisons
in table VI. All these participants also used SVM as classifiers
(combined with other classifiers for the2nd participant). For

feature extraction, they all used a frequential information
(band-pass filters or amplitude spectra) combined with spatial
filters such as common spatial patterns, independant compo-
nent analysis, and/or surface Laplacian [24]. As shown by table

TABLE VI
MAXIMAL CLASSIFICATION ACCURACY FOR THE TEST SETS OF DATA SET

III A FROM BCI COMPETITION 2005 (%)

S1 S2 S3 Mean
Winner 86.67 81.67 85.00 84.44
2nd 92.78 57.50 78.33 76.20
3rd 96.11 55.83 64.17 72.04

FuRIA 90.56 69.17 88.33 82.68

VI, our method outperformed the one of the overall winner
of the competition on 2 subjects out of 3 (subjects 1 and
3) and even reached the best score among all participants
on subject 3. However, the overall winner reached a really
impressive score on subject 2 (the “worst” subject according
to the general performances), leading him to the best overall
results. Globally, our method reached the second position,with
a score only slightly lower than the one of the winner. This
shows the efficiency of FuRIA, especially when considering
the few features used.

Fig. 5 displays the fuzzy ROI and corresponding fuzzy
frequency bands automatically learnt by FuRIA for subject 3.
Interestingly, the fuzzy ROI identified as relevant are located
in the left and right motor areas, for frequency bands located
within the µ (9-12 Hz) andβ (13-30 Hz) rhythms. This is
consistent with the literature on motor imagery [26] which,
again, enhances the interpretability of the extracted features.

 40 30 20 10 0

Frequency (Hz)

 40 30 20 10 0

Frequency (Hz)

 40 30 20 10 0

Frequency (Hz)

 40 30 20 10 0

Frequency (Hz)

 40 30 20 10 0

Frequency (Hz)

Fig. 5. The fuzzy ROI (in red) and their corresponding fuzzy frequency band
(which is equivalent to the filter magnitude response) that were automatically
obtained by using FuRIA, on subject 3 from data set IIIa of BCIcompetition
2005. The brighter the voxel red color, the higher the voxel degree of
membershipµSl(vj). The brain is seen from the top, nose up. These pictures
were obtained with the LORETA-Key software [21].
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V. CONCLUSION

This paper has presented FuRIA, a trainable feature ex-
traction algorithm for Brain-Computer Interfaces which is
based on inverse solutions. This algorithm can be trained to
automatically identify relevant regions of interest and their
associated frequency bands for the discrimination of mental
states, in binary as well as in multiclass BCI. This paper also
introduced the concepts of fuzzy ROI and fuzzy frequency
bands that enable to use efficiently the available information
and, thus, to increase the classification performances.

The evaluation of the proposed method, using sLORETA
as the inverse solution and an SVM as classifier, showed its
efficiency in terms of classification accuracy. Actually, the ob-
tained results were comparable with those of BCI competition
winners. Indeed, it seems that the inverse solution combined
with the FuRIA training, acts as a spatial filter that removes
the background activity and the noise not correlated with the
targeted mental states. As such it focuses on relevant, subject-
specific, brain activity features. An additionnal advantage
of FuRIA is the interpretability of the learnt and extracted
features. The main drawback of FuRIA is its long training
process. Indeed, the discriminative power of several voxels
and frequencies should be investigated, which can be long
if the number of voxels, electrodes or training data is large,
and if time consuming statistical tests such as the ones based
on permutation tests are used. However, as this training is
performed offline, this point does not seem critical.

In future works, it would be interesting to study the in-
fluence of both the spatial resolution (number of electrodes
used, number of voxels in the chosen head model) and the
frequential resolution (number of frequencies investigated) on
the performances, in order to possibly reduce the training
times and/or improve the quality of the feature extraction.It
would also be interesting to take into account the temporal
information in FuRIA. To this end, an attractive possibility
would be to replace the classical band-pass filters by wavelets,
which have proven to be particularly adpated for neuroelectric
signals and especially EEG [28]. Finally, it could be interesting
to use the dipole orientation in inverse solution-based BCIas
current methods only consider the dipole amplitude.
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