
HAL Id: inria-00368950
https://inria.hal.science/inria-00368950

Submitted on 18 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stabilizing Maximal Independent Set in Unidirectional
Networks is Hard

Toshimitsu Masuzawa, Sébastien Tixeuil

To cite this version:
Toshimitsu Masuzawa, Sébastien Tixeuil. Stabilizing Maximal Independent Set in Unidirectional
Networks is Hard. [Research Report] RR-6880, INRIA. 2009, pp.21. �inria-00368950�

https://inria.hal.science/inria-00368950
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
68

80
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Stabilizing Maximal Independent Set in
Unidirectional Networks is Hard

Toshimitsu Masuzawa — Sébastien Tixeuil

N° 6880

Mars 2009

Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 60 19 66 08

Stabilizing Maximal Independent Set in Unidirectional

Networks is Hard

Toshimitsu Masuzawa∗ , Sébastien Tixeuil†

Thème NUM — Systèmes numériques
Projet Grand large

Rapport de recherche n° 6880 — Mars 2009 — 18 pages

Abstract: A distributed algorithm is self-stabilizing if after faults and attacks hit the
system and place it in some arbitrary global state, the system recovers from this catas-
trophic situation without external intervention in finite time. In this paper, we consider
the problem of constructing self-stabilizingly a maximal independent set in uniform unidi-
rectional networks of arbitrary shape. On the negative side, we present evidence that in
uniform networks, deterministic self-stabilization of this problem is impossible. Also, the
silence property (i.e. having communication fixed from some point in every execution) is
impossible to guarantee, either for deterministic or for probabilistic variants of protocols.

On the positive side, we present a deterministic protocol for networks with arbitrary
unidirectional networks with unique identifiers that exhibits polynomial space and time
complexity in asynchronous scheduling. We complement the study with probabilistic proto-
cols for the uniform case: the first probabilistic protocol requires infinite memory but copes
with asynchronous scheduling, while the second probabilistic protocol has polynomial space
complexity but can only handle synchronous scheduling. Both probabilistic solutions have
expected polynomial time complexity.

Key-words: Distributed systems, Distributed algorithm, Maximal Independent Set, Uni-
directional Networks, Self-stabilization, Probabilistic self-stabilization

∗ Osaka University, Japan
† Université Pierre & Marie Curie - Paris 6, LIP6-CNRS & INRIA Grand Large, France

L’Auto-stabilisation d’un Ensemble Maximal

Indépendant dans les Réseaux Unidirectionels est

Difficile

Résumé : Un algorithme distribué est auto-stabilisant si après que des fautes et des at-
taques ont frappé le système et l’ont placé dans un état global arbitraire, le système récupère
en temps fini un fonctionnement correct sans intervention extérieure. Dans cet article,
nous considérons le problème de la construction auto-stabilisante d’un ensemble maximal
indépendant dans des réseaux uniformes et unidirectionels quelconques. Nous présentons un
résultat négatif qui indique que dans les réseaux uniformes, l’auto-stabilisation déterministe
de ce problème est impossible à résoudre. De plus, la propriété de silence (i.e. garantir qu’à
partir d’un point de chaque exécution, les communications entre les nœuds du réseau sont
fixées) est impossible à garantir, tant pour les variantes deterministes que probabilistes des
protocoles.

Nos résultats positifs sont multiples. Nous présentons un protocole déterministe pour
les réseaux unidirectionels identifiés quelconques qui présente une complexité en temps et
en espace qui reste polynomiale, avec un ordonnancement asynchrone. Nous complétons
l’étude avec des protocoles probabilistes dans le cas uniforme : le premier protocole requiert
une mémoire infinie mais supporte un ordonnancement asynchrone, le deuxième protocole
utilise une mémoire polynomiale mais requiert un ordonnancement synchrone. Les deux
protocoles ont une compexité moyenne en temps polynomiale.

Mots-clés : Systèmes distribués, Algorithme distribué, Ensemble Maximal Indépendant,
Réseaux Unidirectionels, Auto-stabilisation, Auto-stabilisation probabiliste

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 3

1 Introduction

One of the most versatile technique to ensure forward recovery of distributed systems is
that of self-stabilization [10, 11]. A distributed algorithm is self-stabilizing if after faults
and attacks hit the system and place it in some arbitrary global state, the system recovers
from this catastrophic situation without external (e.g. human) intervention in finite time.

The vast majority of self-stabilizing solutions in the literature [11] considers bidirectional
communications capabilities, i.e. if a process u is able to send information to another process
v, then v is always able to send information back to u. This assumption is valid in many
cases, but can not capture the fact that asymmetric situations may occur, e.g. in wireless
networks, it is possible that u is able to send information to v yet v can not send any
information back to u (u may have a wider range antenna than v). Asymmetric situations,
that we denote in the following under the term of unidirectional networks, preclude many
common techniques in self-stabilization from being used, such as preserving local predicates
(a process u may take an action that violates a predicate involving its outgoing neighbors
without u knowing it, since u can not get any input from its outgoing neighbors).

Related works Self-stabilizing solutions are considered easier to implement in bidirec-
tional networks since detecting incorrect situations requires less memory and computing
power [3], recovering can be done locally [2], and Byzantine containment can be guaran-
teed [17, 18, 20].

Investigating the possibility of self-stabilization in unidirectional networks was recently
emphasized in several papers [1, 6, 7, 8, 13, 14, 9, 15, 5]. However, topology or knowledge
about the system varies: [7] considers acyclic unidirectional networks, where erroneous initial
information may not loop; [1, 6, 9, 13] assume unique identifiers and strongly connected so
that global communication can be implemented; [8, 14, 15] makes use of distinguished
processes yet operate on arbitrary unidirectional networks.

Tackling arbitrary uniform unidirectional networks in the context of self-stabilization
proved to be hard. In particular, [5, 4] studied the self-stabilizing vertex coloring problem
in unidirectional uniform networks (where adjacent nodes must ultimately output different
colors). Deterministic and probabilistic solutions to the vertex coloring problem [16, 19] in
bidirectional networks have local complexity (∆ states per process are required, and O(∆)
–resp. O(1)– actions per process are needed to recover from arbitrary state in the case of a
deterministic –resp. probabilistic– algorithm). By contrast, in unidirectional networks, [5]
proves a lower bound of n states per process (where n is the network size) and a recovery
time of at least n(n − 1)/2 actions in total (and thus Ω(n) actions per process) in the case
of deterministic uniform algorithms, while [4] provides a probabilistic solution that remains
either local in space or local in time, but not both.

Our contribution In this paper, we consider the problem of constructing self-stabilizingly
a maximal independent set in uniform unidirectional networks of arbitrary shape. It turns
out that local maximization (i.e. maximal independent set) is strictly more difficult than

RR n° 6880

4 Toshimitsu Masuzawa , Sébastien Tixeuil

local predicate maintainance (i.e. vertex coloring). On the negative side, we present evidence
that in uniform networks, deterministic self-stabilization of this problem is impossible. Also,
the silence property (i.e. having communication fixed from some point in every execution)
is impossible to guarantee, either for deterministic or for probabilistic variants of protocols.

On the positive side, we present a deterministic protocol for networks with arbitrary
unidirectional networks with unique identifiers that exhibits O(m log n) space complexity
and O(D) time complexity in asynchronous scheduling, where n is the network size and
D is the network diameter. We complement the study with probabilistic protocols for
the uniform case: the first probabilistic protocol requires infinite memory but copes with
asynchronous scheduling (stabilizing in time O(log n+log ℓ+D), where ℓ denotes the number
of fake identifiers in the initial configuration), while the second probabilistic protocol has
polynomial space complexity (in O(m log n)) but can only handle synchronous scheduling
(stabilizing in time O((n + ℓ) logn)).

Outline The remaining of the paper is organized as follows: Section 2 presents the pro-
gramming model and problem specification. Section 3 presents our negative results, while
Section 4 details the protocols. Section 5 gives some concluding remarks and open questions.

2 Preliminaries

Program model A program consists of a set V of n processes. A process maintains a
set of variables that it can read or update, that define its state. A process contains a set
of constants that it can read but not update. A binary relation E is defined over distinct
processes such that (i, j) ∈ E if and only if j can read the variables maintained by i; i is
a predecessor of j, and j is a successor of i. The set of predecessors (resp. successors) of i
is denoted by P.i (resp. S.i), and the union of predecessors and successors of i is denoted
by N.i, the neighbors of i. The ancestors of process i is recursively defined as follows:
predecessors of i are ancestors of i, and ancestors of each predecessor of i are also ancestors
of i. The descendants of i are similarly defined using successors (instead of predecessors).

For processes i and j in V , d(i, j) denotes the distance (or the length of the shortest
path) from i to j in the directed graph (V, E). We define, for convenience, the distance
as d(i, i) = 0 and d(i, j) = ∞ if i is not reachable to j. The diameter D is defined as
D = max{d(i, j) | (i, j) ∈ V × V, d(i, j) 6= ∞}.

An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a Boolean
predicate over the variables of the process and its predecessors. A command is a sequence
of statements assigning new values to the variables of the process. We refer to a variable
v and an action a of process i as v.i and a.i respectively. A parameter is used to define a
set of actions as one parameterized action. Notice that actions of a process are completely
independent of its successors.

A configuration of the program is the assignment of a value to every variable of each
process from its corresponding domain. Each process contains a set of actions. In some
configuration, an action is enabled if its guard is true in the configuration, and a process

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 5

is enabled if it has at least one enabled action in the configuration. A computation is a
maximal sequence of configurations γ0, γ1, . . . such that for each configuration γi, the next
configuration γi+1 is obtained by executing the command of at least one action that is
enabled in γi. Maximality of a computation means that the computation is infinite or it
terminates in a configuration where none of the actions are enabled. A program that only
has terminating computations is silent.

A scheduler is a predicate on computations, that is, a scheduler is a set of possible
computations, such that every computation in this set satisfies the scheduler predicate. We
consider only weakly fair schedulers, where no process can remain enabled in a computation
without executing any action. We distinguish three particular schedulers in the sequel of
the paper: the distributed scheduler corresponds to predicate true (that is, all weakly fair
computations are allowed). The locally central scheduler implies that in any configuration
belonging to a computation satisfying the scheduler, no two enabled actions are executed
simultaneously on neighboring processes. The synchronous scheduler implies that in any
configuration belonging to a computation satisfying the scheduler, every enabled process
executes one of its enabled actions.

The distributed and locally central schedulers model asynchronous distributed systems.
In asynchronous distributed systems, time is usually measured by asynchronous rounds
(simply called rounds). Let E = γ0, γ1, . . . be a computation. The first round of E is the
minimum prefix of E, E1 = γ0, γ1, . . . , γk, such that every enabled process in γ0 executes
its action or becomes disabled in E1. Round t (t ≥ 2) is defined recursively, by applying
the above definition of the first round to E′ = γk, γk+1, Intuitively, every process has a
chance to update its state in every round.

A configuration conforms to a predicate if this predicate is true in this configuration;
otherwise the configuration violates the predicate. By this definition every configuration
conforms to predicate true and none conforms to false. Let R and S be predicates over the
configurations of the program. Predicate R is closed with respect to the program actions
if every configuration of the computation that starts in a configuration conforming to R
also conforms to R. Predicate R converges to S if R and S are closed and any computation
starting from a configuration conforming to R contains a configuration conforming to S. The
program deterministically stabilizes to R if and only if true converges to R. The program
probabilistically stabilizes to R if and only if true converges to R with probability 1.

Problem specification Each process i defines a function mis .i that takes as input the
states of i and its predecessors, and outputs a value in {true, false}. The unidirectional
maximal independent set (denoted by UMIS in the sequel) predicate is satisfied if and only
if for every i ∈ V , either mis .i = true ∧ ∀j ∈ N.i,mis .j = false or mis .i = false ∧ ∃j ∈
N.i,mis .j = true.

RR n° 6880

6 Toshimitsu Masuzawa , Sébastien Tixeuil

S'' S

S'

a

b

c

(a) System A

S'' S

S'

S'

S''

a

b

c b'

c'

(b) System B

Figure 1: Impossibility of self-stabilizing UMIS

3 Impossibility Results in anonymous networks

In this section, we consider anonymous and uniform networks, where processes of the same
in-degree execute exactly the same code (note however that probabilistic protocols may
exhibit different actual behaviors when making use of a random variable).

Theorem 1 There exists no silent self-stabilizing solution for the UMIS problem.

Proof. Assume there exists such a solution and consider System A as depicted in
Figure 1.(a). Since the protocol is silent, it reaches a terminal configuration where exactly
one of the three processes, says a, has mis .a = true. Now consider the system in Figure 1.(b),
with the states of the processes in the tail (that is b′ and c′) being the same as those in the
3-cycle (that is b and c). Both processes with state S′ (b and b′) have the same in-degree and
the same predecessor; as the one in the cycle (b) is silent, the second one (b′) is also silent.
Both processes with state S′′ (c ad c′) have the same in-degree and the same predecessor
state; as the one in the cycle (c) is silent, the second one (c′) is also silent. As a result, both
processes b′ and c′ in the tail of System B never move. Since the UMIS function is based
solely on the current state, in-degree, and predecessor state, the UMIS function returns the
same result for both processes b and b′ in state S′ and for both processes c and c′ in state
S′′. So, both processes b′ and c′ in the tail are not in the UMIS. Overall, System B describes
a terminal configuration that is not a maximal independent set (the UMIS predicate does
not hold at c′). 2

Notice that the impossibility results of Theorem 1 holds even for probabilistic potential
solutions. We now prove that relaxing the silence property still prevents the existence of
deterministic solutions.

Theorem 2 There exists no deterministic self-stabilizing solution for the UMIS problem.

Proof. Assume there exists such a solution and consider the two systems A and
B that are depicted in Figure 1. We consider a computation of system A, that eventually

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 7

ends up in a stable output of the mis function for all processes a, b, and c (a being the one
process with mis .a = true), and construct a sibling execution in System B as follows:� processes b and b′ (resp. c and c′) in System B have the same initial states as b (resp.

c) in System A,� anytime process b (resp. c) is executed in System A, both processes b and b′ (resp. c
and c′) are executed in System B,� anytime a is executed in System A, a is also executed in System B.

Now, at any time, in System B, both processes b and b′ are in the same state, with the
same predecessors’ states. As a result, the output of their mis function is the same. The
same holds for processes c and c′. Since System A eventually ends up in a configuration from
which all mis functions are stable, the same holds for system B, where mis .b′ and mis .c′

both return false. As a result, a UMIS is never constructed in System B. 2

4 Possibility Results

The previous impossibility results yield that for the deterministic case, only non uniform
networks admit a self-stabilizing solution for the UMIS problem. In section 4.1, we present
such a deterministic solution.

For anonymous and uniform networks, there remains the probabilistic case. We proved
that probabilistic yet silent solutions are impossible, so both our solutions are non-silent.
The one that is presented in Section 4.2 performs in asynchronous networks but requires
unbounded memory, while the one that is presented in Section 4.3 performs in synchronous
networks and uses O(m log n) memory per process.

4.1 Deterministic solution with identifiers

The intuition of the solution is as follows. Every process collects the predecessor information
from all of its ancestors using the self-stabilizing approach given in [9, 12, 15]. From the
collected information, each process i can reconstruct the exact topology of the subgraph
consisting of all the ancestors and i itself. Then, depending on where the process is located,
two possibilities can be considered:

1. The process is in a strongly connected component that includes all of its ancestors.
In the directed acyclic graph of strongly connected components, this process is in a
source component. Then every process in the source component constructs the same
topology. The MIS in this source component is constructed for example by giving
processes priority in the descending order of identifiers (i.e., the process with maximal
identifier has highest priority).

RR n° 6880

8 Toshimitsu Masuzawa , Sébastien Tixeuil

2. The process is in a non-source strongly connected component in the same acyclic graph
of strongly connected components. Then, the same process as in the previous situation
repeats, with the additional constraint that stronger priority is given to the processes
in the upwards strongly connected components.

The detailed algorithm is given in Algorithm 4.1.

Algorithm 4.1 Deterministic UMIS algorithm in asynchronous networks with identifiers

constants of process i
idi: identifier of i;
Pi: identifier set of P.i;

variables of process i
Topologyi: set of (id, ID, dist) tuples; // topology that i is currently aware of.

// id: a process identifier
// ID: identifier set of P.(id)
// dist: distance from id to i in Topologyi.

function

update(Topologyi)
Topologyi := {(idi, Pi, 0)} ∪

⋃
j∈P.i{(id, ID, dist + 1) | (id, ID, dist) ∈Topologyj};

while ∃(id, ID, dist), (id′, ID′, dist′) ∈ Topologyi s.t. id = id′ and dist < dist′

remove (id′, ID′, dist′) from Topologyi;
while ∃(id, ID, dist), (id′, ID′, dist′) ∈ Topologyi s.t. id = id′ and ID 6= ID′

remove one of them (arbitrarily) from Topologyi;
while ∃(id, ID, dist) ∈ Topologyi s.t. id is unreachable to i in Topologyi

remove (id, ID, dist) from Topologyi;
UMIS(Topologyi)

WorkingTpi := Topologyi;
UMISi := ∅
while ∃(idi, Pi, 0) ∈ WorkingTpi {

Let W be a source strongly connected component of WorkingTpi;
for each id ∈ W in the descending order of identifiers

if UMISi ∪ {id} is an independent set
UMISi := UMISi ∪ {id};

WorkingTpi := WorkingTpi − W ;
}
if idi ∈ UMISi

output true;
else

output false;
actions of process i

true −→ update(Topologyi); UMIS(Topologyi);

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 9

Lemma 1 Let i be any process. At the end of the k-th round (k ≥ 1) and later, the topology
stored in variable Topologyi is correct up to distance k − 1:

1. for every process j with d(j, i) ≤ k−1, Topologyi stores the correct tuple (j, P.j, d(j, i))
of j, and

2. every tuple (id, ID, d) ∈ Topologyi is the correct one (j, P.j, d(j, i)) of some process j
if d ≤ k − 1.

Proof. We prove the lemma by induction on k. Let us observe first that the lemma
holds for k = 1 (inductive basis): Once i executes its action, Topologyi always contains
(i, P.i, 0) and any other tuple (id, ID, d) satisfies d ≥ 1.

Assuming that the lemma holds for k (inductive hypothesis), we now prove the lemma
for k+1 (inductive step). Any process u with d(u, i) ≤ k satisfies d(u, j) = d(u, i)−1 ≤ k−1
for some predecessor j of i. From the inductive hypothesis, Topologyj contains the correct
tuple (u, P.u, d(u, j)) of u at the end of the k-th round and later. Thus, i reads the correct
tuple (u, P.u, d(u, j)) in Topologyj and updates its distance correctly at every action in the
(k + 1)-th round and later. The hypothesis also implies that any tuple (u, ID, d) contained
in Topologyv of any predecessor v of i after the end of the k-th round satisfies d ≥ d(u, i)−1
and is correct if d = d(u, i) − 1. Thus, the correct tuple (u, P.u, d(u, i)) is never removed
from Topologyi in the (k +1)-th round or later. The first claim of the lemma holds for k +1.

Existence of tuple (id, ID, d) (d 6= 0) in Topologyi at the end of the (k + 1)-th round
or later implies that i reads (id, ID, d − 1) in Topologyj of some predecessor j of i. From
the hypothesis, any tuple (id, ID, d − 1) contained in Topologyj after the end of the k-th
round is correct (or id is an identifier of a really existing process, say v, ID is the identifier
set of P.v and d = d(v, j) holds) if d − 1 ≤ k − 1. Thus, any tuple (id, ID, d) contained in
Topologyi at the end of the (k + 1)-th round or later is correct if d ≤ k. The second claim
of the lemma holds for k + 1. 2

The following corollary is derived from Lemma 1.

Corollary 1 Let i be any process and D(i) be the maximum distance to i from all the
ancestors of i. At the end of the (D(i) + 1)-th round and later, Topologyi stores the exact
topology of the subgraph consisting of all the ancestors of i and i itself.

Proof. Concerning Topologyi at the end of the (D(i) + 1)-th round and later, Lemma
1 shows that the correct tuple (u, Pu, d(u, i)) of every ancestor u of i is contained, and any
tuple (id, ID, d) with d ≤ D(i) is correct. This implies that Topologyi at the end of the
(D(i) + 1)-th round and later can contain no tuple (id, ID, d) with d > D(i) since the
process with identifier id is not reachable to i in Topologyi and such a tuple is removed from
Topologyi if exists. Thus the corollary holds. 2

Theorem 3 Algorithm 4.1 presents a self-stabilizing deterministic UMIS algorithm in asyn-
chronous networks with identifiers. Its convergence time is D + 1 rounds where D is the
diameter of the network, and the memory space used at each node is O(m log n) bits.

RR n° 6880

10 Toshimitsu Masuzawa , Sébastien Tixeuil

Proof. Let Topology be the exact topology of the network. It is obvious that
UMIS(Topology) correctly finds a UMIS when executed until WorkingTP = ∅ holds. When
Topologyi stores the exact topology of the subgraph consisting of all ancestors of i, UMIS(Topologyi)
selects i as a member of UMIS iff UMIS(Topology) selects i: whether process i is selected by
UMIS(Topology) depends only on the topology of the subgraph consisting of all ancestors of
i. Corollary 1 guarantees that Topologyi of every process i stores such exact topology at the
end of the (D+1)-th round and later, and thus, the theorem holds. As the Topology variable
may end up in containing an entry for every node, the over space needed is O(m log n) bits
per process. 2

Notice that Algorithm 4.1 enables each process i to know eventually the exact topology
of the subgraph consisting of all the ancestors of i. Algorithm 4.1 can be easily extended so
that each process can eventually get the exact topology containing the input values of the
ancestors if each process has a static input value. Such an extension results in a universal
scheme since it can solve any non-reactive problem that is consistently solvable at each
process using the topology and the input values of its ancestors.

Another observation is that Algorithm 4.1 can easily be modified to become silent. For
simplicity of our presentation, every process always has an enabled action with guard true,
and thus, Algorithm 4.1 is not silent. But, Algorithm 4.1 becomes silent by changing the
guard so that the action becomes enabled only when Topologyi needs to be updated.

4.2 Probabilistic solution with unbounded memory in asynchronous

anonymous networks

In this subsection, we present a probabilistic self-stabilizing UMIS algorithm for asyn-
chronous anonymous networks. The solution is based on a probabilistic unique naming
of the processes and a deterministic UMIS algorithm that assumes unique process identi-
fiers. In the naming algorithm, each process is given a name variable that can be arbitrary
large (thus the unbounded memory requirement). The naming is unique with probability 1
after a bounded number of new name draws. The new name draw consists in appending a
random bit at the end of the current identifier. Each time the process is activated, a new
random bit is appended. In parallel, we essentially run the deterministic UMIS algorithm
presented in the previous subsection. The main difference from the previous algorithm is in
handling the process identifiers. The variable Topology of a particular process may contain
several different identifiers of a same process since the identifier of the process continues to
get longer and longer in every execution of the protocol. To circumvent the problem, we
consider two distinct identifiers to be the same if one is a prefix of the other, and anytime
such same identifiers conflict, only the longest one is retained. Another difference is that
we do not need the distance information. The distance information is used in the previ-
ous algorithm to remove the fake tuples (i, ID, d) of process i such that ID 6= P.i, which
may exist in the initial configuration. In our scheme, tuples with fake identifiers that are
prefixes of identifiers of real processes are eventually removed in Algorithm 4.2 since the

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 11

correct identifier eventually becomes longer than any fake identifier. Other tuples with fake
identifiers are eventually disconnected from the constructed subgraph topology.

The details of the algorithm are given in Algorithm 4.2; only the topology update part
is described since the UMIS function is the same as in Algorithm 4.1.

Algorithm 4.2 Probabilistic UMIS algorithm in asynchronous anonymous networks

variables of process i
idi: identifier (binary string) of i;
Pi: identifier set of P.i;
Topologyi: set of (id, ID) tuples; // topology that i is currently aware of.

// id: a process identifier
// ID: identifier set of P.(id)

function

update(Topologyi)
idi := append(idi, random bit); // append a random bit to the current id
Topologyi := {(idi, Pi)} ∪

⋃
j∈P.iTopologyj ;

while ∃(id, ID), (id′, ID′) ∈ Topologyi s.t. id′ is a prefix of id
remove (id′, ID′) from Topologyi;

while ∃(id, ID) ∈ Topologyi s.t. id is unreachable to i in Topologyi

remove (id, ID) from Topologyi;

Theorem 4 Algorithm 4.2 presents a self-stabilizing probabilistic UMIS algorithm in asyn-
chronous anonymous networks. Its expected convergence time is O(log n+ log ℓ+D) rounds
where D is the diameter of the network and ℓ is the number of fake identifiers in the initial
configuration.

Proof Sketch: It is clear that the identifier of any process eventually becomes distinct from
any other’s with probability 1. We first show that every process has a unique identifier in
O(log n) expected rounds.

We consider, as the worst-case scenario, the case where all processes start with the same
identifier and each process appends only a single bit to its identifier in every round.

The probability that every process has a unique identifier at the end of round k (i.e.,
n random strings of k bits are mutually distinct) is evaluated as follows when n is small
compared to 2k:

n−1∏

i=1

(1 −
i

2k
) ≈

n−1∏

i=1

exp(−
i

2k
) = exp(−

n(n − 1)

2k+1
) ≈ exp(−

n2

2k+1
)

We introduce a discrete random variable X to represent the number of rounds required until
every process has a unique identifier. When we consider the execution after round 2 logn to

RR n° 6880

12 Toshimitsu Masuzawa , Sébastien Tixeuil

guarantee n is small compared to 2k, the expected number of rounds is then bounded by

2 logn +

∞∑

i=2 log n

Prob(X > i) = 2 logn +

∞∑

i=2 log n

(1 − exp(−
n2

2i+1
))

≈ 2 log n +

∞∑

i=2 log n

n2

2i+1
= 2 logn + O(1)

Thus, every process has a unique identifier in expected O(log n) rounds.
Processes may still have same identifiers as those contained in fake tuples. By a similar

argument to the above, we can see additional O(log ℓ) expected rounds are sufficient to
give each process an identifier distinct from any fake one. Then, all the fake identifiers are
removed from Topologyi of each process i since such identifiers either become unreachable
to i in Topologyi or become prefixes of real indentifiers.

After all identifiers become distinct from one another, the topology stored in Topologyi

of each process i becomes stable if the process identifiers are ignored (i.e., only process
identifiers get longer and longer). On the other hand, once the identifier of a process u
becomes lexicographically larger than that of a process v, u’s identifier is lexicographically
larger than v’s afterward. This guarantees that every execution of UMIS(Topologyi) at
process i after some point returns the same result concerning whether process i is a member
of the UMIS or not. By similar discussion to the proof of Theorem 3 we can show that
additional O(D) rounds are sufficient to get the stable UMIS solution once every process
has a unique identifier.

Consequently, Algorithm 4.2 presents a self-stabilizing probabilistic UMIS algorithm and
its expected convergence time is O(log n + log ℓ + D) rounds. 2

4.3 Probabilistic solution with bounded memory in synchronous

anonymous networks

The algorithm in the previous section is based on global unique naming, however, self-
stabilizing global unique naming in unidirectional networks inherently requires unbounded
memory. The goal of this subsection is to achieve, with bounded memory, a local unique
naming that gives each process an identifier that is different from that of any of its ancestors,
and to compute a UMIS based on the previously computed local naming. Indeed, such a
local naming is sufficient for each process to recognize the strongly connected component
it belongs to. Once the component is recognized, a UMIS can be computed by a method
similar to that of the deterministic algorithm presented in Section 4.1.

In our scheme to achieve local unique naming, each process extends its identifier by
appending a random bit when it finds an ancestor with the same identifier as its own. To
be able to perform such a detection, a process needs to distinguish any of its ancestors
from itself even when they have the same identifier. The detection mechanism is basically
executed as follows: each process draws a random number, and disseminates its identifier

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 13

together with the random number to its descendants. When process i receives the same
identifier as its own, it checks whether the attached random number is same as its own. If
they are different, the process detects that this is a distinct process (that is, a real ancestor)
with the same identifier as its own current identifier. When the process receives the same
identifier with the same random number as its own for a given period of time, it draws a
new random number and repeats the above procedure. Hence, as two different processes
eventually draw different random numbers, eventually every process is able to detect an
ancestor with the same identifier if such an ancestor exists.

The above method may cause false detection (or false positive) when a process receives its
own identifier but with an old random number. To avoid such false detection, each identifier
is relayed with a distance counter and is removed when the counter becomes sufficiently
large. Moreover, the process repeats the detection checks while keeping sufficiently long
periods of time between them. The details of the self-stabilizing probabilistic algorithm for
the local naming are presented in Algorithm 4.3.

Algorithm 4.3 Probabilistic local naming in synchronous anonymous networks

variables of process i
idi: identifier (binary string) of i;
rndi: random number selected from {1, 2, . . . , k}; // k (≥ 2) is a constant
IDi: set of (id, rnd, dist) tuples; // identifiers that i is currently aware of.

// id: a process identifier
// rnd: random number of P.(id)
// dist: distance that id traverses

function

update(IDi)
IDi := {(idi, rndi, 0)} ∪

⋃
j∈P.i{(id, rnd, dist + 1) | (id, rnd, dist) ∈IDj};

while ∃(id, rnd, dist) ∈ IDi s.t. dist > |{id | (id, ∗, ∗) ∈IDi}|;
remove (id, rnd, dist) from IDi;

if timer > |{id | (id, ∗, ∗) ∈IDi}| // timer is incremented by one every round
naming(ID i)

naming(IDi)
if ∃(idi, rnd, ∗) ∈ IDi s.t. rnd 6= rndi

idi := append(idi, random bit); // append a random bit to the current id
rndi := number randomly selected from {1, 2, . . . , k};
reset timer; // reset timer to 0
update(IDi);

actions of process i
true −→ update(IDi);

RR n° 6880

14 Toshimitsu Masuzawa , Sébastien Tixeuil

Lemma 2 Algorithm 4.3 presents a self-stabilizing probabilistic local naming algorithm in
synchronous anonymous networks. Its expected convergence time is O((n + ℓ) log n) rounds
where ℓ is the number of fake identifiers in the initial configuration.

Proof sketch: First we show that the algorithm is a self-stabilizing probabilistic local
naming algorithm. For contradiction, we assume that two processes i and j (where j is
an ancestor of i) keep a same identifier after a configuration. Without loss of generality,
the distance from j to i is minimum among process pairs keeping same identifiers. Let
j, u1, u2, . . . , um, i be the shortest path from j to i. Since all processes in the path have
mutually distinct identifiers except for a pair i and j, (idj , rndj) is not discarded in the
intermediate processes and is delivered to i. Thus, eventually i detects idi = idj and
rndi 6= rndj . Then i extends its identifier by adding a random bit, which is a contradiction.

We evaluate the expected convergence time of the algorithm. By similar argument to
the proof of Theorem 4, we can show that the expected number of bits added to a process
identifier is O(log n). Notice that the number ℓ of fake identifiers has no influence to the
evaluation, for the distance dist of a fake identifier is larger than the timer value (once
the timer is reset) and thus is removed (because of dist > |{id | (id , ∗, ∗) ∈ ID i}|) when
function naming is executed. On the other hand, in the scenario where all processes start
with a same identifier, the time between two executions of function naming at a process is
O(n + ℓ). Thus, the expected convergence time is O((n + ℓ) log n) rounds. 2

Algorithm 4.4 presents a self-stabilizing UMIS algorithm in locally-named networks.
Thus, the fair composition[11] of the algorithm with the local-naming algorithm in Algorithm
4.3 provides a self-stabilizing UMIS algorithm in synchronous anonymous networks. For
simplicity, we omit the code for removing fake initial information in Algorithm 4.4 since
such fake initial information can be removed in a similar way to Algorithm 4.3.

Lemma 3 In the algorithm presented in Algorithm 4.4, each process can exactly recognize
the topology of the strongly connected component it belongs to in O(D) rounds where D is
the diameter of the network.

Proof sketch: It is obvious that variable Topologyi of each process i after D rounds consists
of tuples (id, P.(id)) from all the ancestors of i . Notice that the local naming allows two
distinct processes to have a same identifier if they are mutually unreachable. Thus, Topologyi

may contain a same tuple (id, P) of two or more distinct processes and/or may contain two
tuples (id, P) and (id, P ′) with a same id but different predecessor sets P and P ′.

Each process constructs the following graph Gi = (Vi, Ei): Vi = {id | (id, ∗) ∈ Topology i}
and Ei = {(u, v) | (v, P) ∈ Topology i s.t. u ∈ P}. In other words, Gi can be obtained from
the actual graph G as follows: First consider the subgraph G′

i induced by the ancestors of i
and i itself, and then merge the processes with the same identifier into a single process.

It is obvious that all processes in Gi are reachable to i. What we have to show is that
process j is reachable from i in Gi (or j belongs to the strongly connected component of i) if
and only if j is also reachable from i in G′

i. The if part is obvious since Gi is obtained from
G′

i by merging processes. The only if part holds as follows. Consider two distinct processes j

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 15

Algorithm 4.4 UMIS algorithm in locally-named networks

constants of process i
idi: identifier of i; // distinct from that of any ancestor
Pi: identifier set of P.i;

variables of process i
umisi: boolean; // true iff i is a UMIS node
Topologyi: set of (id, ID) tuples; // topology that i is currently aware of.

// id: a process identifier
// ID: identifier set of P.(id)

Compi: identifier set // of processes in the strongly-connected component of i
function

update(Topologyi)
Topologyi := {(idi, Pi)} ∪

⋃
j∈P.iTopologyj ;

UMIS(Topologyi)
Compi := {id | id is reachable from i in Topologyi};

// set of processes in the strongly connected component of i
UMISv := ∅;
if ∃j ∈ P.i− Compi s.t. umisj = true or ∃j ∈ Compi s.t. (j > i and umisj = true) {

umisi := false; output false;
}
else {

umisi := true; output true;
}

actions of process i
true −→ update(Topologyi); UMIS(Topologyi);

and j′ with a same identifier if exist. Since they are mutually unreachable but are reachable
to i, they are unreachable from i in G′

i (otherwise one of them is reachable from the other).
In construction of Gi from G′

i, merging is applied only to processes unreachable from i, that
is, the merging has no influence on reachability from i. Thus, any process unreachable from
i in G′

i remains unreachable from i in Gi. 2

Lemma 4 Algorithm presented in Algorithm 4.4 is a self-stabilizing (deterministic) UMIS
algorithm in (asynchronous) locally-named networks. Its convergence time is O(n) rounds.

Proof sketch: First from Lemma 3, every process correctly recognizes in O(D) rounds all
the processes in the same connected component. Then consider a source strongly connected
component. The process with the maximum identifier in the component becomes a stable
UMIS member. After that the UMIS outputs of processes in the component become stable
one by one in the descending order of identifiers. It takes at most O(n′) rounds until all

RR n° 6880

16 Toshimitsu Masuzawa , Sébastien Tixeuil

the processes in the component become stable, where n′ is the number of processes in the
component.

The same argument can be applied to a source strongly connected component in the
graph obtained from G by removing the components with stabilized UMIS outputs. By
repeating the argument, we can show that the UMIS outputs of all the processes become
stable in O(n) rounds. It is clear that the processes with the UMIS outputs of true form a
UMIS. 2

From Lemmas 2 and 4, the following theorem holds.

Theorem 5 Fair composition of algorithms presented in Algorithm 4.3 and Algorithm 4.4
provides a self-stabilizing probabilistic UMIS algorithm in synchronous anonymous networks.
Its expected convergence time is O((n+ ℓ) log n) rounds where ℓ is the number of fake identi-
fiers in the initial configuration. The space complexity of the resulting protocol is O(n log n).

5 Conclusion

Although in bidirectionnal networks, self-stabilizing maximal independent set is as difficult
as vertex coloring [16], this work proves that in unidirectionnal networks, the computing
power and memory that is required to solve the problem varies greatly. Silent solutions to
unidirectional uniform networks coloring require Θ(log n) (resp. Θ(log δ), where δ denotes
the maximal degree of the communication graph) bits per process and have stabilization
time Θ(n2) (resp. Θ(1)) when deterministic (resp. probabilistic) solutions are considered.
By contrast, deterministic maximal independent set construction in uniform networks is
impossible, and silent maximal independent set construction is impossible, regardless of the
deterministic or probabilistic nature of the protocols.

While we presented positive results for the deterministic case with identifiers, and the
non-silent probabilistic cases, there remains the immediate open question of the possibility
to devise a probabilistic solution with bounded memory in asynchronous setting.

Another interesting issue for further research related to global tasks. The global unique
naming that we present in section 4.2 solves a truly global problem in networks where
global communication is not feasible, by defining proper equivalences classes between various
identifiers. The case of other classical global tasks in distributed systems (e.g. leader
election) is worth investigating.

References

[1] Yehuda Afek and Anat Bremler-Barr. Self-stabilizing unidirectional network algorithms
by power supply. Chicago J. Theor. Comput. Sci., 1998, 1998.

[2] Yehuda Afek and Shlomi Dolev. Local stabilizer. J. Parallel Distrib. Comput.,
62(5):745–765, 2002.

INRIA

Stabilizing Maximal Independent Set in Unidirectional Networks is Hard 17

[3] Joffroy Beauquier, Sylvie Delaët, Shlomi Dolev, and Sébastien Tixeuil. Transient fault
detectors. Distributed Computing, 20(1):39–51, 2007.

[4] Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien
Tixeuil. Bounds for self-stabilization in unidirectional networks. Technical report,
INRIA, May 2008.

[5] Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien
Tixeuil. Optimal deterministic self-stabilizing vertex coloring in unidirectional anony-
mous networks. In Proceedings of the IEEE International Conference on Parallel and
Distributed Processing Systems (IPDPS 2009), Rome, Italy, May 2009. IEEE Press.

[6] Jorge Arturo Cobb and Mohamed G. Gouda. Stabilization of routing in directed net-
works. In Ajoy Kumar Datta and Ted Herman, editors, WSS, volume 2194 of Lecture
Notes in Computer Science, pages 51–66. Springer, 2001.

[7] Sajal K. Das, Ajoy Kumar Datta, and Sébastien Tixeuil. Self-stabilizing algorithms in
dag structured networks. Parallel Processing Letters, 9(4):563–574, December 1999.

[8] Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with
r-operators revisited. Journal of Aerospace Computing, Information, and Communica-
tion, 2006.

[9] Sylvie Delaët and Sébastien Tixeuil. Tolerating transient and intermittent failures.
Journal of Parallel and Distributed Computing, 62(5):961–981, May 2002.

[10] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[11] S. Dolev. Self-stabilization. MIT Press, March 2000.

[12] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed
systems. Chicago J. Theor. Comput. Sci., 1997, 1997.

[13] Shlomi Dolev and Elad Schiller. Self-stabilizing group communication in directed net-
works. Acta Inf., 40(9):609–636, 2004.

[14] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-operators. Dis-
tributed Computing, 14(3):147–162, July 2001.

[15] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with path algebra. The-
oretical Computer Science, 293(1):219–236, 2003. Extended abstract in Sirocco 2000.

[16] Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloring of arbi-
trary graphs. In International Conference on Principles of Distributed Systems
(OPODIS’2000), pages 55–70, Paris, France, December 2000.

RR n° 6880

18 Toshimitsu Masuzawa , Sébastien Tixeuil

[17] Toshimitsu Masuzawa and Sébastien Tixeuil. Bounding the impact of unbounded at-
tacks in stabilization. In Ajoy Kumar Datta and Maria Gradinariu, editors, SSS, volume
4280 of Lecture Notes in Computer Science, pages 440–453. Springer, 2006.

[18] Toshimitsu Masuzawa and Sébastien Tixeuil. Stabilizing link-coloration of arbitrary
networks with unbounded byzantine faults. International Journal of Principles and
Applications of Information Science and Technology (PAIST), 1(1):1–13, December
2007.

[19] Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Bruno Séricola, and Sébastien
Tixeuil. On fast randomized colorings in sensor networks. In Proceedings of ICPADS
2006, pages 31–38. IEEE Press, July 2006.

[20] Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzantine faults. In 21st
Symposium on Reliable Distributed Systems (SRDS 2002), page 22. IEEE Computer
Society, 2002.

INRIA

Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

