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Gossip-based computation

of a Gaussian mixture model

for distributed multimedia indexing
Afshin Nikseresht and Marc Gelgon

Abstract— The present paper deals with pattern recognition
in a distributed computing context of the peer-to-peer type,
that should be more and more interesting for multimedia
data indexing and retrieval. Our goal is estimating of class-
conditional probability densities, that take the form of Gaussian
mixture models (GMM). Originally, we propagate GMMs in
a decentralized fashion (gossip) in a network, and aggregate
GMMs from various sources, through a technique that only
involves little computation and that makes parcimonious usage
of the network resource, as model parameters rather than
data are transmitted. The aggregation is based on iterative
optimization of an approximation of a KL divergence allowing
closed-form computation between mixture models. Experimental
results demonstrate the scheme to the case of speaker recognition.

I. INTRODUCTION

The technical issue addressed by this paper is the distributed

computation of a probability density, while the applicative

motivation is multimedia document indexing, in the particular

context of a decentralised, distributed system. In this section,

we first argue for a vision, towards which the scheme we

disclose afterwards only supplies a small brick, but we believe

this foreword to be both stimulating and necessary to justify

the applicative relevance and some technical aspects of the

proposal.

A central and classical need expressed by content-based

indexing of multimedia documents is the assignment of a

symbolic class label to a document or portion thereof, such

as identifying a face, a speaker or a spatio-temporal texture or

event [9]. Supervised learning is the general task for inducing

the class of unlabeled data from labeled examples. Building a

search engine able to recognize very many kinds of such au-

diovisual classes is a formidable task, long rated as unrealistic

by the computer vision community, that is currently reviving

as one of the most stimulating visions for both research and

applications in the field [18], the other major work direction

being ability to find different very different views of the same

physical scene [3]. Characterizing classes involves a careful

design of media-specific observations from the raw data, but

by and large, there should all the more features as there are

more classes to be distinguished, which in turn increases the
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amount for training data needed and the computation power

required. Briefly stated, the work direction is promising but

very demanding.

There are, however, encouraging trends towards the per-

spective of automatic large-scale harvesting of training ex-

amples : (i) joint text/image analysis, which may be fed by

a massive resource of web pages, (ii) recent advances in

weakly supervised learning [20], [23], which enables learning

a class from instances supplied in clutter (e.g. a face within

a complex background), and semi-supervised learning [7],

which can handle jointly class-labelled and unlabelled data

in the training phase. This suggests that the (necessary huge)

amount of training data would inherently be distributed on a

large scale and provided by independent sources that may join

or leave the network. Both for alleviating the computational

cost of learning and for reducing the amount of data on the

network, we examine the case where supervised learning itself

is distributed and, more precisely, decentralized. A suitable

organization for the above vision is a peer-to-peer architecture

[15] which nodes would run a service providing supervised

learning of a multimedia class and would possibly store some

training data. Upon request, it could classify incoming data to

the best of its current knowledge. A peer-to-peer organization

of participant nodes seems relevant, since (i) resources are

dynamic : data and learning/classification services can join

or leave the network at any time; (ii) a node is both client

and server : nodes can learn from one another; (iii) resources

are aggregated : the quality of the global service is due to

its collective aspect; (iv) the system is decentralized : each

contributor can supply data or learning tools, without any

central administration. Similar ideas are also being examined

for collective learning from text data [21] and sensor networks

[17].

As this is a broad perspective, we now restrict the paper to

decentralized supervised learning of a class. We do not address

herein important issues such as service and data localization,

elaborate data placement schemes (examined in [16] for re-

trieval of similar images), the fact that class identifiers should

conform to a standard, nor the query phase.

Let us consider statistical supervised learning of a class. To

allow for a flexible evolution of the set of classes, we favour

a generative approach, that characterizes the class in feature

space, over a discriminant approach, that learns directly to dis-

tinguish it from other classes. This generative approach leads

to more tractable solutions, as introduction of new classes

into the system does not require any update to description
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GMM estimation → M2

Send M2 , Mr or don’t change

Fig. 1. This figure illustrates a single gossip cycle. Let us consider 3 nodes
(the three columns of the figure) that all aim at estimating the class-conditional
density of the same class. Each owns some training data, on which it computes
it local estimate, of which only M1 and M2 are relevant in this figure. M1

and M2 are merged into Mr , the quality of which of evaluated over the data
D3 of the third node. The best performing model is then assigned to nodes
1 and 2.

of known classes. Consequently, the remainder of this paper

will describe the technique for a single class. Practically,

we estimate the class-conditional probability density. In this

paper, the feature space is assumed common to all nodes in

the network. While this leaves space for extending the work,

this assumption does not contradict the ideas of the proposal

and is applicable to the speaker recognition task on which we

apply it.

We further focus on the case where all densities are

Gaussian mixture models. This model form is of ubiquitous

use in modelling multimedia data, for it has numerous good

properties (density modelling accuracy, good behaviour in high

dimension space, clean procedures for estimation and model

complexity determination). They have widely been used to

model audio classes [19], images [11] or motion-based spatio-

temporal events in videos [9].

The mechanism we employ to propagate mixtures between

cooperating nodes that participate in the scheme is gossip.

Algorithm 1 defines its simplest version for our problem.

Gossiping, here, is a non-ending background process in which

acquainted nodes may share their models. Any node may then

supply, at any time, an estimate of the model ; this estimate

improves over time, thanks to the mechanisms proposed below.

Fig. 1 shows the procedure for a single gossip cycle. In this

work, the distribution of computation and data is due to the

applicative context, in which independent systems cooperate.

The key goal of the system is to obtain an estimate which

quality is close to what would have been estimated in a

centralized version.

Despite its simplicity, this asynchronous, decentralized tech-

nique is very effective. Its good properties are extensively

reviewed in [8], but may summed up for our problem as

follows :

• speed up by implementing coarse-grain parallelism over

the set of nodes. This occurs at two levels : (1) gossip-

based parallelism of learning by merging (step 2 of

Algorithm 1) and (2), for each step of (1), parallelism

in the computation of the likelihoods for validation (step

3 of Algorithm 1);

• robustness both in the distributing computing and statis-

tical estimation senses, since :

– any node may leave during the gossiping without

causing major degradation or join and obtain, with

high probability, an effective estimate of what has

been previously collectively estimated on the net-

work,

– a very poor estimate in a minority of nodes does not

affect the collectively estimated model.

Efficiency of the proposed technique comes the two main

following features:

• merging density estimates between nodes only involves

transmission of, and computation on, mixture model

parameters, rather than the generally large amount of

multimedia data (or feature vectors that represent it). As

a result:

– the amount of information to be sent on the network

is very low ;

– computation on nodes remains low, relatively to

estimation tasks that operate on the multimedia data

or feature vectors,

• during the gossip-based model learning phase, the com-

plexity of any mixture (i.e. the number of Gaussian

components) keeps a constant order of magnitude. Let

us underline that the distributed learning phase and the

querying phase, can fully overlap, since mixture reduction

keeps the class representation directly ready for query

evaluation.

The key mechanism that enables these properties is a criteria

and an algorithm related to merging two (or more) mixture

models, which are exposed further down.

A work which goal is close to ours, i.e. gossip-based

distributed estimation of the parameters of a Gaussian mixture,

has been recently presented in [13]. Their approach consists in

introducing parallelism in the EM algorithm, by gossiping the

M-step, resorting to original data. In our case, in contrast,

each contributing node is in charge of estimating its local

Gaussian mixture model, and is free to use any mixture

model parameter estimation technique for this. The latter point

gives an interesting degree of freedom towards a completely

decentralized system : only the mixture description need to

be standardized, while the node may benefit from recent

advances in mixture estimation techniques (e.g. variational

Bayes [2], or versions suitable for large amounts of data

[22]). Further, the averaging in [13] between the parameters

to be merged is simply uniform. To our understanding, a more

central difference is that their way of merging knowledge

between mixture models does not (at least explicitely) address
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Algorithm 1 A gossip cycle for merging-sharing Gaussian mixture models

1. Select at random two nodes in the network, which models are M1 et M2 (practically, nodes should autonomously select

their partners in a dialogue)

2. Concatenate the components of M1 and of M2 to form a single model Mc, then reduce Mc to a merged model Mr with

lower number of Gaussian components.

3. Evaluate which among M1, M2 and Mr better describes third party data from the data class. A key point is that generally,

Mr will perform best.

4. Assign this best model to M1 and to M2

correspondence between components to be merged, and leaves

open the issue of merging models with different number of

components. More generally, we shall see that our technique

is amenable to variation of the number of components in the

mixture along the gossiping process.

In the remainder of this paper, we detail the proposed ap-

proach for distributed model learning (section 2) and demon-

strate it on the example of a speaker recognition task (section

3). Section 4 provides concluding remarks.

II. PARAMETER-LEVEL MERGING OF GAUSSIAN MIXTURE

MODELS

This section justifies and details how mixture models may

be merged using parameter-level rather than data-level com-

putations : section 2.1 defines the optimality criterion aimed at

of the merged model, while section 2.2 discusses an approach

for conducting the corresponding optimization.

A. Optimality criterion

Let two nodes each carry different probabilistic Gaussian

mixture models, denoted M1(x) and M2(x), associated to the

same multimedia class and hence hidden density p(x). The

mixtures can be expressed as :

Mk(x) =

mk
∑

i=1

wi
kN i

k(x), k = 1, 2 (1)

where N i
k(x) is a Gaussian component which mean is µi

k and

covariance Σi
k and the wi

k are scalar weights. Model Mk is

estimated on a data set of size nk located on node k. p(x) can

be estimated by concatenating incoming mixtures as follows :

Mc(x) =
1

n1 + n2
(n1

m1
∑

i=1

wi
1N

i
1(x) + n2

m2
∑

i=1

wi
2N

i
2(x)) (2)

However, the m1 + m2 components in Mc are generally

largely redundant, which implies a useless increase in eval-

uation cost of likelihoods for this density at query time,

when merges are chained gy gossip. Consequently, scaling

up the scheme requires transforming Mc into a reduced

mixture Mr =
∑mr

i=1 wi
rN

i
r(x) that preserves reasonnably

well the density while only having the necessary number

of components for this. The point of this policy is that the

order of magnitude of the number of components is kept

constant through propagation, although it may fluctuate to fit

the complexity of the density.

The class models in the nodes would be used to classify new

data, typically based on maximum likelihood or more elaborate

criteria involving the likelihood. In order to preserve the likeli-

hood as much as possible, we seek a mixture model Mr which

maximizes the expected log-likelihood of data D assumed to

be drawn from Mc, see (3). It is classically established [5] that

this amounts to minimizing the Kullback-Leibler divergence

KL(Mc‖Mr), defined by (5), which, in short, measures the

loss of information due to the approximation of Mc by Mr :

M̂r = arg max EMc
[ ln p(D|Mr) ] (3)

M̂r = arg min

[

−

∫

Mc(x) ln Mr(x) dx

]

(4)

M̂r = arg min

[

−

∫

Mc(x) ln
Mr(x)

Mc(x)
dx

]

(5)

A major issue for the practical computation of (5) is the lack

of closed form for this divergence, in the case of Gaussian

mixtures, but we propose a bypass in the form of the following

approximation. Linearity of the integral applied to (4) provides

:

M̂r = arg min

[

−
∑

i

wi
c

∫

N i
c(x) ln Mr(x) dx

]

(6)

In each term of the sum in (6), we approximate the mixture

Mr by only one of its Gaussian components, selected as the

best approximation to N i
c , in the KL sense. This leads to the

following similarity measure :

d(Mc, Mr) =

m1+m2
∑

i=1

wi
c

mr

min
j=1

KL(N i
c‖N

j
r ) (7)

This similarity measure can easily be computed at low-

cost, since the Kullback divergence between two Gaussians,

which parameters are (µ1, Σ1) and (µ2, Σ2), benefits from the

following closed-form expression :

1

2
(log

|Σ2|

|Σ1|
+Tr(Σ−1

2 Σ1)+(µ1−µ2)
T Σ−1

2 (µ1−µ2)−δ) (8)

where δ is the dimension of the feature space.

B. Optimization : an iterative scheme and its initialization

To gain insight into complexity, we assume m = m1 ≈
m2 ≈ mr. The search space is of size O(m2) and typically

cannot be searched exhaustively if there are more than 10

components, which is common when modelling multimedia

classes. Hence, we optimize locally criterion (7) with an iter-

ative scheme detailed in Algorithm 2 below, which is adapted

(by several aspects) from a technique [10] proposed in the

context of hierarchical clustering. The procedure bears analogy
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with the classical k-means algorithm, in that it operates local

optimization by alternatively assigning elements to groups

and re-computing group representatives. In our context, the

elements are the components of Mc and the representatives

those of Mr.

As often done with k-means, the initial assignements π0

from which local optimization proceeds could be drawn ran-

domly. Our context suggests a more effective initialization

criteria in our context : since generally, Gaussian components

coming from the same mixture are not redundant, we draw π0

at random with the constraint that components arising from the

same mixture are not initially grouped. The iterative scheme

may still regroup them later, if the data drives it that way.

As we draw multiple starting points to retain the best local

optimum, this strategy improves sampling of the search space.

C. Complexity of the reduced model

An important point in the proposed approach is the determi-

nation of the number of Gaussian components in the reduced

model Mr. The seminal study reported in [1] showed that

estimating the Kullback divergence is in fact affected by a bias

that grows with the number of parameters to be estimated, i.e.

with the number of components. It also supplies a first-order

approximation of this correction, which we apply here to the

definition of d(Mc,Mr), which hence becomes :

d(Mc,Mr) =

m1+m2
∑

i=1

wi
c

mr

min
j=1

KL(N i
c‖N

j
r ) + νMr

(13)

where νMr
is the number of independent parameters in the

mixture. Our experimental results back the application of this

approximation : the number of components obtained in prac-

tice appears very similar to that obtained by usual (AIC,BIC)

model selection criteria on the model computed directly on

all the data (i.e. discarding the distributed aspect of the

learning process). We evaluate exhaustively from 1 to m1+m2

the performance of each possible number of components in

Mr, in independent trials. A faster alternative would be to

compute this recursively downwards from m1 + m2 to 1, but

experimental results suggest this can excessily prune the search

space at early stages.

D. Validation of a merge operation

In this section, we discuss the need to validate the ability

of Mr to generalize to the complete data over the network.

Generally speaking, estimation of statistics by gossiping may

be shown to converge in some cases (e.g. computing a means

and quantiles [12]) but in our problem, the lack of a global

view on the data occasionnally leads to a situation where M̂r

is a better model than M1 and M2 for local data D1 ∪ D2,

but worse on the complete data over the network.

We thus introduce in the scheme a step to validate Mr on

third-party data. As described in algorithm 3, it consists in

sending M̂r,M1 and M2 to a sufficient number of randomly

selected acquaintance nodes, each of which make these models

compete on its local data and returns the corresponding three

likelihoods. When the requesting node has received a sufficient

number of such responses (4 in our experiments, further work

could make this adaptive), it takes the decision to validate Mr

or reverse to M1 and M2.

This phase loads the network with more messages, but (i)

these messages are very short and no multimedia data nor

feature vectors are transmitted (ii) computation of likelihoods

is inexpensive.

While exchanges between nodes in this validation step may

be implemented in a variety a ways, limited depth network

flooding is an interesting one, offering the following perspec-

tive of extension on the present work : likelihood information

being collected and aggregated through the flooding may be

useful not only to the node emitting the request, but also to

other nodes, since at no extra cost, they can learn from it

about the quality of their own model, relatively to others.

In other words, a ranking of the nodes may be learned in

a decentralized way, which could help route queries to more

effective models.

III. EXPERIMENTAL RESULTS

The example of distributed speaker recognition is taken

throughout this section, as it is a representative case where

Gaussian mixtures are very popular. The technique however

directly applies to a wide range of audiovisual classes. We first

focus on the merging operation, i.e. at local scale (section III-

A). We then observe global performance, in the context of

gossip-based mixture propagation (section III-B). Throughout

these experimental results, the figure of merit is the quality of

the class-conditional pdf estimate, in particular with respect

to a conventional, centralized approach, rather than ability of

the scheme to classify new data correctly. The latter however

derives direcly from the former in a Bayesian decision rule.

A. Detailled view on one or two merge operations

In the first experiment, each of three nodes has learnt

a class-conditional density for a speaker in a common 13-

dimension mel-cepstral feature space [19]. The three corre-

sponding mixtures merge simultaneously into a single mix-

ture (straightforward since (1) generalizes to merging more

than two mixtures). Each node was provided with different

training data from the same speaker and the duration of audio

recordings was between 7 to 16 seconds, depending on node.

Each node provides a mixture estimate from local data, and

is free to choose the precise technique used for this. For our

experiments, the Expectation-Maximization local optimization

algorithm is employed, with some enhancements [4] to limit

poor local minima. Each mixture also autonomously and au-

tomatically determines its number of components (in practice,

the common BIC criterion was used). All covariance matrices

in the mixture are full (rather than spherical or diagonal).

The three incoming nodes respectively have 4,4 and 5 com-

ponents. Their concatenation into Mc supplies a 13-component

model, which should be reduced to a lower number of compo-

nents, to be determined. Fig. 2(a) displays, in the example case

of the second feature vector, the three incoming densities, the

concatenated density and the density after mixture reduction.
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Algorithm 2 Iterative optimization algorithm for estimating the reduced model Mr (criterion (7))

for mr : from 1 to m1+m2 do

Start from a constrained random initialization π̂0 (or given, if available)

it = 0
repeat

1. Re-fit mixture Mr :

given the current component clustering π̂it, set initially or computed at the previous iteration, update mixture model

parameters as follows :

M̂r

it
= arg min

Mr∈Mmr

d(Mc,Mr, π̂
it) (9)

where Mmr
is the space of all mixture with mr components that may be formed by grouping components of Mc.

This re-estimation in fact amounts to updating each component of Mr as follows. For component j, algebra leads to

the following expressions :

ŵj
r =

∑

i∈π−1(j)

wi
c, µ̂j

r =

∑

i∈π−1(j) wi
cµ

i
c

ŵ
j
r

, Σ̂j
r =

∑

i∈π−1(j) wi
c(Σ

i
c + (µi

c − µ̂j
r)(µ

i
c − µ̂j

r)
T )

ŵ
j
r

(10)

where π−1(j) is a light notation for π̂−1,it(j), the set of Mc that project onto component j in Mr. Let us note that Σ̂j
r

is generally non-diagonal, even if the components being grouped have diagonal covariance matrices, such as is often

the case with decorrelated features used in e.g. speech or speaker recognition.

2. Grouping components :

for mixture M̂ it
r obtained in Step 1, we seek the mapping πit+1, defined from {1, . . . , m1 + m2} into {1, . . . , mr},

which best groups components of Mc to build components of M̂ it
r , in the following sense :

π̂it+1 = arg min
π

d(Mc, M̂r, π) (11)

In other words, each component i of Mc projects onto the closest component j of M̂ it
r , according to their Kullback

divergence ((12) below). In this phase, we resort to exhaustive search among ’source’ components, which has a low-cost,

thanks to the availability of (8).

πit+1(i) = arg min
j

KL(N i
c ||N

j
r ) (12)

3.it=it+1

until convergence (i.e. πit+1 = πit)

compute d(Mc, M̂r) =
∑m1+m2

i=1 wi minmr

j=1 KL(N i
c‖N

j
r ) + νMr

end for

Retain model M̂r which minimizes d(Mc, M̂r) over the set of candidate mixture complexities explored.

Algorithm 3 Validation of a merge

for enough times do

Draw node k at random among acquaintance nodes

Sends M̂r,M1,M2 to node k running a GMM evaluation service

Node k computes p(Dk|M̂r), p(Dk|M1), p(Dk|M2) and sends them back to current node.

end for

if p(Dk|M̂r) > p(Dk|M1) and p(Dk|M̂r) > p(Dk|M2) then

Validate the merge operation (proceed as in Algorithm 1)

else

ignore it and keep M1 and M2

end if
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The mixture estimated (again enhanced EM) on the whole

the data over the network is also plotted. While the main point

of this paper is to propose a decentralized alternative to this,

this direct model (denoted Md) serves herein as a reference

density against which we evaluate the loss due to distribution

of the data and computations. Fig. 2(b) shows that criterion

(13) chooses a reduction from 13 to 4 components. To evaluate

the effectiveness of the mixture reduction, Fig. 2(c) provides

numerical evidence in terms of Kullback-Leibler loss between

reference mixtures (Md and Mc) and approximating mixtures.

KL divergence is used (rather than its approximation proposed

in (7)). We evaluate it by a Monte-Carlo procedure with N=108

samples, as follows :

KL(p, p̃) ≈
1

N

N
∑

i=1

log
p(x)

p̃(x)
(14)

where p and p̃ respectively denote an ideal model and its

approximation. While this should be closer to the true loss than

(7)), its computational cost forbids its usage in the scheme, it

is only used here for external assessement.
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mixture 1 0.125 0.112
mixture 2 0.109 0.117
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(b)

Fig. 3. Three mixtures merge (not simulatenously, see main text). (a) shows
the feature vectors and the centres of the Gaussian components (for incoming,
concatenated, reduced models, as well as, for reference, the mixture that could
be directly estimated over the whole data set). (b) Evaluation of the KL loss
between reference densities (concatenated, direct) and models coming in and
out of the merge operation.

It can be observed that the direct mixture is much better

approximated by the reduced mixture than by any of the in-

coming mixtures. This does not come at the expense of mixture

complexity, since the reduced mixture has 4 components, in

fact the same is estimated by a BIC criterion for the direct

model.

We report a second experiment, applied to a different

speaker. It again involves three nodes but, in contrast to

the previous experiment, two nodes are merged, and then

a third node is merged to their reduced mixture to form a

final reduced mixture. The experiment is conducted in a 2-

dimension space, for the sake of clarity of fig. III-A(a). Its

purpose is more an illustration value than a demonstration of

large scale effectiveness. The centres of the incoming mixtures,

as well as the centres of the reduced and direct mixtures are

superimposed to the feature vectors, and the two latter are

clearly very close.

B. Gossip-based estimation

This section reports the performance of the proposed tech-

nique in the gossip setting. Each node owns different data

from the same speaker and independently estimates its own

model. Practically, EM with multiple starts is employed in

our experiments for this purpose but, as stated before, other

techniques may be used.
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We evaluate the capability of each mixture on the network to

model data D from the class of interest (here, a speaker) with

the classical marginal likelihood [14]. Data D here is the union

of the data dispatched over all nodes, which is never gathered

when the practical system runs, but is a relevant figure of merit

for external observation.

We carry out the practical computation of the marginal

likelihood of the data with the BIC criterion :

BIC(D|M) = −log p(D|θ̂) +
ν log(♯D)

2
(15)

where mixture M is defined by a parameter vector θ, p(D|θ)
is the likehood of the data for this model, ν is the number

of independent parameters in the mixture and ♯D the size of

the data set (the data set does not need to propagate in the

network, but its size should propagate and cumulate in n1 and

n2)

Fig. 4 depicts, after each gossip cycle and on each node,

the evolution of criterion (15), which should be minimized.

The following observations can be made. The process sta-

bilizes around a "collective model". Convergence cannot be

established, as illustrated in the zoom into Fig. 4, due to

the lack of an optimization criterion global to the network,

which is the case in the prototypal example of computation

of a mean [13], [6]. From a practical viewpoint, however, all

nodes are rapidely assigned a mixture that is better (slightly or

largely) than any of the original mixture, which later implies

improvement in recognition rates when the system is queried.

In this experiment, the effectiveness of the collective model

is significantly better than that of a single mixture model that

could have been estimated directly on the whole data (the

performance of which is represented by a dashed horizonal

line). This latter advantage however reduces when the size

of the feature space is large compared to the amount of

training data (dimensionality curse). Overall, however, this

example, which is representative of many other obtained,

suggests that the proposed scheme provides promising results

on three points : quality in model estimation, the flexibility

of a decentralized system, and speed up thanks to parallel

computing.

It should also be underlined that the horizontal axis only

indicates time order and is non-linearly related to time, since

gossiping is strongly parallel.

As the result depends on the order in which the nodes

are merged and on the random initializations involved in the

merging algorithm, we draw in fig. 5 statistics to average out

those effects. Fig. 5 indicates how variable the likehood is

over the set of nodes (this variability is averaged over 50

independent runs of the complete gossip).Variability decreases

very fast ; the transient phase with higher variability (up to the

18th gossip cycle) corresponds to not all the nodes having yet

participated in the gossip process.

As illustrated in fig. 6, the scheme can easily handle a node

that joins the network. In this example involving 20 nodes,

an additional node joins after 50 cycles. Soon after it joins, it

benefits from the previous exchanges. Indeed, the amount of

data available for mixture estimation ((n1 and n2) in eq. (2)

) cumulates as gossip progresses.
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Fig. 4. All graphs measure the BIC criterion over time (this criterion evaluates
the ability of the Gaussian mixture models to generalize to all data from the
class being learnt; it should be minimized). Top : this evolution is shown for
the 20 nodes participating in the experiment. As the 20 graphs are somewhat
superimposed, Medium and Bottom figures are zooms on the top figure, for
clarity sake.
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Fig. 5. This graph shows the statistical behaviour of the system : the
variability of the likelihood over the set of nodes participating in the gossip.
This variability is averaged over 50 runs
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Fig. 6. This experiment illustrates fast integration of a node joining a
distributed learning process involving 20 nodes. Right from its first contact
(cycle 73), the joining node strongly improves by catching the central trend
of the network.

IV. CONCLUSIONS

This work fits into a vision towards a multimedia in-

dexing and retrieval system, which would be decentralized

and deployed on a large scale. In this setting, algorithmic

components are required, that induce low computational cost,

incrementality and only require a little amount of bits to transit

between nodes.

This paper proposed a novel scheme for this purpose,

dedicated to Gaussian mixtures models, which are one of the

most useful representations of a multimedia class. The pro-

posal wraps a parcimonous mixture model merging technique

into a gossip framework, demonstrating that it can efficiently

propagate and collectively improve estimates over time. The

point of the gossip framework is that it is well suited to

dynamic, decentralized computing environments.

More generally, crossing pattern recognition and large-scale

distributed computing is a promising direction in content-based

multimedia indexing, since the first ingredient can greatly

enhance services offered to users, far beyond file sharing,

while the second provides data, computation and algorithmic

resources.
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