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Abstract— This paper introduces a new approach to solve sensors. The questions are then the following at each time:
sensor management problems. Classically sensor managermhenhow must we group the sensors, how long, in which direction,
problems can be well formalized as Partially-Observed Marlov 5 \yith which functioning mode? The increasing complexity
Decision Processes (POMPD). The original approach develppd fthe t ts to be detected. tracked and identified. males t
here consists in deriving the optimal parameterized policybased ot the targets to be de ecg N racked and laentined, m S
on stochastic gradient estimation. We assume in this work ¢t Mmanagement even more difficult and led to the development of
it is possible to learn the optimal policy off-line (in simulation researches on the definition of an optimal sensor management
) using models of the environement and of the sensor(s). Thescheme in which the targets and the sensors are treated
learned policy can then be used to manage the sensor(s). Indar altogether in a complex dynamic system [4].

to approximate the gradient in a stochastic context, we intoduce S M thas b lar this last
a new method to approximate the gradient, based on Infinitesnal ensor Management has become very popular this last years

Approximation (IPA). The effectiveness of this general franework @nd many approaches can be found in the litterature. In [8] an
is illustrated by the managing of an Electronically ScannedArray  [6] the authors use a the modelling of the detection process
Radar. of an Electronically Scanned Array (ESA) Radar to propose
Keywords: Sensor(s) Management, Partially Observable management scheme during the detection step. In [7]-[9] an
Markov Decision Process, Stochastic Gradient Estimation, information-based approach is use to manage a set of sensors

AESA Radar. From a theorical point of view the sensor management can be
Sensor(s) Management Special Session modelled as a Partially Observable Markc_)v Decis_ion.Process
(POMDP) [10]-[12]. Whatever the underlying applicatiome t
|. INTRODUCTION sensor management problem consists in choosing at each time

Years after years the complexity and the performanceésan action A, within the set.A of available actions. The
of many sensors have increased leading to more and moheice of A; is generally based on the density state vector
complex sensor(s)-based systems which supply the decisi®n describing the environment of the system and variables
centers with an increasing amount of data. The number, thethe system itself. It is generally assumed that the state
types and the agility of sensors along with the increasetitjuaor at least a part of this state is Markovian. Moreover in
of data far outstrip the ability of a human to manage thens it most of the applications, we only have access to a partial
often difficult to compare how much information can be gaineidformation of the state an; must be estimated from the
by way of a given management scheme [1]. It results from thiseasurementgY; }1<s<;. This estimation process is often
the necessity to derive unmanned sensing platforms tha haerived within a Bayesian framework where we use state-
the capacity to adapt to their environment [2]. This problemlynamics and observation models such as:
is often refered as th&ensor(s) Management Problerim
more simple situations, the operational context may lead to Xip1 = F(Xy, Ay, Ny) (1)
works on sensor(s) management like in tiaglar - infrared
sensorcase [3]. A general definition of this problem could
then be : sensor management is the effective use of available
sensing and database capabilities to meet the mission.goalsvhere N;, W;, F' and H respectively stands for the state
Many applications deal with military applications,a cilaat noise, the measurements noise, the state-dynamics and the
one being to detect, to track and tp identify smart targetseasurement functiort” and H are generally time varying
(a smart target can change its way of moving or its waynctions. The control problem consists in finding the sched
of sensing when it detects it is under analysis) with severialy policy 7 i.e. selectA, given the past and the possible

Yy = H(X¢, Wy) 2



futures. However, this control problem may have a theorical

solution, it is generally untractable in practice. Howefew

works propose optimal solution in the frame of POMDPs / fe) K (dwlwe—) = /f(F(xt—l’“))V(d“) (6)

like [12]. Beside, several works have been carried out to

. i S ) . . and

find sub-optimal policies like for instance myopic policies

Reinforcement Learning and Q-Learning have also been used

to propose a solution ( [13], [14]). / fzo)pu(dzy) = /f(FM(u))y(du), (7)
We propose in this paper to look for a policy within a class x

of parametrized policyry and to learn it which means learn In many practical situationd/ = [0,1]"", andu is any-

the optimal value ofy. Funding our work on the approachuple of pseudo random numbers generated by a computer.

described in [15] we assume that it is possible to learn thi®r sake of simplicity, we adopt the notatioAdzo|z_1) £

policy in simulationusing models of the overall system. Oncg:(dz) and F(z_1,u) £ F,(u). Under this framework, the

the optimal parameter has been found it is used to managarkov Chain (X;);>o is fully specified by the following

the sensor(s). The frame of this work being the detection adgnamical equation:

localization of targets, we show in the last part of this pape N

how it may be applied the the management of an ESA radar. X1 = F(Xy,Uy), Uy by (8)

The section| || described the modelling of a sensor man- . .
: I:l : ‘N9 The observation procesy’,).cn, defined on the measur-

agement problem using a POMDP approach. In the sectio . : .
IE we derive the algorithm to learn the parameter of th Blfth% (I:Iéé\)/}v i:g(};z))r;(;istiitr:lgjlagx)gglg?l%wﬂéiirsetate process

policy.In sectionm/ we show how this method may be use
for the tasking of an ESA radar. Finally secti@ V exhibits

firts simulations results. P(Y, € dyn|X:, = x4, An) = 9(Yn, 1, , An)Mdy:)  (9)
Il. MODELLING where A, € A is defined on the measurable space
A. POMDP Modelling (A,0(A)) and )\ is a fixed probability measure @, o(Y")).

@zéve assume that observations are conditionally indepgnde
1Y

Let us consider three measurable continuous spaces den n the state process we cab Wiite < i, j < t, i # j:

by X, A and), X is called thestate spacg) the observation
space andA the action space We call M(X) the set of
all the measures defined oki. A Partially-Observable De- P(Y; € dy;, Y; € dyj| Xow, Ai, Aj) =

cision Proceess is defined bystate procesgX;);>o € &, P(Y; € dyi| Xo.t, A))P(Y; € dy;] Xo.t, Aj) (10)
an observation procesgY;);>1 € Y and a set of actions .

(A¢)i>1 € A. In these definitiong stands usually for the where we have adopted the usual notatipn= (zy)i<k<;-
time. The state process is an homogeneous Markov chain Wh Filtering distribution in a Partially-Observable Marko
initial probability measurg.(dzq) € M(X) and with Markov pecision Process

transition kemeli (dzy1|x:) ( [16]) Given a sequence of actiofy.,, and a sample trajectory of

the observation process.,, and indices{ni, ns, t1,t2} such

¥ 2 0, Xepr ~ K(1X0) ©®) that1 <ni <ng<nand0 < t; <t <ty <t < ty,
we define, using the , the posterior probability distribatio
XO ~ W (4) Mt1:t2|n1:n2 (dwhztg) by ( [17])
(Yz)e>1 is called the observation is linked with the state
process by the conditional probability measure: P(Xiyit, € diyit5|Yrine = Ynaing, Anying) (11)
Using the Feynman-Kac framework, the probab 11 can
P(Y; € dy| Xy = 1) = g(, y1) dys () be written:
whereg : X x Y — [0,1] is the marginal density function
of Y; given X;. In a general way, the state process evolves ?:tl K (dxt|xi—1) H?im Gy, (xt,) 12)

continuously with respect to timewhereas the observations ta n2
are made at sampled timg,. A new observation is used Jxea- iz K(ddlzea) T2, Gy o)

to derive a new action. We will therefore consider in the where for simplicity’s sakeiZ; (z:,) £ g(yn, 24, , An) and
following the processe$X:):;>0, (Yn)nen, (An)nen Where Go(zo) £ (. One of the main interest here is to estimate the
n stands for the index of the observation. We also assurstate at time from noisy observationg, .,,, with n, the index
that there exists two generative functiohs : U — X and of the last observation just before tinte From a bayesian
F: X xU— X, where(U,o(U),v) is a probability space, point of view this information is completely contained ireth
such that for any measurattiest function f defined overY  so-calledfiltering distribution M.;.,,. In the following, the
we have: filtering distribution will simply be denoted a¥/,.



C. Numerical methods for estimating the filtering distribnt The goal is to find a policy

Given a measurable test functigh: X — R, we want to
evaluate T AT XYt — A 17)

M(f) = E[f(X)|[Yim, = Y1nys Alin,] (13) that maximizes the criterion performance :

which is equal, using the Feynman Kac framework, to:

E[f(Xt) H;lil th (th )] i ) ) . . .
EMT. G, (X (14) where T' is the duration of the scenario. Designing in
(II52: G, (X)) . > _
L _ i practice policies that depend on the whole trajectory ofdst
_Ingeneral, it is impossible to find/, (f) exactly except for gpservations/actions is unrealistic. It has been provetittie
simple cases such as linear/gaussian (using Kalman filter) fass of stationary policies that depend on the filteringridis
for finite state space Hidden Markov Models. In the genergltion conditionally to past observations/actiahs contains
dynamics, continuous space case considered here, possileoptimal policy. In general the filtering distribution ds
numerical methods for computing; (f) include the Extended jqfinite dimensional object, and it cannot be represented in

Kalman filter, quantization methods, Markov Chain Montg,mnyter and so is the policy. We therefore propose to look
Carlo methods and Sequential Monte Carlo methods (SMG; the optimal policy in a class of parameterized policies

also called particle filtering. The basic SMC method, called: ) .. that depend on a statistic of the filtering distribution
Bootstrap Filter, approximated;(f) by an empirical distribu- .

tion MN(f) = &£ SN, f(xN) made ofN so-calledparticles
( [18]). It consists in a sequence of transition/selectiteps: Ant1 = o (M, (f)) (19)
at timet, given observationy; ( [15]):

« Transition step: (also calledimportance sampling or
mutation) a successor particles populatigh’y is gen-
erated according to the state dynamics from the previo
population z;'Y. The (importance sampling) weights

wtt = _%gqu:iy_i ; are evaluated. A1 =k + Vo, k20 (20)
« Selection Jsf]ep:R'ésampIe (with replacememny) particles where VJ,, denotes the gradient of,, w.rt ay. By

z*N from the setz; ¥ according to the weights}¥. conventionVJ,, is column vector whosé-th component is
We write z'Y = 7 where k"N are the selection the partial derivative with respect ;. (1)i>o is @ non-
indices. increasing positive sequence tending to zero. We present in
Resampling is used to avoid the problem of degeneracy B two following subsection a possible approach to esémat
the algorithm, i.e. that most of the weights decreases m ter VJa, based on Infinitesimal Perturbation Analysis (IPA).
consists in selecting new particle positions such as toepves B.
a consistency property :

T
J. = /0 E[R,dt (18)

where f is any test function. As the policy is parameter-
ized bya, the performance criterion now depends onlyaan
Thus we can maximize it by achieving a stochastic gradient
HScent with respect to :

Infinitesimal Perturbation Analysis for gradient estiioa

We assume that we can write the following equality at each
N N ke

i 1 (i 1 i ’
> widl@) =EBl5 > ()] (15)
=1 =1

T

The simplest version introduced in [19] consists in chogsin Vo = /0 VaE[R]dt (21)
the selection indices;"" by an independent sampling from Proposition 1: We have the following decomposition of
the setl : N according to a multinomial distribution with ., gradient
parametersv Y, i.e. P(k! = j) = w}, forall 1 <i < N.
The idea is to replicate the particles in proportion to their VoE[R:] = E[M(fS:)V (5 Ri)
weights. The reader can find some convergence results of E[M; (f)M¢(S:)V ar, (1) Re]
MY (f) to M(f) (e.g. Law of Large Numbers or Central + B[RS ' (22)
Limit Theorems) in [17], but for our purpose we note that e
under weak conditions on the test function and on the HMM where
dynamics, we have the asymptotic consistency property in PG (X))

robability, i.e.limy ..o MY (f) 2 M,(f). D (23)
probability, i.e.limy .. MY () = M(f) : g Go(X,)
Proof: First let us rewriteV,E[R;] as following:

Il1. PoLicy LEARNING ALGORITHM
A. Optimal Parameterized Policy for Partially-Observable n

Markov Decision Process V.E[R] = Va R.U,V, H A(dy;) (24)
Let R; be a real value reward function XYt j=1

Ry 2 R(Xy, My(f)) . (16)  where:



Algorithm 1 Policy Gradient in POMDP via IPA
Initialize ag € T

{ [ét _ H%TO g(d(xm)“l) r (25)  for k=1to oo do
v =ity for t =1to T do
Remarking that onlyR, and V; depends onx so that we Sampleu; ~ v
obtain Setz; = F(xi—1,u),
_ If t =tn, sampleyn ~ g(.,x¢, an)A(.)
VOJ/} = St‘/t 5 (26) s aa 2 (x4,Yn,an) ft=t
VoRy = VaMt(f)VMt(f)Rt Sets; = t=1 9(xt,yn,an) | o
¢ else
where S, is given by eq[(Z3). Incorporating (24) i {26), we Setvi e {1.. ! 1)
obtain 0 = (Igz a1, ul?) whereu® %y
VoE[R)] = E[VaM(f)Va,(p)Re] - +E[RS] . (27) s [ sia+ % if t =t
Now using one more timg_(P6), we have St1 , else
% 0 L
oM, = V.E|f(X))—— Wy =< T, 9@ ynsan) o)
VaMi(f) = VaE[/( »E[Vt]] t B e
= E{f(Xt)v V}} —E{f(Xt)M} Set (Igz aSi(E Jie{1,.,1} = (jg )7515 ))ze{kl, ki) ko
E[Vi] E[Vi] are selection indices assoaated(tm( icrr.1}
_ E[ﬂxt)sti} M, SB[ Vi ] mi(f) = X D) mi(s) = 13,80,
S E[Vi malfsn) = 155, F00)sl,
= Mt(fst) (f)Mt(St) (28) Ant1 = Tay (mt) if t = tn
so that we obtain[(22) by incorporating (28 27). re = R(ze, mi(f))
[@2) by incorporating(28) B2 Vr, = (malf0) — me(yme(s0)) gt (o, mal £)) +
We can deduce directly Algorithm 1 frorh {22). It is impor- g‘f]‘f 9 4V
tant to note that we must deal with two time-scales. This first d f”k = Vo + VI
and the shorter one allows to simulate the continuous Sfate end for v
On the contrary the observation and action process are eghdat enzkmj(r)lr = kY oy

only each time we get a new observation. These specific time.s.
denoted, in the algorithm. That is the eason while there is an
alternative to update the variabl&s andu?t(z_)l. A new action with
A,, is also calculated each, as already explained above.
One can also be surprised to calculdeX,, M, (f)) using { Onel=5.31 >0. (30)
the sampled value ok;. To well understand this algorithm

we must remind thathe learning is made off-lineusing a  This is a simple possible action. One could increase the
simulated process. It is therefore possible to usedhévalue number of componenets of an action by addmg the emitted
of X; in this case. frequency for instance. The action does not influence djrect
the observation produced by the ESA but the probability of
detection of a target.

The ESA is an agile beam radar which means that it is The probability of detectio¥;: It refers to the probabil-
able to point its beam in any direction of the environnemeity to detect a target and therefore to the probability tcaobt
almost instantaneously without inertia. However, thedgsgn an estimation of the state of a targetat time ¢,, denoted
the environement are detected w.r.t a probability of d&act X, , with action A,. In this work, X, , is composed of the
which depends on the direction of the beam and the tinecalisation and velocity components of the targeat time
of observation in this direction. In the following, we preei ¢, in the x-y plane:
first the nature of an action, then the influence of the action T
onto the probability of detection and finally the nature af th Xtwp = [MTtop TWup VTip TYb.p] (31)

observations. where the subscrigf’ stands formatrix transposeThe terms
Definition of the action:The main property of an ESAis vz, , andry,, , refers here to the position and:;, , and

that it can point its beam without mechanically adjusting thyy, ., the velocity of targep at timet,,. We also denoté®,, ,,

antenna. An ESA radar provides measurements in a directip@ random variable which takes values the radar produces

6. We noted, the time of observation in this direction. In thISa detection (and therefore an estimation) for taggand0 else
work the then-th action is :

IV. APPLICATION TO THEESA RADAR

An =100 6" (29) Dy=[Duy ... Dup] (32)



As said previously, this probability also depends on theetim ( - A) = (N(ht(:vtn,p), ) Pd(l'tn,p,An)>T )
of observations,,. Aerial targets being considering here, the 7™ P2 1 — Py, p, An)

reflectivity of a target can be modelled using a Swerling J

model [20]. We then have the following relation between the

probability of detection and the probability of false alafy, AMdYn.p) = Acont (AYn,p) + Adisc(dYn.p) (44)

(i.e. the probability that the radar produce a detectioruking The relation between the state and the raw observations is

that there is no target) ( [5], [21]): given by :

I
Pd(xtn,,pa An) = Pf];p(mtmpv“n) (33)

wherep(z,, », A,) is the target signal-to-noise ratio. In the
case of an ESA radar, it is equal to :

Ynyp =, (th-,p) + Wnyp (45)

with hy, (¢, ) equals to:

0032971 _ By p—0n)? \/(T‘Ttnm - Tngs)Q + (Tytn,P - Tyi?,lzs)z
p(xtmpa An) = ady, - € 2B? (34) rye, p—ryobs
nsP tn
tn,p atan {W (46)

where r,, , is the target range ang , the azimuth
associated to targei at instant timet,,. « is a coefficient T Zom 52 P (T p— T30 )
which includes all the parameters of the sensor &nis the _ - , _ o
beamwidth of the radar. It is reminded in Appendix A hov@‘_nd Wa,p @ gaussian noise the covariance matrix of which is

the equation§ 33 anfi[34 may be derived. If we make tH&¥€N by :

(raey p =270 ) (VT4 p =0T ) (1Yt =Y ) (WYt o — VY7

assumption that all the detections are independant, we can 2, = diag(0?,03,0?) . (47)
write :
State equationfirst let us introduce the definition of the
unknown stateX, at timet and its evolution through time.
P(Dy = dn| X, = 21, An) = X:,p is the state of the target It has been defined above. Let
P P be the known number of targets in the space under analysis
H]P’(Dn,p = dnp|Xt,p = Tt,,p, An) (35)  at timet. X has the following form: .
p
T
where Xi=[Xi1 ... Xip] (48)
P(Dyp = dpp| X1, p = Tt py Ap) = Based on [22] works, we classically assume that all the

targets follow a nearly constant velocity model. We use a
discretized version of this model ( [23]) :

Xip = F(Xi-1,,U;) wherelU; ~ NV (0,0°Q)  (49)

Pa(xt, p, An)da, ,=1 + (1 = Pa(zt, p, An))da, ,—0  (36)

Observation equation:At instant time ¢,,, the radar
produces a raw observatidf)y composed ofP measurements

where
T 3 2
whereY,, , is the observation related to target of state valugr — 010 8 andQ = 02 % 0 % . (50)
z, , Obtained with action4,, (we do not consider here the 0010 0 B 0
problem of measurement-target association). Moveover, we 0001 0 %2 0 g

assume that the number of targétss known. Each of these

. S V. SIMULATIONS
measurements has the following formulation :

T VI. CONCLUSION

Yop=[rp Bnp Tnp (38) APPENDIX A

wherery, p,, Bn,p, 7,p are range, azimuth and range rate. The we show in this Appendix how the probability of detection

equation observation can be written is derived. First, the radar transmits a pulse expressed as
P(Y,, € dyn| Xy, = a1, An) = (39) follows
IP_[ ( dy] 4,) (40) s(t) = a(t)cos(wet) (51)
P Yn D € Yn,p Xt 0 — LTty ,py FAn jwet
: pldtnp = T, = Re{a(t)el" 52
. efa(t)e’ "} (52)
where where«(t) is the envelope also called the transmitted pulse
and w. the carrier frequency. This pulse is modified by the
P(Ynp € dynplXt,p = t,p,4n) (41) process of reflection. A target is modelled as a set of elemen-

9(Yn.ps Tt p, An)A(dyn p42) tary reflectors, each reflecting: time delayed, Dopplertshif



Phase shift and attenuated version of the transmitted Isigr@ne can remark that,, (6 + 7) is the sum of two complex-
We usually assume that the reflection process is linear avalue Gaussian variables. We look at the following statisti
frequency independent within the bandwidth of the trantdit

: : . [sm (3 +7)?
pulse. The return signal has the following formulation: A= BT (61)
= GZ alt — 1)gie?wet=TH 040D 4 gy (53)  and we introduce the following notation
l U? = GQU}Q%CS (62)

where

e g; is the radar cross section associated to reflegtor Now we construct the test

« 0; is the phase shift associated to reflector { H, : data generated by signal + noise (63)
. 7; is the radial velocity between the antenna and the Ho : data generated by noise
object (Doppler frequency shift),

o G: others losses heavily range dependent due to spatial -7

spreading of energy, Hy:pa(z) = ——e 5 (64)
« n(t) is a thermal noise of the receiver such that a2t

Re{n(t)},Im{n(t)} ~ N(0,02). Ho:palw) ="

We make the following approximations: Then, we derive the probability of detection and false alarm
’f'i T 54 +00 . _gt
alt—r)~at—71) (54 Pa= [ " pa(z[Hy s trug =e = (65)

- . . Ppo = f+°° pa(z|Ho is true) = e™7

wherer is the mean radial velocity of the targeis the mean v

time delay of the target. Using these approximations, theme Consequently

signal can be rewritten as follows: B

og +]
s5p(t) = a(t — 7)Ge?"Pth + n(t) (55) Py =P (66)

where

SNR is related to the parameters of the system and the target.

2n
{ wp = we(l + =) (56) The classical radar equation is given by the following folanu

b :Zi9167 Swerito:)

([21]):
The fluctuations ob are known and modelled using Swerling
1 model [20]. There are differents models availables (Sngrl P.GiG ) 20
1, 2, 3,...) corresponding to different types of targetsefiwg P= (47)374 (67)

1 given below is convenient for aircrafts. We can then write : . . .
where P; is the energy of the transmitted puls€y is

Re{b}, Im{b} NN(O’J%CS) . (57) the gain of the transmitted antenn@, is the gain of the
received antennay is the radar cross section (for an aircraft
This modelling of b assumes that the phase shifts are petween0.1 and1 m?), r is the target rangey is the system
independent and uniformly distributed and the magnitud@gise temperature and is a general loss term. However,
g; are identically distributed. If the number of reflector ishe above formula does not take into account for the sake
large, the central limit theorem gives thatis a complex- of simplicity the losses due to atmospheric attenuationtand

valued Gaussian random variable centered at the origin, NQWe imperfection of the radar. Thus , extra terms must bechdde
a matching filter is applied to our return signal

too PthGTAQO' (68)
sm®)= [ si(n(s)ds (58) P = (PR
where b is the receiver noise bandwith (generally consider
equal to the signal bandwidth so that + ) k is Boltzmann’s
h(s) = a6 — t)e—ij(t?—t) ) (59) constanty is the temperature of the system ahdome losses.

Moreover, the gain reduces with the deviation of the beam
We choose = §+ 7 which yields the best signal to noise ratidrom the antenna normal in an array antenna.

where/ is the length of the transmitted pulse. The probability N
of detection is based on quantity,,(§ + 7)|>. We can show Gy = Gocos(6:) , (69)
that G, = Gocos®(0;) (70)

— 00

whereh(t) is a shifted, scaled and reversed copyspft)

+oo
$m (0 +17) = Ge?PTh + / n(d+7 —s)h(s)ds . (60)

— 00

whereG) is the gain of the antenna. In [24}, = 2, in [21],
= 2.7. According [25], there is also a beam loss because the



radar beam is not pointing directly so that the radar eqoatifig]

IS:

PtG3A20'(St cosQ(Ht) 7(9t*B£32t)2
= 2
(4m)3kLyrs

(71)
where isB is the beamwidth.
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