
HAL Id: inria-00369382
https://inria.hal.science/inria-00369382v2

Submitted on 8 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling in a queuing system with impatience and
setup costs

Alain Jean-Marie, Emmanuel Hyon

To cite this version:
Alain Jean-Marie, Emmanuel Hyon. Scheduling in a queuing system with impatience and setup costs.
[Research Report] RR-6881, INRIA. 2009. �inria-00369382v2�

https://inria.hal.science/inria-00369382v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
68

81
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Scheduling in a queuing system with impatience and
setup costs

Alain Jean-Marie — Emmanuel Hyon

N° 6881 — version 2

initial version March 2009 — revised version February 2010

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Scheduling in a queuing system with impatience and setup costs

Alain Jean-Marie∗, Emmanuel Hyon†

Thème COM — Systèmes communicants
Équipe-Projet Maestro

Rapport de recherche n° 6881 — version 2 — initial version March 2009 — revised version
February 2010 — 18 pages

Abstract: We consider a single server queue in discrete time, in which customers must be served
before some limit sojourn time of geometrical distribution. A customer who is not served before this
limit leaves the system: it is impatient. The fact of serving customers and the fact of losing them due
to impatience induce costs. The purpose is to decide when to serve the customers so as to minimize
costs. We use a Markov Decision Process with infinite horizon and discounted cost. We establish
the structural properties of the stochastic dynamic programming operator, and we deduce that the
optimal policy is of threshold type. In addition, thanks to a pathwise comparison analysis of two
threshold policies, we are able to compute explicitly the optimal value of this threshold according to
the parameters of problem.

Key-words: Scheduling, queuing system, impatience, deadline, optimal control, Markov decision
processes

∗ INRIA and LIRMM, CNRS/Université Montpellier 2, 161 Rue Ada, F-34392 Montpellier, ajm@lirmm.fr.
† Université Paris Ouest Nanterre la Défense, LIP6, UPMC 4 place Jussieu, F-75252 Paris Cedex,

Emmanuel.Hyon@u-paris10.fr.

Politique de service optimal dans une file d’attente en temps discret avec
impatiences

Résumé : Nous considérons un modèle d’une file d’attente à un serveur en temps discret, dans laquelle
les clients doivent être servis avant une durée de séjour limite, de distribution géométrique. Un client
qui n’est pas servi avant cette limite quitte le système: il est impatient. Le fait de servir les clients et
le fait de perdre des clients par impatience induisent des coûts. Il s’agit de décider de façon optimale
quand servir les clients. Nous utilisons un processus de décision Markovien à horizon infini et à coûts
actualisés. Nous établissons les propriétés structurelles de l’opérateur de programmation dynamique
stochastique, et nous déduisons que la politique optimale est à seuil. Par ailleurs, grâce à une analyse
trajectorielle comparative de deux politiques à seuil, nous calculons explicitement la valeur optimale
de ce seuil en fonction des paramètres du problème.

Mots-clés : Ordonnancement, file d’attente, impatience, échéance, contrôle optimal, processus de
décision markovien

Scheduling in a queuing system with impatience and setup costs 3

1 Introduction

In this paper we are interested in the optimal control of a queuing system with impatient customers
(or, equivalently said, customers with deadlines). The set-up of customer services, the storage of the
customers in the queue as well as their departure from the queue due to impatience (called “losses” in
the remainder of this paper) induce some costs and it has to be decided when to begin the service in
order to minimize these costs. This is a genuine tradeoff problem, since instantaneous costs associated
with the decisions serve/not serve are not constant: there is no reason a priori why the decision should
be the same whatever the state of the system.

Controlled queuing models, deterministic as well as stochastic, have been largely studied in the
literature since their application fields are numerous: networking (see [1] and references therein),
resources allocation (see [7] and references therein) to quote just a few. Nevertheless most of these
works do not consider impatient customers but rather losses due to overflow. Yet, the phenomenon
of impatience, associated with deadlines or “timeouts”, has become non negligible in several fields:
cellular communication networks [16, 3], call center [10], yield management or reservations problems
(see [14] for discrete-time finite-horizon problems), real-time systems etc.

The literature features papers on the performance evaluation of queues with impatience, but rel-
atively few on optimal control of such queues. One branch, represented by [4, 18], is concerned
with finding the optimal scheduling algorithm so as to minimize deadline misses. Another direction
is to consider the optimal routing between several queues [12, 8], still in order to minimize average
deadline overrun. In the present paper, our focus is on the influence of set-up costs: we consider that
serving customers has a cost, which adds up to the costs of missing deadlines and holding customers.
On the other hand, the question of the order of service is not relevant to us, since we assume that
deadlines have a memoryless distribution.

Our longer-term objective is to solve the same problem but with batch service. The problem of
optimally controlling a batch server in a queue (without impatience) has been addressed in [5] and
[13] (see also the references therein). Its resolution is based on the Markov Decision Process (MDP)
formalism, and goes through establishing some structural properties of the value function and the
dynamic programming operator. This then allows to deduce some properties of the optimal policy,
which in turns implies that the solution is a threshold (or control limit) policy. Unhappily, it appears
that extending the techniques developed in [13] to queues with impatience is not straightforward.
Indeed, it has been noted in [9] (quoted in [8]) that impatience tends to destroy the structural properties
that are commonly used for proving the optimality of threshold policies. The importance of structural
properties in the study of admission control policy and optimality proofs has been underlined in [6].
In this paper, we show that structural properties exist although losses under given conditions on the
value function and present the solution for service batches of unit size. For this purpose, we use some
tools which, in our opinion, will be useful for solving more complex cases.

More precisely, in this work, we adapt the framework of structural analysis of Markov Decision
Processes, as described for instance in [15]. We adopt the infinite-horizon, discounted cost criterion.
We establish the structural properties of the stochastic dynamic programming operator and we show
that the optimal policy is a threshold policy. Furthermore, using a sample path comparison between
policies with different values of the threshold, we explicitly compute the threshold value as a function
of the parameters, and we conclude that the optimal policy is actually “always serve” or “never serve”,
based on a simple criterion derived from the cost parameters. We discuss in our conclusion some
problems encountered with general batch sizes.

This paper is organized as follows: Section 2 deals with the model, while Section 3 establishes
the structural properties and 4 focuses on the effective computations of the threshold.

RR n° 6881

4 Alain Jean-Marie, Emmanuel Hyon

2 Model

We consider a discrete time (or slotted) model, where the slot is the time unit. Customers are assumed
to arrive at the beginning of each slot.1 They are stored in an infinite buffer in which they wait for
to be admitted in the server to be processed. This admission decision is made by a controller. The
beginning of a new service induces a cost (for example a setup cost). Holding customers in the buffer
also induces a cost. The service duration is assumed to be equal to the duration of a slot.

Customers are impatient: while they are in the buffer, they can leave spontaneously the system
with fixed probability α, independently from the past and from each other. On the other hand, cus-
tomers admitted in service are not impatient anymore. Each time a customer leaves the buffer, this
induces a cost.

2.1 System dynamics

We proceed with introducing some additional notation, and formulating the optimal control problem
in the framework of Markov Decision Processes, using the notation of Puterman [15].

Assume that slots are numbered from 0 and denote withAn the number of arrivals at the beginning
of slot n. The sequence {An}n∈N is assumed to be an i.i.d. sequence of random variables. With the
usual abuse of notation, we denote generically this common distribution with A. We furthermore
assume that A is of mean λ, so that the arrival process is of intensity λ. Examples include Poisson-
distributed arrivals (P (A = k) = λk

k! e
−λ), Bernoulli arrivals (P (A = 1) = λ and P (A = 0) = 1−λ)

as well as geometric arrivals (P (A = k) = (1− µ)µk, µ = λ/(1 + λ)). Our results do not depend on
the specific distribution, however.

We call xn ∈ N the number of waiting customers, counted just after the arrivals at slot n. The
admission decision of the controller takes place just after arriving customers have been taken into
account. The set of decisions, or action space, is denoted with Q = {0, 1}, where qn ∈ Q is the
number of customers admitted into service at slot n: 0 if no customer is admitted and 1 otherwise.
We assume that the controller may choose qn = 1 even if xn = 0, which has of course no effect. The
number of customers remaining in the buffer just after the decision is then yn = (xn − qn)+, with
x+ = max(0, x).

During a slot, losses can occur because customers become impatient and leave. It is assumed that
each customer has a constant probability α ∈ [0, 1] of leaving in each slot, independently from the
past and from other customers. This is equivalent to assuming that the patience of each customer
is geometrically distributed on N with parameter α. 2 For notational convenience, we introduce the
stochastic operators I(y) and S(y) which count, respectively, the number of customers lost (impatient)
and remaining (survivors), out of y present at the beginning of a slot. Conditioned on the value of
yn = y, the number of losses during one slot, I(y), is a Binomial random variable with mean αy;
likewise, S(y) is a Binomial random variable with mean αy, where α = 1−α. This is a consequence
of the independence and memoryless assumptions made on the impatience. Observe that for a given
slot, I(y) and S(y) are correlated since I(y)+S(y) = y. This will not cause problems in the analysis.

With this notation, we can state the central representation of the dynamics of the system. The
evolution of the state from slot n to slot n+ 1 is given by the recurrence equation:

xn+1 = R(xn, qn) := S
(
(xn − qn)+

)
+An+1 , (1)

1As usual in this type of models, customers arriving during a slot are supposed to be notified to the system only at the
beginning of the next slot.

2This is the equivalent for discrete time to the exponential distribution of deadlines in continuous time models.

INRIA

Scheduling in a queuing system with impatience and setup costs 5

whereas the number of customers lost in slot n is equal to I((xn − qn)+).

Stochastic Monotonicity Properties. We conclude by recalling useful properties of the stochastic
operators we have introduced. From basic properties of the binomial distribution, it is possible to
write the equality between distributions

S(x+ 1) =d S(x) + B(1) , (2)

with B(1) a Bernoulli random variable of parameter α. The random variables in the right-hand side
being independent. For a possible generalization based on this property, one can see the conclusion.

Recall the following notion of stochastic ordering of random variables, and the property of the
Binomial family.

Definition 1 (Stochastic order [17]). We say that a random variable X is stochastically greater than
a random variable Y (denoted by X ≥st Y) if P(X ≤ t) ≤ P(Y ≤ t), or, equivalently, if Ew(X) ≥
Ew(Y) for every nondecreasing function w.

Proposition 2. For any x ≥ y ∈ N we have S(x) ≥st S(y). If X ≥st Y , then S(X) ≥st S(Y).

2.2 Elements of the Markov Decision Process

2.2.1 Transition probabilities

The dynamics of the controlled process are characterized by the probabilities to move in state z, given
that the state is y and the action is q ∈ Q: P (z|(y, q)). Formally

P (z|(y, q)) = P (xn+1 = z|xn = y, qn = q) . (3)

These probabilities do not depend on n: the transition probabilities are homogeneous in time. Given
the recurrence (1), and conditioning on the number of survivors, this can be expressed as:

P (z|(y, q)) =
min(z,(y−q)+)∑

i=0

P
(
S
(
(y − q)+

)
= i
)
P
(
A = z − i

)
.

2.2.2 Rewards/Costs

The costs associated with decisions and transitions are the following. First, there is a setup cost which
is incurred at the decision epoch when the controller chooses to admit one customer into service. If
the choice is to keep the customer in the queue no cost is incurred. We denote by cB this setup cost. It
is assumed that cB > 0. Second, there is a cost associated to each customer leaving the queue due to
impatience. This cost, at slot n, is cLI(yn), where cL is the cost of a single loss. Finally, there is an
holding cost cH per remaining customer. We assume that it applies to all customers present after the
service admission decision, so that the cost for slot n is cHyn.

In order to fit in the framework of [15], we have to express the immediate cost (or negative reward)
at each slot as a deterministic function of the current state and the current decision. Conditioned on
the number of customers present xn = x and given that the decision is qn = q, the average cost due
to losses (see Section 2.1) is cLE(I(x− q)+) = cLα(x− q)+.

RR n° 6881

6 Alain Jean-Marie, Emmanuel Hyon

It is therefore indeed possible to express the cost incurred by taking decision q when the state is
x, as the function of (x, q):

c(x, q) = q cB + (cL α+ cH) (x− q)+ = q cB + cC (x− q)+ , (4)

where cC = αcL + cH is the per-capita cost for customers. Observe that this cost function is not
bounded, unless cC = 0.

2.2.3 Decision policies

We call policy a sequence of decision rules π = (d0, d1, . . .), each decision rule mapping some
information set to some action. While the most general set of policies is that of history-dependent
randomized policies, ΠHR, the classical results on discounted, infinite-horizon, time-homogeneous
Markovian optimal control allow us to concentrate on Markov Deterministic Policies. Such policies
are characterized by a single, deterministic decision rule which maps the current state to a decision.
We denote with Π the set of such policies (denoted as DMD in [15]).

We consider a discounted cost criterion and the discount factor is denoted by θ. We make this
choice in order to avoid the complexities associated with the average cost criterion. Nevertheless a
brief explanation for the case θ → 1 can be seen in conclusion. Under each policy π, the evolution of
the system generates a random sequence of states xn and decisions qn. We define the value function
of policy π by the total expected discounted cost:

vπθ (x) = Eπx

[∞∑
n=0

θn c(xn, qn)

]
,

where x0 = x. Our aim is to find the optimal policy π∗ ∈ ΠHR such that

∀x ∈ N , vπ
∗

θ (x) = v∗θ(x) = min
π∈ΠHR

vπθ (x).

The following operators T , L and Ld, acting on functions v, will be useful in the analysis:

(Tv)(x, q) = c(x, q) + θ
∑
y∈N

P (y|(x, q)) v(y) = c(x, q) + θ E [v (R(x, q))] , (5)

(Ldv)(x) = (Tv)(x, d(x)) .

and
(Lv)(x) = min

d∈Π
(Ldv)(x) .

With this notation, the dynamic programming equation is vθ = Lvθ and finding the solution to this
fixed point problem solves the dynamic programming problem.

3 Structural properties of the optimal policy

In this part we study the structural properties of value functions in order to get qualitative results on
the optimal policy. Specifically, we prove that the optimal policy is of threshold type.

The framework is that of property propagation through the Dynamic Programming operator. It
consists in three steps: first exhibit some structural properties of the operator Tv under special condi-
tions on v (this implies some qualitative results on π∗). Then show that the properties of v are kept by

INRIA

Scheduling in a queuing system with impatience and setup costs 7

the operator Tv. At last, check that these properties are kept when passing to the limit. A structure
theorem then allows to ensure that there exists an optimal policy and states, at the same time, that this
optimal policy can be chosen in the set of structured policies.

For easier reference, we first recall the methodological framework and the results we will need
from the literature. Next, we prove that the dynamic programming operator for our problem propa-
gates monotonicity and convexity. Finally, we deduce the desired property for the optimal policy.

3.1 Structured policies

We say that a policy is a structured policy if it has a special form (for example increasing, decreas-
ing...). Together with the notion of structured policies, comes a notion of structured value functions.
Both notions are adapted to each other. Let V σ be the set of structured value functions and Dσ the set
of structured decision rules. A structured policy Πσ is a sequence of structured decision rules.

The following theorem indicates which properties have to be conserved (or propagated) by the
dynamic programming operator. Two sets of properties are required in this theorem: properties (6)–
(8) are related with the existence of solutions under unboundedness of the cost function; conditions
0) to iii) are the structural conditions per se.

Theorem 3 ([15], Theorem 6.11.3). Assume that the following properties hold: there exists a positive
function on the state space, w, such that:

sup
(x,q)

|c(x, q)|
w(x)

< +∞ , (6)

sup
(x,q)

1
w(x)

∑
y

P(y|x, q)w(y) < +∞ , (7)

and for every µ, 0 ≤ µ < 1, there exists η, 0 ≤ η < 1 and some integer J , such that, for every J-uple
of Markov Deterministic decision rules π = (d1, . . . , dJ), and every x,

µJ
∑
y

Pπ(y|x)w(y) ≤ ηw(x) , (8)

where Pπ denotes the J-step transition matrix under policy π.
Let Vw be the set of functions on the state space which have a finite w-weighted supremum norm

(i.e. supx |v(x)/w(x)| < +∞) and V σ ⊂ Vw. Assume that:

0. for each v ∈ Vw, there exists a deterministic Markov decision rule d such that Lv = Ldv.

If, furthermore,

i. v ∈ V σ implies Tv ∈ V σ,

ii. v ∈ V σ implies there exists a decision d such that d ∈ Dσ ∩ arg mind Ldv,

iii. V σ is a closed subset of the set of value functions by simple convergence.

Then, there exists an optimal stationary policy (d∗)∞ in Πσ with d∗ ∈ arg mind Ldv.

We introduce now the key submodularity property and its consequences.

RR n° 6881

8 Alain Jean-Marie, Emmanuel Hyon

Definition 4 (Submodularity [6]). A real-valued function g defined on two partially ordered setsX×Q
is called submodular (or subadditive) if it has monotone decreasing differences. That is, if it verifies
the inequality

g(x+, q+)− g(x−, q+) ≤ g(x+, q−)− g(x−, q−),

for any x+ ≥ x− ∈ X and any q+ ≥ q− ∈ Q.

Proposition 5 ([15], Lemma 4.7.6). Let g be a real valued function defined on N × {0, 1}. If the
difference function x 7→ g(x, 1)− g(x, 0) is nonincreasing, then the function g is submodular.

These properties allow to deduce a structural property of the optimal control

Proposition 6 (Monotone optimal control [15], Lemma 4.7.1). Let g(x, q) be a submodular function
on two partially ordered sets such that, minx g(x, q) exists for any x. If g(x, q) is submodular then
the control function

q(x) = min{arg min
q∈Q

(g(x, q))} ,

is increasing i.e. x+ ≥ x− yields q(x+) ≥ q(x−).

3.2 Structural properties of the dynamic programming operator

In this part we establish structural results of the dynamic programming operator for our system: prop-
agation of monotonicity, submodularity and convexity.

Lemma 7 (Propagation of monotonicity). Let ṽ be the function defined by ṽ(x) = minq Tv(x, q) for
any x ∈ N. Then ṽ is nondecreasing in x if v is nondecreasing in x.

Proof. The definition of Tv in (5) involves two terms given in Eqs. (4) and (1). We show first that
the lump costs c(x, q) are nondecreasing for a given decision q. Indeed, from Equation (4) the cost is
either equal to (x− 1)cC + cB or xcC which are nondecreasing in x.

From Proposition 2, it follows that S ((x+ 1− q)+) ≥st S ((x− q)+). Therefore we have that
R(x + 1, q) ≥st R(x, q). Recall (Definition 1) that if X ≥st Y , then Ew(X) ≥ Ew(Y) for every
nondecreasing function w. As a consequence, the function Tv(x, q) is the sum of two increasing
functions of x for every q. The minimum over q is therefore also increasing.

Lemma 8 (Submodularity). For any nondecreasing convex function v, the function Tv(x, q) is sub-
modular on N×Q.

Proof. We have the decomposition:

∆qTv(x)
4
= Tv(x, 1)− Tv(x, 0) = c(x, 1)− c(x, 0) + θ∆qT̂ v(x) , (9)

where:

∆qT̂ v(x) =
∑
y∈N

P
(
y|(x, 1)

)
v(y) −

∑
y∈N

P
(
y|(x, 0)

)
v(y)

= Ev(S((x− 1)+) +A) − Ev(S(x) +A) . (10)

First of all, observe that the difference c(x, 1)− c(x, 0) = cB − cC does not depend on x ≥ 1. On the
other hand, for x = 0, we simply have: ∆qT̂ v(0) = 0 and c(0, 1)−c(0, 0) = cB thus ∆qTv(0) = cB .

INRIA

Scheduling in a queuing system with impatience and setup costs 9

We then prove the nonincreasingness of x 7→ ∆qT̂ v(x) for any x > 0. In that case, we use the
stochastic decomposition (2), written as S(x) = S(1) + S(x− 1), in (10) to get:

∆qT̂ v(x) = Ev(S(x− 1) +A) − Ev(S(x− 1) + S(1) +A)

=
∑
a,s

P(A = a, S(1) = s) (Ev(S(x− 1) + a) − Ev(S(x− 1) + s+ a))

= −
∑
a,s

P(A = a, S(1) = s) E [ua,s(S(x− 1))] , (11)

where we have defined: ua,s(y)
4
=v(y+s+a)−v(y+a). Since v is increasing and convex, the function

ua,s(y) is nonnegative and increasing for all nonnegative values of a and s. The stochastic increas-
ingness of the S(x) (Proposition 2), implies (see Definition 1) that Eua,s(S(x)) ≥ Eua,s(S(x− 1)),
for all x ≥ 1 and all s, a ≥ 0. This last inequality is conserved by convex combinations. As a result,
the expression (11) is a nonincreasing function of x > 0. It is also negative, so that when x = 1:

∆qTv(1) = cB − cC + θ∆qT̂ v(1) ≤ cB = ∆qTv(0) .

The function is therefore nonincreasing at x = 0 as well.
We conclude that ∆qTv(x) = Tv(x, 1) − Tv(x, 0) is indeed nonincreasing in x and then, by

Proposition 5, Tv(x, q) is submodular.

Lemma 9 (Propagation of convexity). Let ṽ be the function defined by ṽ(x) = minq Tv(x, q) for any
x ∈ N. Then ṽ is nondecreasing convex in x if v is nondecreasing convex in x.

Proof. The nondecreasingness comes from Lemma 7. We just have to prove the convexity.

Assume then that v is nondecreasing convex. Define q∗y
4
= arg minq Tv(x, q), and let ∆xṽ(y) be

defined as ∆xṽ(y)
4
=ṽ(y+1)− ṽ(y) = Tv(y+1, q∗y+1)−Tv(y, q∗y). We shall prove that the function

∆xṽ(y) is nondecreasing, which is equivalent to the convexity of ṽ.
As proved in Lemma 8, the function Tv(y, q) is submodular. As a consequence of Proposition

6, the function y 7→ q∗y is therefore nondecreasing. Henceforth, the couple (q∗y+1, q
∗
y) can take only

one of the three values (0, 0), (1, 0) and (1, 1). These cases correspond to, respectively, y ≤ ȳ − 2,
y = ȳ − 1 and y ≥ ȳ, where ȳ is the integer number, potentially infinite, such that ∆qTv(ȳ − 1) > 0
and ∆qTv(ȳ) ≤ 0. Observe that ȳ ≥ 1 because ∆qTv(0) = cB > 0.

The case y = ȳ − 1 is the simplest: in that case ∆xṽ(ȳ − 1) = cB . For y ≤ ȳ − 2, since
qy+1 = qy = 0, we have:

∆xṽ(y) = cC + θ [Ev(S(y + 1) +A) − Ev(S(y) +A)] . (12)

If on the other hand y ≥ ȳ, since qy+1 = qy = 1, we have:

∆xṽ(y) = cC + θ [Ev(S(y) +A) − Ev(S(y − 1) +A)] . (13)

The same stochastic increasingness arguments as in the proof of Lemma 8 allow to conclude that
∆xṽ(y) is increasing in both cases, that is, for y ≤ ȳ − 2 and y ≥ ȳ. There remains to show that
∆xṽ(ȳ − 2) ≤ ∆xṽ(ȳ − 1)(= cB) ≤ ∆xṽ(ȳ). Using (9), (10) and (12), we conclude that:

cB −∆xṽ(ȳ − 2) = ∆qTv(ȳ − 1) .

Likewise
∆xṽ(ȳ)− cB = −∆qTv(ȳ) .

By definition of ȳ, both these quantities are nonnegative. Therefore ∆xṽ(y) is nondecreasing and thus
the convexity propagates.

RR n° 6881

10 Alain Jean-Marie, Emmanuel Hyon

3.3 Structural properties of the optimal policy

We present now deterministic policies which are called either threshold policies in [1] or control limit
policies in [5].

One calls threshold policy a Markovian deterministic policy such that

q(x) =

{
q1 if x < ν

q2 if x ≥ ν

where q1 and q2 are inQ and ν is called the threshold. In other words, if the system is in a state under
the threshold then it is optimal to perform q1 and q2 is optimal elsewhere.

Theorem 10. The optimal policy is increasing in x (it is a monotone control) and is a threshold policy.

Proof. We apply Theorem 3 with V σ the set of nondecreasing convex functions, and Dσ the set of
monotone controls.

Let us first check that the preliminary conditions (6)–(8) are satisfied. We choose as weighing
function: w(x) = C + cCx, for some constant C > 0 to be determined in the course of the proof.
Such a function satisfies (6) because the ratio in the right-hand side of (6) is an homographic and
bounded function.

Firstly, we have, using the notation introduced earlier,∑
y

P(y|(x, q))w(y) = E(w(A+ S((x− q)+))) = C + cC E(A+ S((x− q)+))

= C + cC (λ+ α((x− q)+)) ≤ C + cCλ+ α(cCx) .

It follows that supq
∑

y P(y|(x, q))w(y)/w(x) is also bounded by an homographic and bounded func-
tion of x.

Finally, consider any sequence of Markov decision rules dj . Since w is increasing, we always
have: E(w(A+S((x− dj(x))+))) ≤ E(w(A+S(x))). Let us call R̃(x) = R(x, 0) and denote with
R̃(n) the n-th iteration of this operator. It follows that∑

y

Pπ(y|x, q)w(y) ≤ E(w(R̃(J)(x))) = C + cC E(R̃(J)(x))

= C + cC (λ+ ᾱE(R̃(J−1)(x))) = C + cCλ
1− αJ

1− α
+ cCα

Jx .

Assume first that α > 0. If one chooses the constant C = λcC/α, then:∑
y

Pπ(y|x, q)w(y) ≤ C + cCλ
1
α

+ αJ(cCx) = 2C + αJ(cCx) .

Next, for any µ < 1, there exists some J such that 2µJ is less than 1. For this J and every sequence
of J decision rules, and taking η ∈ (2µJ , 1)

µJ
∑
y

Pπ(y|x, q)w(y) ≤ 2µJC + µJαJ(cCx) ≤ ηw(x) .

Consider now the case α = 0. Then∑
y

Pπ(y|x, q)w(y) ≤ C + cCλJ + cCx .

INRIA

Scheduling in a queuing system with impatience and setup costs 11

Whatever the constant C, for any µ < 1, there exists an integer J such that µJ(C +λcCJ)/C < 1. It
is therefore possible to find a constant η < 1 as above. Finally, Property (8) holds in all cases.

In order to apply Theorem 3, it is next required that condition 0) hold. Here, Theorem 6.2.10 of
[15] implies that this is the case, as a consequence of the finiteness of the action space.

We proceed to check that the three structural conditions of Theorem 3 are satisfied. Lemma 9
insures that the value function issued from operator T is still nondecreasing convex if the input value
function is nondecreasing convex. Thus i) is checked. Moreover, Lemmas 7 and 8 combined with
Proposition 6 prove that the optimal control is nondecreasing as soon as the value function is nonde-
creasing convex. This shows ii). At last, the point-wise convergence of a sequence of nondecreasing
convex functions is convex, therefore iii) holds.

Therefore, there exists an optimal policy which is a monotone control. Given that the action space
has two elements, this is actually a threshold policy.

As a corollary, we also obtain that the value function is nondecreasing and convex.

4 The optimal threshold

We are now interested by computing the threshold values accordingly the parameters values. This
means determining the customer load of the system from which it becomes more efficient to serve
customers than to do nothing. An infinite threshold means that it is never optimal to accept customers.
The approach used here is to compute an expression for the value function of a general threshold
policy, then use a sample path analysis (see e.g. [11]) in order to establish the monotonicity of this
value function.

Theorem 11. Let ψ be the number defined by

ψ = cB −
cC

1− αθ
.

Then,

i. If ψ > 0, the optimal threshold is ν = +∞.

ii. If ψ < 0, the optimal threshold is ν = 1.

iii. If ψ = 0, any threshold ν ≥ 1 gives the same value.

The proof needs a preliminary Lemma. Define first the operator Rν by

Rν(x) = A + S
(
(x− 1x≥ν)+

)
, (14)

and denote with R(n)
ν the n-th iteration of the operator Rν .

Lemma 12. Let Φν(x, θ) be the function defined by

Φν(x, θ) =
∞∑
n=0

θnP(R(n)
ν (x) ≥ ν) .

Then the function Φν(x, θ) is positive, increasing with respect to x for every fixed ν and decreasing
with respect to ν for fixed x.

RR n° 6881

12 Alain Jean-Marie, Emmanuel Hyon

The Proof of Lemma 12 is postponed in appendix.

Proof of Theorem 11. When the policy is a threshold policy with threshold ν, the evolution of the
system is: xn = Rν(xn−1) = R

(n)
ν (x0). Then, according to Eq. (14), we have:

ERν(x) = EA + αE
(
[x− 1x≥ν]+

)
= EA + α

(
EX − P(X ≥ ν)

)
, (15)

since x− 1x≥ν is always nonnegative, for every x ≥ 0 and ν ≥ 1.
Next, if the state is x, the cost incurred by the control policy becomes:

c(x) = cB 1x≥ν + cL I
(
x− 1x≥ν

)
+ cH

(
x− 1x≥ν

)
,

since the acceptance of a customer occurs only when the queue is not empty, implying that the thresh-
old is strictly greater than 0. Hence, if X is a random variable, we have the expectation:

Ec(X) = cB P(X ≥ ν) + αcL E(X − 1X≥ν) + cH E(X − 1X≥ν)
= cB P(X ≥ ν) + cC E(X − 1X≥ν)
= cB P(X ≥ ν) + cC (E(X)− P(X ≥ ν))
= (cB − cC) P(X ≥ ν) + cC E(X) .

Using these properties, the value function, when the threshold policy is with threshold ν, at the
initial state x can be computed as follows:

Vν(x) = Ex

(∞∑
n=0

θnc(xn)

)
=
∞∑
n=0

θnEx
(
c(xn)

)
=
∞∑
n=0

θn
(

(cB − cC) P(R(n)
ν (x) ≥ ν) + cC E(R(n)

ν (x))
)
.

With, using Equation (15),
∞∑
n=0

θnE(R(n)
ν (x)) = x +

∞∑
n=1

θnE(R(n)
ν (x))

= x +
∞∑
n=1

θn
(
E(A) + αE(R(n−1)

ν (x))− αP(R(n−1)
ν (x) ≥ ν)

)
= x +

E(A)θ
1− θ

+ θα
∞∑
n=0

θnE(R(n)
ν (x))− θαΦν(x, θ) .

Consequently, we get
∞∑
n=0

θnE(R(n)
ν (x)) =

1
1− θα

(
x +

θE(A)
1− θ

− αθΦν(x, θ)
)
,

Vν(x) =
cC

1− θα

(
x +

θE(A)
1− θ

)
+
(
cB −

cC
1− αθ

)
Φν(x, θ) .

The dependence on ν is concentrated in the function Φν , but, by Lemma 12, we know that Φν(x, θ)
is positive, increasing with respect to x for every fixed ν and decreasing with respect to ν for fixed x.
Since we want for all x, arg minν Vν(x), if ψ > 0 then the optimal value of ν = ∞ while if ψ < 0
the optimal value is ν = 1. If ψ = 0, Vν does not depend on ν and all values give the same result.

INRIA

Scheduling in a queuing system with impatience and setup costs 13

5 Discussion and Extensions

5.1 Interpretations and Comparative Statics

An interpretation of Theorem 11 is as follows. Given the choice between serving immediately or
never the first customer in line, the controller faces an immediate cost cB for service, and a future,
discounted cost for letting the customer remain in the system until it gets impatient. This cost turns
out to be cC/(1 − αθ). Assume that the controller chooses not to serve this customer. It has then no
reason for serving any other customer because they are all symmetric, given the memoryless deadline
distribution. At the next slot, for every customer present the same dilemma would occur between
two average costs, still because of the Markovian nature of the impatience process. Instead, in a
discounted case the cost of postponing an decision has to be taken into account. The monotonicity
result of Lemma 8 show this cost has either a negligible long term cost (ν = +∞) or not (ν = 1).
Therefore, the optimal decision can be made on a customer-per-customer basis. This leads to a policy
where customers are served as soon as they arrive (ν = 1) or never (ν = +∞).

According to this interpretation, it is not too surprising that the optimal policy does not depend
on λ, although the value function does. It may be for instance that the rate of arrivals is larger than
the service capacity. If the impatience process is active (α > 0), the queue always remain stable, and
average holding costs remain bounded over time. If α = 0, the queue may build up, and holding costs
increase over time. However, the presence of the discount factor makes the value function finite.

Next, the value of ψ defined in Theorem 11 is: increasing with respect to cB , decreasing with
respect to cL and cH ; the optimal threshold ν∗ varies in the same direction as ψ (from 1 to +∞),
which is conform to intuition. It can be seen also that ψ and ν∗ are decreasing with respect to θ.
Finally, ν∗ is increasing with respect to α if cL ≤ θcH/(1− θ), and decreasing in the converse case.

The extreme cases for α also have a reasonable explanation. When α = 1, every customer not
served in one slot leaves the system before the next slot. It is therefore optimal to serve one customer
among the recently arrived ones (corresponding to a threshold of one) if the setup cost cB is smaller
than the per-customer cost cC = cL+cH . This is consistent with Theorem 11 sinceψ = cB−(cL+cH)
in this case. At the opposite, when α = 0, customers never leave spontaneously the system. There
is no loss cost incurred and ψ = cB > cH/(1 − θ) in Theorem 11. If the holding cost is zero, the
threshold is therefore infinite: it is optimal never to serve any customer. If we had allowed cB to be
negative, the threshold would be equal to 1.

5.2 Methodological issues

It could be objected to the present paper that since the optimal policy is very simple (serve or no
serve), there is probably a simpler way to prove it than to use the machinery of property propagation.
This feeling is reinforced by the interpretations of the previous paragraph. We argue in this section
that this criticism is true only to some extent: in our opinion, the direct proofs may not be substantially
more compact, and they have less potential for generalization.

Two alternate proof techniques are candidate: direct verification and coupling.

Direct verification. It is indeed possible to prove Theorem 11 by computing the value function for
the optimal policy (always serve if ψ < 0, never serve if ψ > 0) and check that they solve Bellman’s
equation Lv = v. Observe first that this approach still necessitates a proof that this equation has a
unique solution: one still needs to check that conditions (6)–(8) hold, as in the proof of Theorem 10.

RR n° 6881

14 Alain Jean-Marie, Emmanuel Hyon

Computing the candidate value function is what we have done in Section 4. Proving that it solves
Bellman’s equation turns out to be indeed simple in the case ψ > 0 with the function

V∞(x) =
cC

1− θα

(
x +

θE(A)
1− θ

)
.

For the case ψ(x) < 0, the value function has no such simple closed form, and proving that it solves
Bellman’s equation requires establishing additional monotonicity properties similar to Lemma 15 as
well as convexity properties. In the end, the proof does not appear to be substantially shorter.

Coupling arguments. The simplicity of the decision rule suggests that simple comparison argu-
ments should be sufficient. For instance, if the optimal policy is “always serve”, show that not serving
a customer is sub-optimal as compared to serving it. Such reasoning is usually made formal through
coupling arguments: both trajectories are constructed on the same probability space.

The most natural coupling is perhaps the one we use in Appendix 7. With this coupling, it is not
possible to show that serving one customer systematically results in a gain or a loss. This can be seen
through a counterexample 13 and also through the fact that the criterion on ψ involves average costs,
and not only instantaneous costs. Another reason is that we use a discounted cost, for which the cost
of some action depends on the time at which it is taken. Interchange arguments are usually used in
the context of average or total costs.

Example 13. We assume that the parameters are such that cB < cC
1−ᾱθ (implying the optimality of

the “always serve” policy) and such that cB > cH + cL. These assumptions are satisfied for a wide
range of parameters since ᾱ and θ are smaller than one and since that cH + cL = cC + ᾱcL. We
however show on a simple sample of a path that this is not better to serve the customer than to let it
in the system.

Assume there is a set of x customers waiting. By coupling arguments let us assume that there
is only one customer expected to leave the system at the next step and that this dedicated customer
is this one for which a decision has to be taken. Using Eq. (5, the costs induced by the choice to
admit the customer is cB + (x− 1)cH + θE(v(x− 1)) while the costs induced by the other choice is
cL + xcH + θE(v(x− 1)). The difference between these two costs is equal to cB − (cL + cH) which
is non negative by assumption. So, it would be better to let the customer in the system.

The coupling technique which corresponds directly to the interpretation of Section 5.1 consists
in coupling residual impatience times of present customers in two trajectories corresponding to two
distinct controls. This is possible a priori thanks to the memoryless property of the Geometric distri-
bution. Using this technique requires the introduction of a formal apparatus, additional notation and
a rigorous proof of the fact that relevant distributions are the same in the coupled systems (see e.g.
[11]).

We have therefore chosen not to pursue this line of proof.

5.3 Extensions

We discuss here some extensions of the present model for which the principal result is preserved. As
we have mentioned in the introduction, we envision other natural extensions (multiple servers, finite
capacity, several impatience classes, non-unit service) but those do not fit yet in the framework we
have developed here.

The extension of the results to the average cost criterion does not seem to be difficult, in the
sense that letting θ = 1 in Theorem 11 does not cause problems: the value of ψ is just defined as

INRIA

Scheduling in a queuing system with impatience and setup costs 15

cB − cL − cH/α, with an obvious interpretation. The needed increasingness property of Lemma 12
holds for the limit: limθ→1(1− θ)Φν(x, θ), so that Tauberian arguments are likely to be applicable.

Finally, the results obtained here extend to the case where customers do not simply disappear
due to impatience, but are replaced with a random number B of new customers, in the manner of
Galton-Watson branching processes. In that situation, the parameter α in the cost function (4) is to be
interpreted as P(B = 0). The parameter α is the branching factor EB and does not coincide anymore
with (1−α). The stochastic increasingness property (2) still holds, with B(1) ≡ B. The preliminary
conditions for Theorem 3 (see the proof of Theorem 10) hold as long as α = EB < 1, which
corresponds to the stability of the process without service. The coupling argument of Lemma 15 can
be extended as well to a branching process.

6 Conclusion

In this paper we have shown that the optimal control of service in a single queue with impatience is
a threshold policy and we give the closed form of the value of this threshold. If the framework used
could seem to be usual, its application here requires some additional concepts which do not appear in
previous work. For example, here the monotonicity of the control requires a convex value function
contrarily to the usual cases where only monotonicity of the value function is required (see [15]). This
is due to the random departures due to impatience, which completely modify the dynamical behavior.

Because of this, the extension of the problem to the case where the server may serve more than one
customer at a time, does not work in a straightforward manner. This may be seen on the simulation
below, where for a case of batch of size larger than one, the dynamical operator does not have the
submodular property of Lemma 8. The trajectory comparison result in Lemma 15 does not hold
either.

Example 14. Consider the model presented in Section 2, except that the server can serve batches of
size up to B = 5. The evolution of the system (1) then becomes

xn+1 = R(xn, qn) := S
(
(xn − qnB)+

)
+An+1 ,

where qn ∈ {0, 1} as before. The parameters are θ = 0.9, cB = 1, cL = 0.5, cH = 0, α = 0.2,
λ = 1 and the distribution of arrivals is Poisson. The sequence Tv(x, 1)−Tv(x, 0) is non monotone.
Indeed its values obtained by simulations (taking a size of the queue of 100) for respectively x from 0
to 8 are: 1.0, 0.709, 0.438, 0.192, −0.029, −0.249, −0.203, −0.197 and −0.224. If the function Tv
were submodular, this sequence would be nonincreasing (Proposition 5); this is not the case.

On the other hand, no experimental evidence has contradicted, so far, the possibility that the
optimal control still be of threshold type. Similar issues are addressed in [19] for the dual problem
of admission control of batches. The challenge of further research on the topic will therefore be to
find the appropriate properties that can be propagated by the dynamic programming operator in this
case. This is why such a work is a first step basis. First, by showing that structural properties can
be found even though it is not the submodularity for more complex cases. And equally by showing
that the propagation of properties of the value function is necessary but not sufficient. Indeed, notions
of “K-convexity” used in contexts which look similar (see [2] and [13]) do not work, because they
would result in a submodular function Tv(x, q), which is contradicted by Example 1 above.

RR n° 6881

16 Alain Jean-Marie, Emmanuel Hyon

References

[1] E. Altman. Handbook of Markov Decision Processes Methods and Applications, chapter Appli-
cations of Markov Decision Processes in Communication Networks : a survey. Kluwer, 2001.

[2] E. Altman and G. Koole. On submodular value functions and complex dynamic programming.
Stochastic Models, 14:1051–1072, 1998.

[3] J. Artalejo and V. Pla. On the impact of customer balking, impatience and retrials in telecom-
munication systems. Computers and Mathematics with Applications, 57(2):217–229, 2009.

[4] P. P. Bhattacharya and A. Ephremides. Optimal scheduling with strict deadlines. IEEE Trans.
Automatic Control, 34(7):721–728, July 1989.

[5] R. K. Deb and R. F. Serfozo. Optimal control of batch service queues. Advances in Applied
Probability, 5(2):340–361, 1973.

[6] P. Glasserman and D. Yao. Monotone Structure in Discrete-Event Systems. Wiley, 1994.

[7] A. J. Kleywegt and J. D. Papastavrou. The dynamic and stochastic knapsack problem. Opera-
tions Research, 46:17–35, 1998.

[8] Y. L. Kocaga and A. R. Ward. Admission control for a multi-server queue with abandonment.
Manuscript, July 2009.

[9] G. Koole. Monotonicity in markov reward and decision chains: Theory and applications. Foun-
dation and Trends in Stochastic Systems, 1(1), 2006.

[10] G. Koole and A. Mandelbaum. Queueing models of call centers: An introduction. Annals of
Operations Research, 113:41–59, 2002.

[11] Z. Liu, P. Nain, and D. Towsley. Sample path methods in the control of queues. Queueing
Systems, 21:293–335, 1995.

[12] A. Movaghar. Optimal control of parallel queues with impatient customers. Performance Eval-
uation, 60:327–343, 2005.

[13] K. P. Papadaki and W. B. Powell. Exploiting structure in adaptative dynamic programming
algorithms for a stochastic batch service problem. European Journal of Operational Research,
142:108–127, 2002.

[14] J. D. Papastavrou, S. Rajagopalan, and A. J. Kleywegt. The dynamic and stochastic knapsack
problem with deadlines. Management Science, 42(12):1706–1718, 1996.

[15] M. Puterman. Markov Decision Processes Discrete Stochastic Dynamic Programming. Wiley,
2005.

[16] G. C. Resende and P. Pardalos. Handbook of optimization in telecommunications. Springer
Science & Buisness Media, 2006.

[17] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley, 1983.

INRIA

Scheduling in a queuing system with impatience and setup costs 17

[18] D. Towsley and S. S. Panwar. On the optimality of minimum laxity and earliest deadline schedul-
ing for real-time multiprocessors. In Proceedings of IEEE EUROMICRO-90 Real Time Work-
shop, pages 17–24, June 1990.

[19] E. B. Çil, E. L. Örmeci, and F. Karaesmen. Structural results on a batch acceptance problem for
capacitated queues. Mathematical Methods of Operations Research, 66:263–274, 2007.

7 Appendix: Proof of Lemma 12

The proof of Lemma 12 requires some preliminary results and notations. Hence, we denote with πν
the threshold policy with threshold ν. Let us denote O(n)

ν the set of customers present in the system at
slot n under policy πν . This set is evaluated at the beginning of the nth slot just before the decision.
Customers are leaving this set due to either losses or service. We shall compare the sequences O(n)

ν

and O(n)
ν+1. We assume that the two stochastic systems are coupled through their arrival sequences,

and the impatience of each customer. In other words, it is assumed that, at each slot, the same amount
of customers arrive and also that the customers which are present simultaneously in both queues will
leave simultaneously because of impatience.

It may however happen that at some slot, one customer is expected to leave under one of the
policies, whereas it has been already serviced under the other policy and is not present in the corre-
sponding queue. In this case nothing else occurs for this customer.

Lemma 15. For every trajectory, we have

O
(n)
ν+1 =

{
O

(n)
ν

O
(n)
ν ∪ {jn}

where jn is the customer of smaller index in O(n)
ν+1, and the union is disjoint in the second case.

Proof. The proof is by induction. Obviously since only arrivals have occurred at time 0 we have
O

(0)
ν+1 = O

(0)
ν . Assume the result is true up to slot n. Then two cases may occur:

Case O
(n)
ν+1 = O

(n)
ν . Three possibilities have to be considered.

If #O(n)
ν < ν, then nothing happens. Since arrivals and losses are identical it follows O(n+1)

ν+1 =

O
(n+1)
ν .

If #O(n)
ν = ν, then a customer is served under πν and not under πν+1. If we denote by Ōν the

intermediate set of customers which are present after decision under πν , we have Ōν = O
(n)
ν \ {jn}

and Ōν+1 = O
(n)
ν+1 = O

(n)
ν . Again two cases may occur, depending on the impatience of customer

{jn}. Either {jn} leaves the queue, yielding O(n+1)
ν+1 = O

(n+1)
ν . Indeed, because of the coupling,

arrivals and departures of customers who are not {jn}, are the same in both sets. Or {jn} remains,
thus O(n+1)

ν+1 = O
(n+1)
ν ∪ {jn} for the same reason.

If #O(n)
ν > ν, then one customer is served in both systems and this customer is the same. Con-

sequently, Ōν = Ōν+1 and then O(n+1)
ν+1 = O

(n+1)
ν once coupled arrivals and impatiences have been

taken into account.

RR n° 6881

18 Alain Jean-Marie, Emmanuel Hyon

Case O
(n)
ν+1 = O

(n)
ν ∪ {jn}. Two possibilities have to be considered.

Either #O(n)
ν < ν and #O(n)

ν+1 < ν + 1. No service occurs. If {jn} leaves the queue with the

other impatient customers then O(n+1)
ν+1 = O

(n+1)
ν . Otherwise, still because of the coupling, O(n+1)

ν+1 =

O
(n+1)
ν ∪ {jn}.

Or else, #O(n)
ν ≥ ν and #O(n)

ν+1 ≥ ν + 1, so that service occurs in both queues. Then, since

jn is the first customer in the queue under πν , we get Ōν = O
(n)
ν \ {jn} and Ōν+1 = O

(n)
ν . If

jn belong to the set of customers that get impatient, then O(n+1)
ν+1 = O

(n+1)
ν . Otherwise, we have

O
(n+1)
ν+1 = O

(n+1)
ν ∪ {jn}.

Our claim is therefore proved.

We can now prove the lemma.

Proof of Lemma 12. It is sufficient to prove that each function P(R(n)
ν (x) ≥ ν) enjoys the claimed

properties. These functions are obviously positive. They are increasing with respect to x because
the operator Rν is stochastically increasing: Rν(x + 1) ≥st Rν(x). There remains to prove the
non-increasingness with respect to ν for every fixed x. This amounts to show that

P
(
R

(n)
ν+1(x) ≥ ν + 1

)
≤ P

(
R(n)
ν (x) ≥ ν

)
. (16)

Observe that R(n)
ν (x) = #O(n)

ν . According to Lemma 15, two cases may occur. When O(n)
ν+1 = O

(n)
ν

thenR(n)
ν (x) = R

(n)
ν+1(x). Hence, ifR(n)

ν+1(x) ≥ ν+1 thenR(n)
ν (x) ≥ ν+1 which impliesR(n)

ν (x) ≥
ν. When O(n+1)

ν+1 = O
(n+1)
ν ∪{jn} then R(n)

ν (x) + 1 = R
(n)
ν+1(x). Hence the events R(n)

ν+1(x) ≥ ν + 1

and R(n)
ν (x) ≥ ν are the same. So (16) is satisfied.

INRIA

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

