Magnetic Resonance Spectrum Separation Using Sparse Representations and Wavelet Filters

Abstract : Magnetic Resonance spectroscopy (MRS) provides a “frequency-signal intensity” spectrum of multiple peaks that reflect the biochemical composition of a localized region in the body. The peak intensity or the area under each peak is proportional to the concentration of that assigned metabolite. Accurate quantification of in vivo MRS (measuring peak intensity or area) is very important to diagnose certain metabolic disorders. However, strongly overlapping metabolite peaks, poor knowledge about background component (the baseline), and low signalto- noise ratio (SNR) make the task difficult. In this paper, a novel spectrum separation method using sparse representations and wavelet filters is proposed to separate baseline and spectra of different metabolites and finally achieves an accurate MRS quantification. With the proposed method, the accuracy and the robustness of MRS quantification are improved, from simulation data, compared with a commonly used frequency-domain MRS quantification method. The quantification on tumor metabolism with in vivo brain MR spectra is also demonstrated.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00369357
Contributeur : Ist Rennes <>
Soumis le : lundi 23 mars 2009 - 12:30:23
Dernière modification le : lundi 23 avril 2018 - 14:53:41
Document(s) archivé(s) le : mardi 8 juin 2010 - 23:38:56

Fichier

11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369357, version 1

Collections

Citation

Yu Guo, Su Ruan, Jérôme Landré, Jean-Marc Constants. Magnetic Resonance Spectrum Separation Using Sparse Representations and Wavelet Filters. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369357〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

134