Solving ill-posed Image Processing problems using Data Assimilation

Abstract : Data Assimilation is a mathematical framework used in environmental sciences to improve forecasts performed by meteorological, oceanographic or air quality simulation models. Data Assimilation techniques require the resolution of a system with three components: one describing the temporal evolution of a state vector, one coupling the observations to this state vector, and one defining the initial condition. In this report we use this framework to study a class of ill-posed Image Processing problems, usually solved by spatial and temporal regularization techniques. A generic approach is proposed to convert an ill-posed Image Processing problem in terms of a Data Assimilation system. This method is illustrated on the determination of optical flow from an image sequence. The main advantage of the resulting software is the use of a quality criteria on observations for weighting their contribution in the estimation process and of a dynamic model to ensure a relevant temporal regularity of the result.
Type de document :
[Research Report] RR-6879, INRIA. 2009, pp.33
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger
Contributeur : Dominique Béréziat <>
Soumis le : mercredi 18 mars 2009 - 11:59:03
Dernière modification le : vendredi 31 août 2018 - 09:25:53
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 12:20:18


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00368890, version 2



Dominique Béréziat, Isabelle Herlin. Solving ill-posed Image Processing problems using Data Assimilation. [Research Report] RR-6879, INRIA. 2009, pp.33. 〈inria-00368890v2〉



Consultations de la notice


Téléchargements de fichiers