
HAL Id: inria-00368403
https://inria.hal.science/inria-00368403v1

Preprint submitted on 16 Mar 2009 (v1), last revised 3 Jul 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Packaging Mathematical Structures
François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

To cite this version:
François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau. Packaging Mathematical
Structures. 2009. �inria-00368403v1�

https://inria.hal.science/inria-00368403v1
https://hal.archives-ouvertes.fr


Packaging mathematical structures

François Garillot1, Georges Gonthier2, Assia Mahboubi3, Laurence Rideau4

1 Microsoft Research - INRIA Joint Centre Francois.Garillot@inria.fr
2 Microsoft Research Cambridge gonthier@microsoft.com

3 Inria Saclay and LIX, École Polytechnique Assia.Mahboubi@inria.fr
4 Inria Sophia-Antipolis – Méditerranée Laurence.Rideau@inria.fr

Abstract. This paper proposes generic design patterns to define and
combine algebraic structures, using dependent records, coercions and
type inference, inside the Coq system. This alternative to telescopes
in particular allows multiple inheritance, maximal sharing of notations
and theories, and automated structure inference. Our methodology is
robust enough to support a hierarchy comprising a broad variety of al-
gebraic structures, from types with a choice operator to algebraically
closed fields. Interfaces for the structures enjoy the handiness of a classi-
cal setting, without requiring any axiom. Finally, we show how externally
extensible some of these instances are by discussing a lemma seminal in
defining the discrete logarithm, and a matrix decomposition problem.

Key words: Formalization of Algebra, Coercive subtyping, Type infer-
ence, Coq, SSReflect

1 Introduction

Large developments of formalised mathematics demand a careful organization.
Fortunately mathematical theories are quite organized, e.g., every algebra text-
book [1] describes a hierarchy of structures, from monoids and groups to rings
and fields. There is a substantial literature [2–7] devoted to their formalization
within formal proof systems.

In spite of this body of prior work, however, we have found it difficult to
make practical use of the algebraic hierarchy in our project to formalize the Feit-
Thompson Theorem in the Coq system; this paper describes some of the prob-
lems we have faced and how they were resolved. The proof of the Feit-Thompson
Theorem covers a broad range of mathematical theories, and organizing this for-
malization into modules is central to our research agenda. We’ve developped[8]
an extensive set of modules for the combinatorics and set and group theory re-
quired for the “local analysis” part of the proof, which includes a rudimentary
algebraic hierarchy needed to support combinatorial summations[9].

Extending this hierarchy to accomodate the linear algebra, Galois and rep-
resentation theory needed for the “character theoretic” part of the proof has
proved problematic. Specifically, we have found that well-known encodings of
algebraic structures using dependent types and records [2] break down in the
face of complexity; we address this issue in section 2 of this paper.



2 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

Many of the op-cited works focused on the definition of the hierarchy rather
than its use, making simplyfying assumptions that would have masked the prob-
lems we encountered. For example some assume that only one or two structures
are involved at any time, or that all structures are explicitly spcified. The ex-
amples in section 4 show that such assumptions are impractical: they involve
several different structures, often within the same expression, and some of which
need to be synthethized for existing types.

We have come to realize that algebraic structures are not “modules” in the
sofware engineering sense, but rather “interfaces”. Indeed, the mathematical the-
ory of, say, an abstract ring, is fairly thin. However, abstract rings provide an
interface that allows “modules” with actual contents, such as polynomials and
matrices, to be defined and, crucially, composed. The main function of an al-
gebraic structure is to provide common notation for expressions and for proofs
(e.g., basic lemmas) to facilitate the composition and application of these generic
modules. Insisting that an interface be instanciated explicitly each time it is used
negates this function, so it is critical that structures be inferred on the fly; we’ll
see in the next section how this can be accomplished.

Similarly, we must ensure that our algebraic interfaces are consistent with
the other modules in our development: in particular they should integrate the
combinatoric interfaces, as algebra requires equality. As described in section 3,
we have therefore adapted classical algebra to our constructive combinatorics. In
addition to philosophical motivations (viz., allowing constructive proof a finitary
results like the Feit-Thompson Theorem), we have pratical uses for a constructive
framework: it provides basic but quite useful proof automation, via the small-
scale reflection methodology supported bythe SSReflect extension to Coq[10].

Due to space constraints, we will assume some familiarity with the Coq type
system [11] (dependent types and records, proof types, type inference with im-
plicit temrs and higher-order resolution) in section 2, and with the basic design
choices in the Feit-Thompson Theorem development[8] (boolealn reflection, con-
crete finite sets) in sections 3 and 4.

2 Encoding structures

2.1 Mixins

An algebraic or combinatorial structure comprises representation types (usually
only one), constants and operations on the type(s), and axioms satisfied by the
operations. Within the propositions-as-types framework of Coq, the interface
for all of these components can be uniformly described by a collection of depen-
dent types: the type of operations depends on the representation type, and the
statement (also a“type”) of axioms depends on both the representation type and
the actual operations.

For example, a path in a combinatorial graph amounts to

– a representation type T for nodes
– an edge relation e : rel T
– an initial node x0 : T
– the sequence p : seq T of nodes that follow x0



Packaging mathematical structures 3

– the axiom pP : path e x0 p asserting that e holds pairwise along x0 :: p.

The path “structure” is actually best left unbundled, with each component being
passed as a separate argument to definitions and theorems, as there is no one-to-
one relation between any of the components (there can be multiple paths with the
same starting point and relation, and conversely a given sequence can be a path
for different relations). Because it depends on all the other components, only the
axiom pP needs to be passed around explicitly; type inference can figure out T ,
e, x0 and p from the type of pP , so that in practice the entire path “structure”
can be assimilated to pP .

While this unbundling allows for maximal flexibility, it also induces a prolif-
eration of arguments that is rapidly overwhelming. A typical algebraic structure,
such as a ring, involves half a dozen constants and even more axioms. Moreover
such structures are often nested, e.g., for the Cayley-Hamilton theorem one needs
to consider the ring of polynomials over the ring of matrices over a general com-
mutative ring. The size of the terms involved grows as Cn, where C is the number
of separate components of a structure,and n is the structure nesting depth. For
Cayley-Hamilton we would have C = 15 and n = 3, and thus terms large enough
to make theorem proving impractical, given that algorithms in user-level tactics
are more often than not nonlinear.

Thus, at the very least, related operations and axioms should be packed
using Coq’s dependent records (Σ-types); we call such records mixins. Here is,
for example, the mixin for a Z-module, i.e., the additive group of a vector space
or a ring:

Module Zmodule.

Record mixin_of (M : Type) : Type := Mixin {

zero : M; opp : M -> M; add : M -> M -> M;
_ : associative add; _ : commutative add;
_ : left_id zero add; _ : left_inverse zero opp add

}. ...

End Zmodule.

Here we are using a Coq Module solely to avoid name clashes with similar mixin
definitions.

Note that mixins typically provide only part of a structure; for instance a ring
structure would actually comprise a representation type and three mixins: one
for equality, one for the additive group, and one for the multiplicative monoid
together with distributivity. A mixin can depend on another one: e.g., the ring
multiplicative mixin depends on the additive one for its distributivity axioms.

Since types don’t depend on mixins (it’s the converse) type inference usually
cannot fill in omitted mixin parameters; however, the type class mechanism of
Coq 8.2 [12] can do so by running ad hoc tactics after type inference.

2.2 Packed structures

The geometric dependency of Cn on n is rather treacherous: it is quite possible
to develop an extensive structure package in an abstract setting (when n = 1)
that will fail dramatically when used in practice for even moderate values of n.



4 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

The only case when this does not occur is with C = 1 — when each structure
is encapsulated into a single object. Thus, in addition to aesthetics, there is a
strong pragmatic rationale for achieving full encapsulation.

While mixins provide some degree of packaging, it falls short of C = 1.
Indeed,

However, mixins require one object per level in the structure hierarchy. This
is far from C = 1 because theorem proving requires deeper structure hierarchies
than programming, as structures with identical operations can differ by axioms;
indeed, despite our best efforts, our algebraic hierarchy is nine levels deep.

For the topmost structure in the hierarchy, encapsulation just amounts to
using a dependent record to package a mixin with its representation type. For
example, the top structure in our hierarchy, which describes a type with an
equality comparison operation (see [8]), could be defined as follows:

Module Equality.

Record mixin_of (T : Type) : Type :=

Mixin {op : rel T; _ : forall x y, reflect (x = y) (op x y)}.

Structure type : Type :=

Pack {sort :> Type; mixin : mixin_of sort}.

End Equality.

Notation eqType := Equality.type.

Notation EqType := Equality.Pack.

Definition eq_op T := Equality.op (Equality.mixin T).

Notation "x == y" := (@eq_op _ x y).

Coq provides two features that support this style of interface, Coercion and
Canonical Structure. The sort :> Type declaration above makes the sort pro-
jection into a coercion from type to Type. This form of explicit subtyping allows
any T : eqType to be used as a Type, e.g., the declaration x : T is understood
as x : sort T . This allows x == x to be understood as @eq_op T x x by simple
first-order unification in the Hindley-Milner type inference, as @eq_op α expects
arguments of type sort α.

Coercions are mostly useful for establishing generic theorems for abstract
structures. A different mechanism is needed to work with specific structures and
types, such as integers, permutations, polynomials, or matrices, as this calls for
construing a more specific Type as a structure object (e.g., an eqType): coercions
and more generally subtyping will not do, as they are constrained to work in the
opposite direction.

Coq solves this problem by using higher-order unification in combination
with Canonical Structure hints. For example, assuming int is the type of signed
integers, and given

Definition int_eqMixin := @Equality.Mixin int eqz ...

Canonical Structure int_eqType := EqType int_eqMixin.

Coq will interpret 2 == 2 as @eq_op int_eqType 2 2, which is convertible to
eqz 2 2 thanks to the Canonical Structure hint, Coq finds the solution α =
int_eqType to the higher-order unification problem sort α ≡βιδ int that arises
during type inference.



Packaging mathematical structures 5

2.3 Telescopes

The simplest way of packing deeper structures of a hierarchy consists in repeating
the design pattern above, substituting “the parent structure” for “representation
type”. For instance, we could end Module Zmodule with

Structure zmodType : Type := Pack {sort :> eqType; _ : mixin_of sort}.

This makes zmodType a subtype of eqType and (transitively) of Type, and allows
for the declaration of generic operator syntax (0, x + y, −x, x − y, x ∗ i), and
the declaration of canonical structures such as

Canonical Structure int_zmodType := Zmodule.Pack int_zmodMixin.

Many authors [2, 13, 7, 5] have formalized an algebraic hierarchy using such nested
packed structures, which are sometimes referred to as telescopes [14], the term
we shall use henceforth.

As the coercion of a telescope to a representation Type is obtained by tran-
sitivity, it comprises a chain of elementary coercions: given T : zmodType, the
declaration x : T is understood as x : Equality.sort (Zmodule.sort T ). It
is this explicit chain that drives the resolution of higher-order unification prob-
lems and allows structure inference for specific types. For example, the implicit
α : zmodType in the term 2+2 is resolved as follows: first Hindley-Milner type in-
ference generates the constraint Equality.sort (Zmodule.sort α) ≡βιδ int Coq

then looks up the Canonical Structure int_eqType declaration associated with
the pair (Equality.sort, int), reduces the constraint to Zmodule.sort α ≡βιδ

int_eqType which it solves by looking up the pair (Zmodule.sort, int_eqType) and
finding the Canonical Structure int_zmodType declaration. Note that int_eqType
is an eqType, not a Type: canonical projection values are not restricted to types.

Although this clever double use of coercion chains makes telescopes the sim-
plest way of packing structure hierarchies, it raises several theoretical and prac-
tical issues for deep or complex hierarchies.

Perhaps the most obvious one is that telescopes are restricted to single in-
heritance. While multiple inheritance is rare, it does occur in classical algebra,
e.g., rings can be unitary and/or commutative. However, this can be overcome,
provided mixins are not inlined inside the packed structures.

A more serious limitation is that the head constant of the representation type
of any structure in the hierarchy is always equal to the head of the coercion chain,
i.e., the Type projection of the topmost structure (here: Equality.sort). This is
a problem because for both efficiency and robustness coercions and canonical
projections for a type are determined by its head constant.

There is also a severe efficiency issue: the complexity of Coq’s term com-
parison algorithm is exponential in the length of the coercion chain. While this
is clearly a problem specific to the current Coq implementation, it is hard and
unlikely to be resolved soon, so it seems prudent to seek a design that does not
run into it.

2.4 Packed Classes

We now describe a design that achieves full encapsulation of structures, like
telescopes, but without the troublesome coercion chains. The key idea is to



6 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

introduce an intermediate record that bundles all the mixins of a structure,
but not the representation type; the latter is packed in a second stage, similarly
to the top structure of a telescope. We call this intermediate record a class, by
analogy with open-recursion models of objects, and Haskell type classes; hence
in our design structures are represented by packed classes.

T
Zmod

MixinMixin
Eq

Fig. 1. Telescopes for Equality and
Zmodule

T

Class
Zmod

Mixin
Eq

Mixin
Zmod

type
Zmod

Fig. 2. Packed class for Zmodule

Here is the code for the packed class for a Z-module:

Module Zmodule.

Record mixin_of (T : Type) : Type := ...

Record class_of (T : Type) : Type :=

Class {base :> Equality.class_of T; ext :> mixin_of T}.

Structure type : Type :=

Pack {sort :> Type; class : class_of sort; _ : Type}.

Definition unpack K (k : forall T (c : class_of T), K T c) cT :=

let: Pack T c _ := cT return K _ (class cT) in k _ c.

Definition pack :=

let k T c m := Pack (Class c m) T in Equality.unpack k.

Coercion eqType cT := Equality.Pack (class cT) cT.

End Zmodule.

Notation zmodType := Zmodule.type.

Notation ZmodType := Zmodule.pack.

Canonical Structure Zmodule.eqType.

The definitions of the class_of and type records are straightforward; unpack
is a general dependent destructor for cT : type whose type is expressed in terms
of sort cT and class cT. Almost all of the code is fixed by the design pattern;
indeed the definitions of type and unpack are literally identical for all packed
classes, while usually only the name of the parent class module (here, Equality)
changes in the definitions of class_of and pack.

Indeed, the code assumes that Module Equality is similarly defined, because
Equality is a top structure, the definitions of class_of and pack in Equality

reduce to

Notation class_of := mixin_of.

Definition pack T c := @Pack T c T.

While Pack is the primitive constructor for type, the usual constructor is pack
, whose only explicit argument is a Z-module mixin: it uses Equality.unpack to



Packaging mathematical structures 7

break the packed eqType supplied by type inference into a type and class, which
it combines with the mixin to create the packed zmodType class. Note that pack

ensures that the canonical Type projections of the eqType and zmodType structure
are exactly equal.

The inconspicuous Canonical Structure Zmodule.eqType declaration is the
keystone of the packed class design, because it allows Coq’s higher order uni-
fication to unify Equality.sort and Zmodule.sort. Note that, crucially, Zmodule
.eqType int_zmodType and int_eqType are convertible; this holds in general be-
cause Zmodule.eqType merely rearranges pieces of a zmodType.For a deeper struc-
ture, we will need to define one such conversion for each parent of the structure.
This is hardly inconvenient since each definition is one line, and the convertibility
property holds for any composition of such conversions.

3 Description of the hierarchy

Figure 3 gives an account for the organization of the main structures defined in
our libraries. Starred blocks denote algebraic structures that would collapse on an
unstarred one in either a classical or an untyped setting. The interface for each
structure supplies notation, definitions, basic theory, and generic connections
with other structures (like a field being a ring).

In the following, we comment on the main design choices governing the defini-
tion of interfaces. For more details, the complete description of all the structures
and their related theory, see module ssralg on http://coqfinitgroup.gforge.

inria.fr/.
We do not package as interfaces all the possible combinations of the mixins

we define: a structure is only packaged when it will be populated in practice. For
instance integral domains and fields are defined on top of commutative rings as
in standard textbooks [1], and we do not develop a theory for non commutative
algebra, which hardly share results with its commutative counterpart.

3.1 Combinatorial structures

SubType structures To handle mathematical objects like“the units of Z/nZ”,
one needs to define new types in comprehension-style, by giving a specification
over an existing type. The Coq system already provides a way to build such
new types, by the means of Σ–types (dependent pairs). Unfortunately, in gen-
eral, to compare two inhabitants of such a Σ-type, one needs to compare both

components of the pairs, ie. comparing the elements and comparing the related
proofs.

To take advantage of the proof-irrelevance on boolean predicates when defin-
ing these new types, we use the following subType structure:

Structure subType (T : Type)(P : pred T): Type := SubType {

sub_sort :> Type;

val : sub_sort -> T;

Sub : forall x, P x -> sub_sort;
_ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u;
_ : forall x Px, val (@Sub x Px) = x}.



8 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

Equality

Choice

CountType

FinType

Field

Closed

Ring

Unit

Ring

Zmodule

Type

Commutative

Unit

Ring

IntegralDomain

Field

Commutative

Ring

Decidable Field

Type

SubType

*

*

*

*

*

Fig. 3. The algebraic hierarchy in the ssreflect libraries

This interface gathers a new type sub_sort for the inhabitants of type T satisfying
the boolean predicate P, with a projection val on type T, a Sub constructor,
and an elimination scheme. Now, the val projection can be proved injective: to
compare two elements of a subType structure on type T it is enough to compare
their projections on T. A simple example of subType structure is provided by
finite ordinals, defined by the following sigma-type:

Inductive ordinal (n : nat) := Ordinal m of m < n.

where < stands for the boolean strict order on natural numbers. In Coq, the
definition of this inductive type automatically generates the ord_recT associated
elimination scheme. We can hence easily equip ordinal with a (canonical) struc-
ture of subType, by providing ord_rect to the SubType constructor, the other
arguments being trivial. Crucially, replacing a standard Coq sig type by this
subType structure, it becomes possible to coerce ordinal to nat.



Packaging mathematical structures 9

Types with a choice function Our intentional, proof-irrelevant representa-
tion of finite sets was sufficient to address quotients of finite objects like finite
groups [8]. However, this method does not apply to an infinite setting, underlying
pervsive arguments like the incomplete basis theorem.

The construction of quotients and its practice inside type theory based proofs
assistants has been quite intensively studied. In classical systems like HOL,
the infrastructure needed to work with quotient types is now well understood
[15]. In an intuitionist, intentional setting, two solutions are usually considered.
The first one is using Setoids [16], explicitly handling the involved equivalence
relation, and the proved substitutive contexts. Yet this approach is not quite
adapted to the complex statements that combine several mathematical theories.
The second one is the axiomatic approach, demanding in particular an axiom
of extensionality. To get the best of both worlds, we combine the structure of
types with equality with a choice operator on decidable predicates in a Choice

structure. This structure, at the top of the hierarchy is embedded in every lower
level algebraic structure.

To construct objects like linear bases, we need to choose sequences of el-
ements. Yet a choice operator on a given type does not canonically supply a
choice operator on sequences of elements of this type. This would indeed require
a canonical encoding of (seq T) into T which is in general not possible: for a unit

type (having a single inhabitant), (seq unit) is isomorphic to nat. We hence
come up with the following definition for the Choice mixin and class:

Module Choice.

Definition xfun (T : Type) := forall P : pred T, (exists x, P x) -> T.

Definition correct (f : xfun) := forall (P : pred T) xP, P (f P xP).

Definition extensional (f : xfun) := forall P Q xP xQ,

P =1 Q -> f P xP = f Q xQ.

Record mixin_of (T : Type) : Type := Mixin {

xchoose : xfun T;

xchooseP : correct xchoose;

eq_xchoose : extensional xchoose}.

Record class_of (T : Type) : Type := Class {

base :> Equality.class_of T; ext2 : mixin_of (seq (seq T)) }.

...

End Choice.

The xfun choice operator for boolean predicate should return a witness satisfying
P, given a proof of the existence of such a witness. It should be extensional with
respect both of the proofs of existence and of the predicates. Thanks to Gödel-
style encodings, this definition equips with a choice operator any type of the
form seq (seq .. (seq T)).

Countable structures A choice structure will still not be transmitted to
any desired construction (like product) over types featuring themselves a choice
structure. Types with countably many inhabitants on the other side are more
amenable to transmit their countability. This leads us to define a structure for



10 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

these countable types, by requiring an injection pickle : T -> nat on the un-
derlying type T.

Since the Calculus of Inductive Constructions [11] validates the axiom of
countable choice, it is possible to derive a Choice structure from any countable
type. However since a generic choice construction on arbitrary countable types
would not always lead to the expected choice operator, we prefer to embed a
Choice structure as base class for the Countable structure.

Finite types structures The structure of types with a finite number of inhab-
itants is at the heart of our formalization of finite quotient [8]. The Finite mixin
still corresponds to the description given in this reference, but the FinType struc-
ture now packs this mixin with a Countable base instead of an eqType. Proofs
like the cardinal of the cartesian product of finite types make the most of this
computational content for the enumeration. Indeed the use of (computation of)
list iterators shrink the size of such proof by a factor of five compared to the
abstract case.

3.2 Advanced algebraic structures

Commutative rings, rings with units, commutative rings with units

We package two different structures for both commutative and plain rings, as
well as rings enjoying a decidable discrimination of their units. This structure is
for instance the minimum required on a ring for a polynomial to bound the num-
ber of roots of a polynomial on that ring by the number of its roots (see lemma
max_ring_poly_roots in module poly). For the ring Z/nZ, this unit predicate
selects coprimes to n. For matrices, it selects those have a non-zero determi-
nants. Its semantic and computational content can prove very efficient when
developping proofs.

Yet we also want to package a structure combining the ComRing structure of
commutative ring and the UnitRing deciding units, equipping for instance Z/nZ.
This ComUnitRing structure has no mixin of its own:

Module ComUnitRing.

Record class_of (R : Type) : Type := Class {

base1 :> ComRing.class_of R;

ext :> UnitRing.mixin_of (Ring.Pack base1 R)}.

Coercion base2 R m := UnitRing.Class (@ext R m).

...

End ComUnitRing.

Its class packages the class of a ComRing structure with the mixin of a UnitRing

(which reflects a natural order for further instanciation). The base1 projection
coerces the ComUnitRing class to its ComRing base class. Note that this definition
does not provide the required coercion path from a ComUnitRing class to its
underlying UnitRing class, which is only provided by base2. Now the canonical
structures of ComRing and UnitRing for a ComUnitRing structure will let the latter
enjoy both theories with a correct treatment of type constraints.



Packaging mathematical structures 11

Decidable fields The DecidableField structure models fields with a decidable
first order theory. One motivation for defining such a structure is our need for
the decidability of the irreducibility of representation of finite groups, which is
a valid but highly non trivial [17] property, pervasive in representation theory.

For this purpose, we define a reflected representation of first order formu-
las. The structure requires the decidability of satisfiability of atoms and their
negation. Proving quantifier elimination leads to the decidability for the full
first-order theory.

Closed fields Algebraically closed are defined by requireing that any non con-
stant monic polynomial has a root. Since such a structure enjoys quantifier elim-
ination, this is provides a structure of decidable field from any closed field.

4 Population of the hierarchy

The objective of this section is to give a hint of how well we meet the challenge
presented in section 1: defining a concrete datatype and extending it externally
with several algebraic structures that can be used in reasoning on this type. We
aim at showing that this method works smoothly by going through the proofs of
easy lemmas that reach across our algebraic hierarchy and manipulate a variety
of structures.

4.1 Multiplicative finite subgroups of fields

Motivation, notations and framework Our first example is the well-known
property that a finite multiplicative subgroup of a field is cyclic. When applied
to F ∗, the multiplicative group of non-null elements of a finite field F , it is
instrumental in defining the discrete logarithm, a crucial tool for cryptography.
Various textbook proofs this result exist ([18], [1]), prompting us to state it as:

1 Lemma field_mul_group_cyclic : forall (gT: finGroupType)

2 (G : {group gT}) (F : fieldType) (f : gT -> F),

3 {in G & G, {morph f : u v / u * v >-> (u * v)%R}} ->

4 {in G, forall x, f x = 1%R <-> x = 1} ->

5 cyclic G.

The correspondence of this lemma with its natural language counterpart
becomes straightforward, once we dispense with a few notations:

%R : is a scope notation for elements of a ring structure.
{group gT} :

The types we defined in section 3 are convenient for framing their elements in
a precise algebraic setting. However, since a large proportion of the properties
we have to consider deal with relations between sets of elements sharing
such an algebraic setting, we have chosen to define the corresponding set-
theoretic notions, for instance sets and groups, as a selection of elements of
their underlying type, as covered in [8].



12 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

{morph f : u v / u * v >-> (u * v)%R} :
This reads as :∀x, y f(x*y) = (fx)*R(fy).

{in G, P} :
This expands to forall x, x \in G -> P x. An additional & symbol (occur-
ing above in line 3) prompts the expansion of the notation to a multiple
arity.

The scope notation %R suffices to infer the type of the occurences of symbols
u, v and 1 it marks, and hence which product operator they interact with on line
3 . It is then not too difficult to see that field_mul_group_cyclic states that
any finite group G mapped to a field F by f, an injective group morphism for the
multiplicative law of F, is cyclic.5

Fun with polynomials Our proof progresses as follows: if a is an element of
any such group C of order n, we already know that an = 1. C thus provides at
least n distinct solutions to Xn = 1 in any group G containing C. Moreover,
reading the two last lines of our goal above, it is clear that f bijectively6 maps
the roots of that equation of G and those of the equation f(X)n = 1. Since the
polynomial Xn = 1 has at most n roots in F , the arbitrarily chosen C is exactly
the collection of roots of the equation in G.

This suffices to show that for a given n, G contains at most one cyclic group
of order n. Thanks to a classic lemma ([18], 2.17), this means that G is cyclic.

An extensive development of polynomial theory on a unitary ring allows us
to simply drop the following tactic in our proof script:

pose P : {poly F} := (’X^n - 1)%R.

The construction of the ring of polynomials with coefficients in a unitary ring
(F coercing to such a ring) is triggered by the type annotation, and allows us to
transparently use:

– properties based on the datatype of polynomials, such as degree and root
lemmas.

– properties of the Ring structure built on the aforementioned datatype, such
as having an additional inverse.

This part of the proof can therefore be made quick work of in Coq. The final
lemma on cyclicity works with the cardinal of a partition of G, a good use case
for the methods developed in [9], and we complete its proof in a manner similar
to the provided reference.

Importing various proof contexts inside a proof script is therefore a manage-
able transaction : here, we only had to provide Coq with the type of a mapping
to an appropriate unitary ring for it to infer the correct polynomial theory.

4.2 Practical linear algebra

Motivations Reasoning on an algorithm that aims at solving systems of linear
equations seems a good benchmark of our formalization of matrices. Indeed, the

5 Unlike in [8], cyclic is a boolean predicate that corresponds to the usual meaning
of the adjective.

6 We need and use but surjectivity.



Packaging mathematical structures 13

issue of representing fixed-size arrays using dependent types has pretty much
become the effigy of the benefits of dependent type-checking, at least for its
programatically-minded proponents.

However, writing functions that deal with those types implies some chal-
lenges, among which dealing with size arguments. We want our library to simplify
this task, while sharing operator symbols, and exposing structural properties of
objects, as soon as their shape ensures they are valid.

LUP decomposition The LUP decomposition is a recursive function that
realizes that for any non-singular matrix A, we can return three matrices P,L, U
such that

– L is a lower-triangular matrix
– U is an upper-triangular matrix
– P is a permutation matrix

We invite the reader to refer to ([19], 28.3) for more details about this no-
torious algorithm. Our implementation is strikingly similar to a tail-recursive
version textbook version. Its first line features a type annotation that does all
of the work of dealing with matrix dimensions:

1 Fixpoint cormen_lup n : let M := ’M_n.+1 in M -> M * M * M :=

2 match n return let M := ’M_(1 + n) in M -> M * M * M with

3 | 0 => fun A => (1%:M, 1%:M, A)

4 | n’.+1 => fun A =>

5 let k := odflt 0 (pick [pred k | A k 0 != 0]) in

6 let A’ := rswap A 0 k in

7 let Q := tperm_mx F 0 k in

8 let Schur := ((A k 0)^-1 *m: llsubmx A’) *m ursubmx A’ in

9 let: (P’, L’, U’) := cormen_lup (lrsubmx A’ - Schur) in

10 let P := block_mx 1 0 0 P’ * Q in

11 let L := block_mx 1 0 ((A k 0)^-1 *m: (P’ *m llsubmx A’)) L’ in

12 let U := block_mx (ulsubmx A’) (ursubmx A’) 0 U’ in

13 (P, L, U)

14 end.

Here, in a fashion congruent with the philosophy of our archive, we return
a value for any square matrix A, rather than just for non-singular matrices, and
use the following shorthand:

odflt 0 (pick [pred k:fT | P k])

returns k, an inhabitant of the finType fT such that P k if it exists, and
returns ✵ otherwise.

blockmx Aul Aur All Alr

reads as
(

Aul Aur

All Alr

)

.
ulsubmx, llsubmx, ursubmx, lrsubmx

are auxiliary functions that use the shape7 of the dependent parameter of
their argument A to return respectively Aul, All, Aur, Alr when A is as repre-

7 As crafted in line 2 above



14 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

sented above. Notice we will now denote their aplication using the same
subscript pattern.

The rest of our notations can be readily interpreted, with 1 and ✵ coercing
respectively to identity and null matrices of the right dimension, and (A i j)

returning the appropriate ai,j coefficient of A through coercion.

Correction of the algorithm We will omit some of the steps involved in
proving that the LUP decomposition is correct: showing that P is a permuta-
tion matrix, for instance, involved building a theory about those matrices that
correspond to a permutation map over a finite vector. But while studying the
behavior of this subclass with respect to matrix operations gave some hint of
the usability of our matrix library 8, it is not the part where our infrastructure
shines the most.

The core of the correction lies in the following equation:

Lemma cormen_lup_correct : forall n A,

let: (P, L, U) := @cormen_lup F n A in P * A = L * U.

Its proof proceeds by induction on the size of the matrix. Once we make sure
that A’ and Q are defined coherently, it is not hard to see that we are proving
is9:

0

B

B

B

@

1 0 . . . 0
0
... P

′

*A’

0

1

C

C

C

A

=

0

B

B

@

1 0 . . . 0

a
−1

k,0 · P’ *m A’ll L
′

1

C

C

A

*

0

B

B

B

@

A
′

ul A
′

ur

0
... U

′

0

1

C

C

C

A

(1)

where P’,L’,U’ are provided by the induction hypothesis

P’

(

A’lr − a
−1

k,0 · A’ll *m A’ur

)

= L’*U’ (2)

Notice that we transcribe the distinction Coq does with the three product oper-
ations involved: the scalar multiplication (·), the square matrix product (*), and
the matrix product, accepting arbitrary sized matrices (*m). Using block product
expansion and a few easy lemmas allows us to transform (1) into:

0

B

@

A
′

ul A
′

ur

P
′

*m A’ll P
′

*m A’lr

1

C

A
=

0

B

B

@

A
′

ul A
′

ur

a
−1

k,0 · P’ *m A’ll *m A’ul a
−1

k,0 · P’ *m A’ll *m A’ur

+ L’ *m U’

1

C

C

A

(3)

At this stage, we would like to rewrite our goal with (2), even though its righ-
hand side does not occur exactly in the equation. However, SSReflect has no
trouble expanding the definition of the ring multiplication provided in (2) to see
it exactly matches the pattern -[L’ *m U’]IHn. 10.

8 The theory, while expressed in a general manner, is less than ninety lines long.
9 We will write block expressions modulo assoiativity and commutativity, to reduce

parenthsis clutter.
10 See [10] for details on the involved notation for the rewrite tactic.



Packaging mathematical structures 15

We conclude by identifying the blocks of (3) one by one. The most tedious
step consists in treating lower left block, which depends on wether we have been
able to chose a non-null pivot in creating A’ from A. Each alternative is resolved
by case on the coefficients of that block, and it is in that part that we use an
inversion lemma on ·, implicitly noticing matrix coefficient are, here, in a field.
The final proof is fourteen lines long.

5 Related Work

The need for packaging algebraic structures and formalizing their relative in-
heritance and sharing inside proof assistants is reported in literature as soon as
these tools prove mature enough to allow the formalisation of significant pieces of
algebra [2]. The set-theoretic Mizar Mathematical Library (MML) certainly fea-
tures the largest corpus of formalized mathematics, yet covering rather different
theories than the algebraic ones we presented here. Little report is available on
the organization an revision of this collection of structures, apart from comments
[7] on the difficulty to maintain it. The Isabelle/HOL system provides founda-
tions for developing abstract algebra in classical framework containing algebraic
structures as first-class citizens of the logic and using a type-class like mechanism
[6]. This library proves Sylow theorems on groups and the basic theory of rings
of polynomials. Two main algebraic hierarchies have been built using the Coq

system: the seminal Algebra repository [4], which constructs algebraic structures
from monoids to modules, and the CCorn hierarchy [5], mainly devoted to a con-
structive formalisation of real numbers an including a proof of the fundamental
theorem of algebra. Both are axiomatic, constructive, and setoid based. Both
have proved difficult to extend with theories like linear or multilinear algebra,
even on concrete instances. We are currently extending our hierarchy with the
structures needed to extend our infrastructure to the generic theory of vector
spaces and modules.

References

1. Lang, S.: Algebra. Springer-Verlag (2002)
2. Jackson, P.: Enhancing the Nuprl proof-development system and applying it to

computational abstract algebra. PhD thesis, Cornell University (1995)
3. Betarte, G., Tasistro, A.: Formalisation of systems of algebras using dependent

record types and subtyping: An example. In: Proc. 7th Nordic workshop on Pro-
gramming Theory. (1995)

4. Pottier, L.: User contributions in Coq, Algebra Available at
http://coq.inria.fr/contribs/Algebra.html.

5. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic
hierarchy in Coq. Journal of Symbolic Computation 34(4) (2002) 271–286

6. Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Types
for Proofs and Programs, TYPES 2008 International Workshop, Selected Papers.
LNCS (2009)

7. Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative algebra in the Mizar
system. J. Symb. Comput. 32(1) (2001) 143–169



16 François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau

8. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular For-
malisation of Finite Group Theory. In: Theorem Proving in Higher-Order Logics.
Volume 4732 of LNCS. (2007) 86–101

9. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Theorem Proving in Higher-Order Logics. Volume 5170 of LNCS. (2008) 86–101

10. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system.
INRIA Technical report, http://hal.inria.fr/inria-00258384.

11. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I
(1996)

12. Sozeau, M., Oury, N.: First-Class Type Classes. In: Theorem Proving in Higher
Order Logics, 21th International Conference. Volume 5170 of Lecture Notes in
Computer Science., Springer (August 2008) 278–293

13. Pollack, R.: Dependently Typed Records for Representing Mathematical Struc-
ture. In: Theorem Proving in Higher Order Logics, TPHOLs 2000, Springer-Verlag
(2000) 462–479

14. Bruijn, N.G.D.: Telescopic mappings in typed lambda calculus. Information and
Computation 91 (1991) 189–204

15. Paulson, L.C.: Defining Functions on Equivalence Classes. ACM Transactions on
Computational Logic 7(4) (2006) 658–675

16. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional
Programming 13(2) (2003) 261–293

17. Olteanu, G.: Computing the Wedderburn decomposition of group algebras by the
Brauer-Witt theorem. Mathematics of Computation 76(258) (April 2007) 1073–
1087

18. Rotman, J.J.: An Introduction to the Theory of Groups. Springer (November
1994)

19. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. McGraw-Hill (December 2003)


