
HAL Id: inria-00369395
https://inria.hal.science/inria-00369395

Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesising Secure APIs
Véronique Cortier, Graham Steel

To cite this version:
Véronique Cortier, Graham Steel. Synthesising Secure APIs. [Research Report] RR-6882, INRIA.
2009, pp.24. �inria-00369395�

https://inria.hal.science/inria-00369395
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
68

82
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Synthesising Secure APIs

Véronique Cortier — Graham Steel

N° 6882

Mars 2009

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Synthesising Secure APIs

Véronique Cortier∗, Graham Steel

Thème SYM — Systèmes symboliques
Équipes-Projets Cassis et Secsi

Rapport de recherche n° 6882 — Mars 2009 — 24 pages

Abstract: Security APIs are used to define the boundary between trusted and
untrusted code. The security properties of existing API are not always clear.
In this paper, we give a new generic API for managing symmetric keys on a
trusted cryptographic device. We state and prove security properties for the
API. In particular, our API offers a high level of security even when the host
machine is controlled by an attacker.

Our API is generic in the sense that it can implement a wide variety of
(symmetric key) protocols. As a proof of concept, we give an algorithm for
automatically instantiating the API commands for a given key management
protocol. We demonstrate the algorithm on a set of key establishment protocols
from the Clark-Jacob suite.

Key-words: Application Programming Interface, Hardware Security Module,
Formal methods

∗ This work has been pasrtially supported by the ANR project AVOTÉ

Synthèse d’interfaces de programmation sûres

Résumé : Les interfaces de programmation de sécurité sont utilisées pour
définir une frontière entre le code sûr et non sûr. La sécurité de la plupart
des interfaces de programmation n’est pas toujours claire. Dans ce papier,
nous proposons une nouvelle interface générique qui permet la gestion des clefs
symétriques sur un module cryptographique sûr. En particulier, notre interface
assure un haut niveau de sécurité même lorsque la machine hôte est contrôlée
par un attaquant, à l’aide d’un virus par exemple.

Notre interface est générique dans le sens qu’elle peut implémenter une
grande variété de protocoles (à clefs symétrique). Nous proposons ainsi un
algorithme qui permet de déduire automatiquement à partir d’un protocole les
commandes à effectuer sur l’API. Cet algorithme a été testé sur les protocoles
d’établissement de clefs de la libraire Clark-Jacob

Mots-clés : Interface de programmation, Module matériel de sécurité, Méthodes
formelles

Synthesising Secure APIs 3

1 Introduction

Security APIs are used to define the boundary between trusted and untrusted
code. They typically arise in systems where certain security-critical fragments
of a programe are executed on some tamper resistant device (TRD), such as a
smartcard, USB security key or hardware security module (HSM). Though they
typically employ cryptography, security APIs differ from regular cryptographic
APIs in that they are designed to enforce a policy, i.e. no matter what API
commands are received from the (possibly malicious) untrusted code, certain
properties will continue to hold, e.g. the secrecy of sensitive cryptographic
keys.

The ability of these APIs to enforce their policies has been the subject of
formal and informal analysis in recent years. Open standards such as PKCS#11
[15] and proprietary solutions such as IBM’s Common Cryptographic Architec-
ture [4] have been shown to have flaws which may lead to breaches of the policy
[2, 6, 7, 9, 12]. The situation is complicated by the lack of a clearly specified
security policy, leading to disputes over what does and does not constitute an at-
tack [11]. All this leaves the application developer in a confusing position. Since
more and more applications are turning to TRD based solutions for enforcing
security [1, 14] there is a pressing need for solutions.

In this paper, we set out to tackle this problem from a different direction.
We suggest a way to infer functional properties of a security API for a TRD
from the security protocols the device is supposed to support. Our first main
contribution is to give a generic API for key management protocols. Our API
is generic in the sense that it can implement any (executable) symmetric key
protocol, while ensuring security of confidential data. The key idea is that
confidential data should be stored inside a secure component together with the
set of agents that are granted access to it. Then our API will encrypt data
only if the agents that are granted access to the encryption key are all also
granted access to the encrypted data. In this way, trusted data can be securely
shared between APIs. To illustrate the generality of our API, we show how to
instantiate the API commands for a given protocol using a simple algorithm
that has been implemented in Prolog. In particular, we show that our API
supports a suite of well-known key establishment protocols.

Our second main contribution is to state and prove key security properties for
the API no matter what protocol has been implemented. We show in particular
that our API guarantees the confidentiality of any (non public) data that is
meant to be shared between honest agents only. The property holds even when
honest agents APIs are controlled by an attacker (in case e.g. an honest machine
has been infected by a worm). Considering an even stronger attack scenario,
where the attacker is also given old confidential keys, we show that our API
still provides security provided it is switched to a restricted mode where the
API decrypts a cyphertext only when it is able to perform some freshness test.
This restricted mode allows us to implement fewer protocols. In particular, of
course it does not allow us to implement protocols subject to replay attacks. In
fact, we discovered that any symmetric key establishment protocol of the Clark
and Jacob library [5] can be implemented within the restricted mode, except
for protocols that are known to suffer from replay attacks.

The paper is organised as follows: in section 2, we define our formal model
for APIs and protocols. We then define our API (section 3), and show how it

RR n° 6882

4 Cortier & Steel

can be used to implement a protocol (section 4). We state and prove security
properties (section 5 and section 6), and then give our results on the Clark-
Jacob protocols (section 7). Finally, we discuss related work, further work and
conclusions (section 8). Proofs can be found in an Appendix.

2 Model

2.1 Syntax

As usual, messages are represented using a term algebra. We assume a finite
set of agents Agent and infinite sets of nonces Nonce and keys Key. We also
assume an infinite set of variables Var, among which we distinguish a set VarKey

of variables of sort key and a set VarNonce of sort nonce.

Keyv ::= Key | VarKey

Noncev ::= Nonce | VarNonce

Msg ::= Agent | Keyv | Noncev | Var

| {Msg}Keyv | 〈Msg, Msg〉

Handle ::= hα
a (Nonce, Msg, i, S)

where i ∈ {0, 1, 2, 3}, S ⊆ Agent, a ∈ Agent, α ∈ {r, g}. In what follows, we
only consider well-sorted substitution. We may write t1, t2, . . . , tn instead of
〈t1, 〈t2, 〈. . . , tn〉 . . .〉〉.

The API does not give direct access to secret keys but provides the user with
a handle that can be used later to indicate to the API to use a specific key. A
handle hα

a (n, k, i, S) represents a reference stored on the API belonging to a for
a key k of security level i. The set S represents the set of users that are allowed
to access to k. The nonce n is used to avoid confusion between handles that
refer to the same data. The label α distinguishes the handles corresponding
to values k generated by the API (α = g) from values k received by the API
(α = r). This distinction allows the API to check for freshness. We consider
four levels of security:� 0: public data� 1: secret data that are not used for encryption (typically nonces)� 2: short term keys� 3: long term keys

We consider the set P = {ka | a ∈ Agent ∪ {int}} of predicates. Ka with
a ∈ Agent to represent the knowledge of an agent a. The predicate Kint is a
special predicate that represents the knowledge of the intruder.

2.2 Model

Our model is a state-based transition system. A rule is an expression of the form

P1(u1), . . . , Pk(uk)
N1,...,Np

−→ Q1(v1), . . . , Ql(vl) where the ui, vi are messages or
handles possibly with variables, the Ni are variables and Pi, Qi are predicates.

INRIA

Synthesising Secure APIs 5

Example 1 The following set INTRUDER of rules represents the ability of an
attacker to concatenate and pair and to encrypt and decrypt when he knows the
key.

Kint(x), Kint(y) → Kint(〈x, y〉)

Kint(〈x, y〉) → Kint(x)

Kint(〈x, y〉) → Kint(y)

Kint(x), Kint(y) → Kint({x}y)

Kint({x}y), Kint(y) → Kint(x)

A state of our execution model is the current knowledge of the intruder and
the users. It is formally represented by a family {Sb | b ∈ Agent ∪ {int}} where
int is a special index representing the intruder. The Sb are sets of messages and
handles. Given a family S of sets and an index b ∈ Agent∪ {int}, we denote by
Sb the set of S indexed by b.

The knowledge of the agents evolves following the rules. Given a set of rules
R, we say that a state S is accessible in one step from a state S ′, denoted by

S →R S′ if there exists a rule Ka1
(u1), . . . , Kak

(uk)
N1,...,Np

−→ Kb1(v1), . . . , Kbl
(vl)

of R and a substitution θ such that� uiθ ∈ Sai
for any 1 ≤ i ≤ k;� Njθ are fresh nonces (that do not appear in S);� S′ is the smallest family such that Sb ⊆ S′

b for any b ∈ Agent ∪ {int} and
viθ ∈ S′

bi
for any 1 ≤ i ≤ l.

→∗
R denotes the reflexive and transitive closure of →R. We may omit R

when the set of rules is clear from the context.
Note that we retrieve the usual deducibility notion by saying that a term m

is deducible from a set of terms S, which is denoted by S ⊢ m, whenever there
exists S′ such that S →∗

INTRUDER S′ and m ∈ S′
int where S is defined by Sa = ∅

for any a ∈ Agent and Sint = S.

3 Presentation of the Generic API

We design an API that allows users to store secret data inside a secure compo-
nent or tamper-resistant device (TRD). A user should never have direct access
to the stored secret values but should use the API commands to require the
TRD to encrypt and decrypt for him. Our API has simply three commands:
generation of new data, encryption and decryption.

3.1 API rules

The encryption command takes as inputs a handle for the key that will be used
for encryption and a list of data that are meant to be encrypted. Secret data are
not given in clear but are designated through handles. The key idea is that for
each encrypted data, the API indicates its level of security and the set of agents

RR n° 6882

6 Cortier & Steel

that are granted access to it. The encryption command is formally represented
by the set of rules of the form

Ka(hα
a (Xn, Xk, i0, S0)), Ka(m1), . . . , Ka(mk) ⇒ Ka({m′

1, . . . , m
′
k}Xk

)
(Encrypt)

where� α ∈ {r, g}, k ∈ N, a ∈ S0 ⊆ Agent, i0 ∈ {2, 3}, Xk ∈ VarKey;� m′
j = mj , 0 if mj ∈ Var is a variable. The user provides some public data

to be encrypted by the API.� m′
j = Xkj

, ij, Sj if mj ∈ Handle is a handle of the form hα
a (Xnj

, Xkj
, ij , Sj).

The user requires the API to encrypt the secret value kj associated the
handle hα

a (nj , kj , ij, Sj);� the rule is undefined otherwise.

provided that i0 is strictly greater than any (defined) ij (keys only encrypt data
of strictly lower security level) and S0 ⊆ Sj for any (defined) Sj (data should
not be transmitted to users that are not allowed to access to).

The encryption command takes as inputs a handle for the key that will
be used for decryption, a cyphertext and a (possibly empty) list of handles
together with a list L of indices (of the same length). After decrypting the
cyphertext, the API recovers a list of component of the form m, i, S where i is
a security level and S is the set of agents that are granted access to the data
m. For each component whose index is in S, the API checks whether the value
m corresponds the handle given in input. Then if all tests succeed, for all other
(untested) components, the API either returns the value m in clear if the data
has security level 0 or, if the data has security level greater than 0, the API
stores the data, generates a fresh handle that refers to this data and returns the
handle. The decryption command is formally represented by the set of rules of
the form

Ka(hα
a (Xn, Xk, i0, S0)), Ka({m1, . . . , mp}Xk

),
⋃

j∈L

Ka(m′
j)

N1,...,Np

⇒ ∪j /∈LKa(m′
j)

(Decrypt/Test)

where� L ⊆ {1, . . . , p}, α ∈ {r, g}, k ∈ N, a ∈ S0 ⊆ Agent, i0 ∈ {2, 3},
N1, . . . , Nk ∈ VarNonce;� for any j ∈ L, m′

j = hg
a(Xnj

, Xj , 0, ∅) if mj is of the form Xj , 0 and
m′

j = hg
a(Xnj

, Xj , ij, Sj) if mj is of the form ij , Sj , Xj with ij ≥ 1. For
any j ∈ L, the API checks that mj corresponds to a value it generated
itself.� for any j /∈ L, m′

j = xj if mj is of the form xj , 0 (data of security level
0 are given to the user) and m′

j = hα
a (Nj , ykj

, ij , Sj) if mj is of the form
ykj

, ij , Sj with ij ≥ 1. Secret data are not transmitted to the user, he is
only given a handle to them.

INRIA

Synthesising Secure APIs 7

provided again that i0 is strictly greater than any (defined) ij and S0 ⊆ Sj for
any (defined) Sj .

The generation command of the API allows a user to generate new secret
values of level security 1 or 2, associated to a set of agents provided by the
user, in which case he is simply given a handle referring to the new secret value.
It also allows a user to generate fresh public data, in which case he is given
both the value and a handle to it. The public data generated by the API can
be typically used for ensuring freshness. The generation command for secret
values is formally represented by the following set of rules.

N,K
⇒ Ka(hg

a(N, K, i, S)) (Secure Generate)

where i ∈ {1, 2}, S ⊆ Agent such that a ∈ S, N ∈ VarNonce, and K ∈ VarNonce

if i = 1, K ∈ VarKey if i = 2.
The generation command for public data is formally represented by the

following set of rules.

N,K
⇒ Ka(K), Ka(hg

a(N, K, 0, ∅)) (Public Generate)

where N, K ∈ VarNonce.

Example 2 Carlsen’s Secret Key Initiator Protocol [3, Figure 2]
1. A → B : A, Na
2. B → S : A, Na, B, Nb
3. S → B : {Kab, Nb, A}Kbs, {Na, B, Kab}Kas

4. B → A : {Na, B, Kab}Kas, {Na}Kab, N
′
b

5. A → B : {N′
b}Kab

The aim of the protocol is to establish a fresh session key Kab for participants
a and b using a key server s. In the first message, a sends her name and a
fresh nonce to b. In message 2 b forwards these values together with his own
fresh nonce to the server s. The server generates Kab and encrypts it first for
b, under b’s long term key Kbs, in a package together with his nonce and a’s
name, and then for a, under her long term key Kas, together with her nonce
and b’s name. The server sends both packets to b. In message 4, b forwards to
a her encrypted package, a’s nonce Na encrypted under the session key Kab, and
a further fresh nonce N ′

b. In message 5 a returns this nonce encrypted under
Kab. Now both a and b should accept Kab as the session key.

To implement this protocol using our API, a should have a handle hr
a(n′

KAS , kas, 3, {a, s})
to the key kas of level 3. The agent a can execute its first protocol’s rule by using
the following API command:

N,NA⇒ Ka(NA), Ka(h
g
a(N, NA, 0, ∅))

where N, NA are nonce variables. a obtains both a fresh (public) nonce NA and
a handle hg

a(N, NA, 0, ∅) for it.
a’s second step in the protocol (rule 5) can also be performed using the API’s

commands. Upon receiving a message of the form {Na, a, Kab}Kas, {Na}Kab, N
′
b,

a can split it into two parts x1, x2 and x3. Intuitively, x1 should correspond to
{Na, b, Kab}Kas, the part x2 should correspond to {Na}Kab and x3 should cor-
respond to N′

b. Then a can decrypt x1 using the following decryption command

RR n° 6882

8 Cortier & Steel

(with J = {1}, that is the first component should be checked):

Ka(hr
a(N ′

KAS , Kas, 3, {a, s})),

Ka({NA, 0, y, 0, x, 2, {a, b, s}}Kas
)

[Ka(hg
a(N, NA, 0, ∅))]

N ′

⇒ Ka(y), Ka(hr
a(N ′, x, 2, {a, b, s}))

where N, NA, N ′
kas, Kas, x, y are variables. a can check that y is equal to b and

receives a handle KA(hr
A(N ′, x, 2, {a, b, s}) that refers to x and should correspond

to the inside key Kab. Then a can decrypt x2 using the following decryption
command (with again J = {1}, that is the first component should be checked):

Ka(hr
a(N ′, Kab, 2, {a, b, s}))

Ka({NA, 0}Kab
)

[Ka(hg
a(N, NA, 0, ∅))] ⇒

where N, NA, N ′, Kab are variables. If the command succeeds, the agent a knows
that the second component x2 indeed corresponds to {Na}Kab. Then a can build
her message for b by using the following encryption command.

Ka(Ka(hr
a(N ′, Kab, 2, {a, b, s}))), Ka(x3)

⇒ Ka({x3, 0}Kab
)

where N ′, Kab are variables.

4 Using the Generic API to Implement a Pro-

tocol

In this section we show how the generic API can be used to implement symmetric
key protocols, including in particular symmetric key distribution protocols from
the venerable Clark-Jacob survey [5].

To deduce the API commands, we first require the protocol to be specified
in a manner following e.g. [16], that is each protocol step is given as a rule

A : u
new N
−−−−→ v

A is the agent who plays the role. The u, v are terms in our algebra from
section 2, where agent names, keys and nonces are given as variables. The set
N of nonce and key variables represents freshly generated data. In addition we
require the terms in the protocol to be tagged with their type (agent, nonce,
key or message), and nonces and session keys must be tagged with the name
of the agent which generated them, their level (0 for a nonce is sent in the
clear, 1 for a nonce only ever sent encrypted, 2 for a session key) and the set of
participants expected to share secrets. Everything generated by the participants
during the protocol (i.e. keys and nonces) will be assumed to be shared between
all participants. We will not attempt to deduce whether a nonce is kept secret
from the server, or secret from Bob, etc. Tagged nonces in a protocol will be
written n(A,NA,L,Set), where A is the agent, NA the name for the nonce, L

INRIA

Synthesising Secure APIs 9

the level and Set the set. Similarly, we have tagged keys k(S, KA, L, Set), agent
names a(A) and message variables m(X). This tagging can be easily guessed by
a user reading the protocol but could also be found automatically (for example,
by trying several possible taggings).

Given a tagged term t, un(t) denotes its untagged version obtained from t by
removing all the tags. For example, un(n(A,NA,L,Set)) = NA. Moreover, given
a term t, we denotes by t the term obtained from t by replacing each subterm
{u}v of t by the variable X{u}v

. The function · is a one-to-one mapping.

4.1 Algorithm

We give a simple algorithm for constructing API commands for a given protocol
below in informal pseudocode. The algorithm relies on a global store H of
handles that each participant in the protocol will expect to have when a protocol
step is executed. This store has an initial state. For example, for the three-party
key exchange protocols, the initial state is

hr
a (NKas , kas , 3 , {a, s}) % A handle for kas

hr
b (NKbs , kbs , 3 , {b, s}) % B handle for kbs

hg
s (N ′

Kas , kas , 3 , {a, s}) % S handle for kas

hg
s (N ′

Kbs , kbs , 3 , {b, s}) % S handle for kbs

Note that where we give agent names a, b, and s as ground terms these
should be interpreted as parameters - it is up to the implementer to equip the
TRD with the hanldes and API for the roles of a, b or s as appropriate.

Implementing a single protocol step requires:

1. zero or more Decryption Commands, followed by

2. zero or more Generate commands, followed by

3. zero or more Encryption Commands

To construct the commands for rule u
new N
−−−−→ v played by agent A:

Decryption

For each encyption {m1, . . . , mp}Xk occurring in u:

Retrieve hα
A(N, Xk, j, Set) from store H . If none exists then the algorithm

fails. The protocol is actually not executable since the agent does not have
the decryption key (and enrcypted packets for forwarding must be marked as
message variables).

Select the first mi such that mi = n(A, X, I, Set) and hg
A(N ′, X, I, Set) is in

the handle store and set L = [KA(hg
A(N ′, X, I, Set))]. If no such mi exists, and

j = 3 then output the warning “missing freshness test” and set L = []. We will
see later that tests ensure a higher level of security.

Add decryption command of the form

KA(hα
A(N, Xk, j, Set)), KA({un(m1), . . . , un(mp)}Xk

), L

N1,...,Np

⇒
⋃

j 6=i

KA(m′
i)

where the m′
i are defined from the un(mi) as in section 3.1.

RR n° 6882

10 Cortier & Steel

Generate

For each n(A,X , 0 ,Set) ∈ N , add generate command

N,X
⇒ KA(X), KA(hg

A(N, X, L, Set))

Add hg
A(N, X, 0, Set) to the handle store H .

For each n(A,X , 1 ,Set) ∈ N , add generate command

N,X
⇒ KA(hg

A(N, X, 1, Set))

Add hg
A(N, X, 1, Set) to the handle store H .

For each k(A,X , 2 ,Set) ∈ N , add generate command

N,X
⇒ KA(hg

A(N, X, 2, Set))

Add hg
A(N, X, 2, Set) to the handle store H .

Encryption

For each encryption {m1, . . . , mp}Xk occurring in v:

Retrieve hα
A(N, Xk, i, Set) from the handle store H .

Add encryption command of the form

KA(hα
A(N, Xk, i, S)), KA(m′

1), . . . , KA(m′
k)

⇒ KA({un(m1), . . . , un(mk)}Xk
)

Where m′
i is� h if mi = n(A, Y, 1, S) is a level 1 nonce with a handle h = hα

A(N ′, Y, 1, S) ∈
H� h if mi = k(A, X, 2, S) is a key with a handle h = hα

A(n′, Y, 2, S) ∈ H� un(mi) if mi is an agent name, a nonce of level 0, a message variable or a
cyphertext.� The algorithm fails otherwise, that is, in case mi is of level security 1 or
2 with no corresponding handle in the store (or if mi is of higher security
level). This corresponds to a case where the agents is enable to build the
message thus the protocol is not executable.

We consider encrypted terms to be terms of level 0. In this way we can treat
nested encryptions by recursively generating encryption commands, treating the
innermost encryption first.

INRIA

Synthesising Secure APIs 11

4.2 Example

We consider the Carlsen’s Secret Key Initiator Protocol presented in example 2.
In our tagged notation, the protocol is written

A : → a(A), n(A, NA, 0, [])

B : a(A), m(NA)
n(B,NB,0,[])
−−−−−−−→
a(A), m(NA), a(B),n(B, NB, 0, [])

S : a(A), m(NA), a(B),
m(NB)
k(S,KAB,2,[A,B,S])
−−−−−−−−−−−→
{k(S, KAB, 2, [A, B, S]),m(NB), a(A)}k(S,KBS,3,[B,S]),
{m(NA), a(B),k(S, KAB, 2, [A, B, S])}k(S,KAS,3,[A,S])

B : {m(KAB),n(B, NB, 0, []), a(A)}k(S,KBS,3,[B,S]),m(X)
n(B,NBB,0,[])
−−−−−−−−→
m(X), {m(NA)}m(KAB), n(B, NBB, 0, [])

A : {n(A, NA, 0, []), a(B),m(KAB)}k(S,KAS,3,[A,S]),
{n(A, NA, 0, [])}m(KAB), m(NBB)
→
{m(NBB)}m(KAB)

B : {n(B, NBB, 0, [])}m(KAB) →

Note that this tagged version corresponds to a tagging where variable are
typed as little as possible. For example, the server will accept any value (possibly
not a nonce) for NA and NB. Another tagging option may be chosen if the
implementation guarantees against type flaw attacks for example.

The API commands generated by our algorithm for the rules of A are the
commands that have been presented in example 2. The commands obtained by
our algorithm for B and S are given below. Variables such as NA have a local
scope within the command for a particular protocol step.

Command for B corresponding to his first step

N,NB
⇒ Kb(NB), Kb(h

g
b (N, NB, 0, ∅))

Commands for S corresponding to his first step

N ′′,KAB
⇒ Ks(h

g
s(N

′′, KAB, 2, {a, b, s}))

Ks(h
g
s(N

′
Kbs, KBS , 3, {b, s})),

Ks(h
g
s(N

′′, KAB, 2, {a, b, s})),

Ks(NB), Ks(a)

⇒ Ks({KAB, 2, {a, b, s}), NB, 0, a, 0)}KBS
)

RR n° 6882

12 Cortier & Steel

Ks(h
g
s(N

′
Kas, KAS , 3, {a, s})),

Ks(NA),

Ks(b), h
g
s(N

′′, KAB, 2, {a, b, s}))

⇒ Ks({NA, 0, b, 0, KAB, 2, {a, b, s}}KAS
)

Commands for B corresponding to his second step

N ′,N ′

B⇒ Kb(N
′
B), Kb(h

g
b(N

′, N ′
B, 0, ∅))

Kb(h
r
b(NKbs, KBS , 3, {b, s})),

Kb({KAB, 2, {a, b, s}, NB, 0, a, 0}KBS
),

[Kb(h
g
b (N, NB, 0, {}))]

N ′′

⇒ Kb(h
r
b(N

′′, KAB, 2, {a, b, s})), Kb(a)

Kb(h
r
b(N

′′′′, KAB, 2, {a, b, s})), Kb(NA)

⇒ Kb({NA}KAB
)

Commands for B corresponding to his last step

Kb(h
r
b(N

′′, KAB, 2, {a, b, s})),

Ka({N
′
B, 0}KAB

),

[Kb(h
g
b (N

′, N ′
B, 0, ∅))]

⇒

A Prolog implementation has been tested on all the protocols in section 6.3
of the Clark-Jacob survey, excepting those where freshness is assured by times-
tamps. The Prolog source and the results are available via http:
http://www.lsv.ens-cachan.fr/GenericAPI/. We give the results in section
7, after we discuss the security properties of our API.

5 Security of the API

The aim of the API is to protect the confidentiality of secret data for a certain
group of users, called honest agents. Let H be such a set. Agents that are not
in H are said to be compromised or corrupted.

We assume the intruder to have complete control not only of the network, but
also of the machines of the honest users (using viruses or worms for example).
We also assume that he has access to the values of corrupted users. The only
trusted secure parts are the secure storage components (TRDs) of the honest

INRIA

http://www.lsv.ens-cachan.fr/GenericAPI/

Synthesising Secure APIs 13

Honest
Agent

Honest
Agent

Honest
Agent

Honest
Agent Agent

Corrupted

Agent
Corrupted

Network

Attacker
control

TRD

TRDTRD

TRD

TRD

TRD

Figure 1: Threat model. The attacker controls the network, all machines, and
has obtained access to the memory of some corrupted agents’ TRDs

users, managed by the API (see Figure 1). This can be easily modeled by adding
the following set CONTROL of rules

Ka(x) ⇒ Kint(x) (1)

Kint(x) ⇒ Ka(x) (2)

Kb(h
α
b (x, y, i, S)) ⇒ Kint(y) (3)

for any a, b ∈ Agent such that b /∈ H , i ∈ {1, 2, 3}, α ∈ {r, g} and S ⊆ Agent.
This models the fact that the intruder can access any value known by the user
(including handles) and that the intruder can also store messages on users ma-
chines in order to then communicate with the API. The last rule indicates the
fact that the intruder is given any value that may be stored in a TRD of a
corrupted machine. Given a state S of our execution model and by abuse of
notation, we write t ∈ S instead of t ∈

⋃
b∈Agent∪{int} Sb.

When the API is initialized, keys of level 3 are generated and distributed
between the secure components managed by APIs and users are given handles to
these keys. These keys are initially unknown to the intruder. Thus we say that
a state S is initial if Sint ⊆ Agent∪Nonce∪Key is a set of atomic messages and
if for any a ∈ Agent, the set Sa only contains handles of the form hα

a (n, k, i, S)
with n ∈ Nonce, k ∈ Nonce ∪ Key and such that n, k do not appear in Sint.

The security of the API can be expressed as follows: given a state S of
the system, secret data of honest users should not be known to the intruder.
Secret data of honest users are values k for which there are handles of the
form hα

a (n, k, i, S) where S is a subset of honest users. This is reflected by the
following formula:

∀a ∈ Agent, ∀x, y ∈ Msg, ∀i ∈ {1, 2, 3}, ∀α ∈ {r, g}, ∀S ⊆ H

S ⊢ hα
a (x, y, i, S) ⇒ S 6⊢ y and y ∈ Key ∪ Nonce (Sec)

We can show that our generic API satisfies the security property Sec as
the API is correctly initialized. This is an important feature since it guaran-
tees confidentiality of sensitive data for an API which can implement a variety
of protocols (cf Section 4) even if the intruder has control of all honest users
machines.

Theorem 1 Let S0 be an initial state. Then for any state S, accessible from
S0, that is S0 →∗

API∪INTRUDER∪CONTROL S, we have that S satisfies property Sec.

Proof: (sketch) We first start by adding more power to the intruder, providing
him access to any value k for which there exists a handle hα

a (n, k, i, S) where

RR n° 6882

14 Cortier & Steel

some participant of S is dishonest, even if a is honest, meaning that the value k is
stored on non corrupted API. Formally, we write S ⊢∗ t when

⋃
b∈Agent∪{int} Sb∪

{k | hα
a (n, k, i, S) ∈ S, S 6⊆ H, a ∈ Agent} ⊢ t.

We then consider a stronger version of property Sec.

∀a ∈ Agent, ∀x, y ∈ Msg, ∀i ∈ {1, 2, 3}, ∀α ∈ {r, g}, ∀S ⊆ H

S ⊢∗ hα
a (x, y, i, S) ⇒ S 6⊢∗ y and y ∈ Key ∪ Nonce (Sec*)

The key of the proof consists in showing that Sec* together with the two
following properties are invariant by application of rules of API ∪ INTRUDER∪
CONTROL:

∀n, k, m1, . . . , mp ∈ Msg, ∀i, i1, . . . , ip ∈ {0, 1, 2, 3},

∀α ∈ {r, g}, ∀j s.t. ij ≥ 1, and Sj ⊆ H, ∀S ⊆ H

S ⊢∗ {i1, S1, m1, . . . , ip, Sp, mp}k and S ⊢∗ hα
a (n, k, i, S) ⇒

mj ∈ Key ∪ Nonce and

∃nj ∈ Nonce, ∃b ∈ Agent, ∃α′ ∈ {r, g},

S ⊢∗ hα′

b (nj , mj , ij , Sj) (Enc)

∀k, m1, . . . , mp ∈ Msg, ∀i1, . . . , ip ∈ {0, 1, 2, 3},

∀j s.t. ij = 0

S ⊢∗ {i1, S1, m1, . . . , ip, Sp, mp}k ⇒ S ⊢∗ mj (Enc0)

Theorem 1 then easily follows since any initial state satisfies the three prop-
erties Sec*, Enc and Enc0 and property Sec is an immediate consequence of
property Sec*.

6 Security of the API under compromised han-

dles

We have seen in the previous section that our API protects any data for which
there is an honest handle hα

a (n, k, i, S) with S ⊆ H . Imagine that some secret
data is accidentally leaked to the attacker, possibly using a brute force attack or
some other means. So, the attacker knows both hα

a (n, k, i, S) and k. Then the
attacker can learn any data of security level strictly smaller than the security
level i of k, stored by the API of a, for which he has a handle hα′

a (n′, k′, j, S′)
with j < i, S ⊆ S′. Indeed, the attacker can use the encryption command of
the API

Encrypt hα
a (n, k, i, S) hα′

a (n′, k′, j, S′)

and obtain the cyphertext {j, S′, k′}k thus k′. Note that this attack requires the
attacker to control the API of a and only allows handles of strictly lower security
level to be compromised. Even so, this situation is not completely satisfactory.

Thus we assume that (honest) agents periodically erase from the API any
handle that corresponds to a data of a security level strictly lower than 3.

INRIA

Synthesising Secure APIs 15

Since data of security level 2 are typically short-term session key and data of
security level 1 are typically nonces, it makes sense to refresh them periodically.
Formally, we say that a state S is refreshed if Sint ⊆ Msg is any set of messages
and if for any a ∈ H , the set Sa only contains handles of the form hα

a (n, k, 3, S)
with n ∈ Nonce, k ∈ Nonce ∪ Key and such that k only (possibly) appears in
S in key position1. Note that we do not make any assumption on the states of
compromised agents (besides that keys of level 3 only appear in key position).

This is however still not sufficient to guarantee the security of the API in case
the attacker is able to learn old keys. Indeed, assume that an attacker knows a
cyphertext {j, S′, k′}k where k is a long-term (honest) key (of security level 3)
such that he also knows k′ (possibly using brute force attacks) of security level
2. For every (honest) agent a that has access to k using some handle of the
form hr

a(n, k, 3, S), the attacker can register k′ using the decryption command
of the API ifa.

Decrypt hr
a(n, k, 3, S) {j, S′, k′}k

The attacker then learns hα
a (n′, k′, 2, S′), a fresh handle that refers to k′, which

allows him to mount the previous attacks, again allowing the attacker to learn
any data of security level 1 stored by the TRD of a. This corresponds a classical
replay attack. Intuitively, since our API can be used to implement a protocol
subject to replay, it suffers from replay attack as well.

To prevent such replay attacks, we reinforce the security of the API by re-
stricting the use of decryption rules: the API should allow decryption with keys
of level 3 only if at least one component is checked for freshness. In particular,
our restricted API will not allow the implementation of protocols subject to this
form of replay attack. Formally this corresponds to considering only decryption
rules of the form

Ka(hα
a (Xn, Xk, i0, S0)), Ka({m1, . . . , mp}Xk

),
⋃

j∈L

Ka(m′
j)

N1,...,Np

⇒
⋃

j /∈L

Ka(m′
j)

where J 6= ∅ if i0 = 3 (and all the other conditions of the decryption rule
are fulfilled). Let APIr be the set of rules obtained from API by removing the
decryption rules where J is empty when i0 = 3.

Our restricted API preserves secrecy of its confidential values, even when the
attacker is able to learn old keys and to control honest APIs, provided honest
agents refresh the data in their TRDs.

Theorem 2 Let S0 be an refreshed state. Then for any state S, accessible from
S0, that is S0 →∗

APIr∪INTRUDER∪CONTROL S, we have that S satisfies property Sec.

Proof: Let S0 be an refreshed state. We define Fresh to be the set of fresh
values, that is the set of nonces and keys that do not occur in S0. As for the
proof of Theorem 1, we first re-enforce the properties that are invariant under

1That is, whenever k occurs at position p in a message t of S, then p = p′.2 and t|p′ = {t′}k .

RR n° 6882

16 Cortier & Steel

APIr ∪ INTRUDER∪ CONTROL. We consider the three following properties.

∀a ∈ Agent, ∀x, y ∈ Msg, ∀i ∈ {1, 2, 3}, ∀S ⊆ H, ∀α ∈ {r, g}

S ⊢∗ hα
a (x, y, i, S) ⇒ S 6⊢∗ y and y ∈ Key ∪ Nonce

and in case i 6= 3 then y ∈ Fresh (SecFresh*)

∀n, k, m1, . . . , mp ∈ Msg, ∀i, i1, . . . , ip ∈ {0, 1, 2, 3},

∀α ∈ {r, g}, ∀j s.t. ij ≥ 1, and Sj ⊆ H, ∀S ⊆ H

S ⊢∗ {i1, S1, m1, . . . , ip, Sp, mp}k and S ⊢∗ hα
a (n, k, i, S) ⇒

(mj ∈ Key ∪ Nonce and

∃nj ∈ Nonce, b ∈ Agent, ∃α′ ∈ {r, g},

S ⊢∗ hα′

b (nj , mj , ij , Sj))

or {i1, S1, m1, . . . , ip, Sp, mp}k ∈ S0 (Enc’)

∀k, m1, . . . , mp ∈ Msg, ∀i1, . . . , ip ∈ {0, 1, 2, 3},

∀j s.t. ij = 0

S ⊢∗ {i1, S1, m1, . . . , ip, Sp, mp}k ⇒

S ⊢∗ mj or {i1, S1, m1, . . . , ip, Sp, mp}k ∈ S0 (Enc0’)

We can show by inspection of the rules that these three properties are in-
variant under application of the rules of APIr ∪ INTRUDER ∪ CONTROL. The-
orem 2 then easily follows since any refreshed state satisfies the three proper-
ties SecFresh*, Enc’ and Enc0’ and property Sec is an immediate consequence
of property SecFresh*.

7 Results

We have tested our implementation on all the key distribution protocols in sec-
tion 6.3 of the Clark-Jacob survey, excepting those which rely on synchronised
clocks and timestamps for freshness. We summarise the results in Table 1 - full
details are available at http://www.lsv.ens-cachan.fr/~steel/GenericAPI.
The results illustrate how the properties we are able to guarantee by the use of
our API translate to the properties of the protocols that can be implemented.
Needham-Schroeder Symmetric Key can be implemented by API but not APIr,
and indeed is subject to a replay attack. The amended version can be imple-
mented by APIr, and has no known attack. The Otway-Rees protocol has a
known type attack, which would be avoided by the tagged encryption scheme
used by our API since in particular agent identities are included in every encryp-
tion. Yahalom cannot be implemented by APIr. The missing test is reported
for the final message to B. At first sight this would seem to indicate inadequate
functionality in our API, since B is supposedly assured the freshness of the ses-
sion key by the fact that A has used it to encrypt B’s nonce in a separate packet.
However, this missing test can in fact be exploited by a malicious party playing
A’s role in the protocol to force B to accept an old key [13]. Carlsen’s protocol
has no known attack. Woo-Lam has a known parallel session attack, but this
exploits a type flaw which our encryption scheme would prevent.

INRIA

http://www.lsv.ens-cachan.fr/~steel/GenericAPI

Synthesising Secure APIs 17

Protocol (section in Clark-Jacob) API APIr

Needham-Schroeder SK (6.3.1) + -
NSSK amended version (6.3.4) + +
Otway-Rees (6.3.3) + +
Yahalom (6.3.6) + -
Carlsen (6.3.7) + +
Woo-Lam Mutual Auth (6.3.11) + +

Table 1: Implementation of some protocols. A + indicates an implementa-
tion of the protocol was found by our algorithm in section 4. A - indicates the
algorithm reported a missing test.

8 Conclusions

We have presented a generic API that can be used to implement many symmetric
key protocols, and we have proved its security no matter what protocol has been
implemented, and no matter how the attacker uses the API. If an attacker might
be able to learn old secret values, our API should be switched to a restricted
mode, in which case fewer protocols can be implemented, but protection against
replay attacks is enforced.

Although our API is limited to symmetric key cryptography and a particular
notion of freshness checking which may not accomodate all correct protocols, we
believe we have established that it is possible to construct a secure API with a
satisfactory level of generality by examining the protocols it is supposed to im-
plement. Extensions to asymmetric cryptography, signatures, PKI certificates,
and more exotic properties such as correctness of timestamps (vital for some
applications [14]) remain as future work.

As we mentioned in the introduction, most previous work on analysis of
security APIs has resulted in the discovery of flaws in existing schemes. Some
positive results include the verification of various fixes of the IBM CCA in
a bounded model for a particular security property (the secrecy of PINs) [7,
8]. Forthcoming work by the second author currently includes the verification
of the secrecy of sensitive keys for a small subset of PKCS#11 (with certain
modifications) in an unbounded model [10]. This API includes no freshness
checking and no correspondance between keys and agents, so could not hope to
enforce the kinds of properties we have specified here. However, it does offer
the possibility of updating long-term keys, something we have yet to tackle for
our API.

References

[1] Council regulation (ec) no 2252/2004: on standards for se-
curity features and biometrics in passports and travel docu-
ments issued by member states, December 2004. Available at
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF.

[2] M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of
the 3rd International Workshop on Cryptographic Hardware and Embedded

RR n° 6882

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF

18 Cortier & Steel

Systems (CHES’01), volume 2162 of LNCS, pages 220–234, Paris, France,
2001. Springer.

[3] U. Carlsen. Optimal privacy and authentication on a portable communi-
cations system. SIGOPS Oper. Syst. Rev., 28(3):16–23, 1994.

[4] CCA Basic Services Reference and Guide, Oct. 2006. Available online at
www.ibm.com/security/cryptocards/pdfs/bs327.pdf.

[5] J. Clark and J. Jacob. A survey of authentica-
tion protocol literature: Version 1.0. Available via
http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz, 1997.

[6] J. Clulow. On the security of PKCS#11. In Proceedings of the 5th In-
ternational Worshop on Cryptographic Hardware and Embedded Systems
(CHES’03), volume 2779 of LNCS, pages 411–425, Cologne, Germany,
2003. Springer.

[7] V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security
of XOR-based key management schemes. In Proceedings of the 13th In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’07), volume 4424 of LNCS, pages 538–552,
Braga, Portugal, 2007. Springer.

[8] J. Courant and J.-F. Monin. Defending the bank with a proof assistant. In
Proceedings of the 6th International Workshop on Issues in the Theory of
Security (WITS’06), pages 87 – 98, Vienna, Austria, March 2006.

[9] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In
Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF’08), pages 331–344, Pittsburgh, PA, USA, June 2008. IEEE Com-
puter Society Press.

[10] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with
unbounded fresh data. In Proceedings of ARSPA-WITS ’09, 2009. To
appear.

[11] IBM Comment on “A Chosen Key Difference At-
tack on Control Vectors”, Jan. 2001. Available from
http://www.cl.cam.ac.uk/~mkb23/research.html.

[12] D. Longley and S. Rigby. An automatic search for security flaws in key
management schemes. Computers and Security, 11(1):75–89, March 1992.

[13] A. Perrig and D. Song. Looking for diamonds in the desert. In Proc. of the
13th Computer Security Foundations Workshop (CSFW’00), pages 64–76.
IEEE Computer Society Press, 2000.

[14] M. Raya and J.-P. Hubaux. Securing vehicular ad hoc networks. Journal
of Computer Security, 15(1):39–68, 2007.

[15] RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Stan-
dard., June 2004.

INRIA

www.ibm.com/security/cryptocards/pdfs/bs327.pdf
http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz

Synthesising Secure APIs 19

[16] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Proc. of the 14th Computer Security Foun-
dations Workshop (CSFW’01), pages 174–190, Cape Breton, Nova Scotia,
Canada, 2001. IEEE Computer Society Press.

A Proof of Theorem 1

We first remark that the intruder does not really increase when he learns handles
or un-decryptable cyphertext.

Lemma 1 Let S and S′ be set of terms such that S′ = S ∪ {{m}k} ∪ Hdls

where Hdls ⊆ Handle is a set of handles and k is not deducible: S 6⊢∗ k. Let
u ∈ Agent ∪ Nonce ∪ Key ∪ Handle be an atomic value. Then

S′ ⊢∗ u iff S ⊢∗ u or u ∈ Hdls.

Moreover, Let v ∈ Msg and w ∈ Key. Then

S′ ⊢∗ {v}w and S′ 6⊢∗ w iff S ⊢∗ {v}w or {v}w = {m}k.

The proof mainly relies on the fact that keys are atomic.
We are now ready to show that properties Sec*, Enc and Enc0 are invariant

under application of the rules of the API. Let S be a state satisfying Sec*, Enc
and Enc0 and consider a state S′ such that S →API∪INTRUDER∪CONTROL S′. Let
us show that S′ satisfies Sec*, Enc and Enc0

Let us first notice that properties Sec*, Enc and Enc0 are clearly in-
variant under application of the rules of INTRUDER ∪ CONTROL. Indeed, if
S →INTRUDER∪CONTROL S′ then for any term u, we have S′ ⊢∗ u if and only if
S ⊢∗ u. For the last rule of CONTROL, this is due to the fact that it is easy
to notice that whenever an accessible state S is such that S ⊢ hα

a (n, k, i, S)
then a ∈ S. Thus whenever hα

b (n, k, i, S) ∈ S with b /∈ H then S 6⊆ H thus
S ⊢∗ hα

b (n, k, i, S).
Thus we now assume S →API S′ and we consider three cases depending on

the rule that has been applied.
Generation rule. a ∈ S ⊆ Agent

N,K
⇒ Ka(h

g
a(N, K, i, S)) and i ∈ {1, 2}

N,K
⇒ Ka(K), Ka(hg

a(N, K, 0, ∅))

S′ = S ∪ {hg
a(n, k, i, S)} and i ∈ {1, 2} or S ′ = S ∪ {k, hg

a(n, k, 0, ∅)}. where n
is a fresh nonce and k is a fresh key. Using Lemma 1, we easily check that S
satisfies properties Sec*, Enc and Enc0 implies S′ satisfies properties Sec*,
Enc and Enc0.

Encryption rule.

Ka(hα
a (Xn, Xk, i0, S0)), Ka(m1), . . . , Ka(mp)

⇒ Ka({m′
1, . . . , m

′
p}Xk

)

We have miθ ∈ S, hα
a (Xn, Xk, i0, S0)θ ∈ S and S′ = S ∪ {({m′

1, . . . , m
′
p}Xk

)θ}
where the mi and m′

i are defined as in rule Encrypt. We distinguish between
two cases.

RR n° 6882

20 Cortier & Steel� Either S ⊢∗ Xkθ. In that case, since S ⊢∗ hα
a (Xn, Xk, i0, S0)θ, prop-

erty Sec* ensures that S0 6⊆ H . We deduce that for any 1 ≤ ij ≤ 3, we
have Sj 6⊆ H thus mjθ = hα

a (nj , kj , ij, Sj) and S ⊢∗ kj . For any ij = 0,
we have mjθ ∈ S. Thus in both cases, we deduce that S ⊢∗ m′

jθ for any
1 ≤ i ≤ p. This ensures that S′ ⊢∗ u if and only if S ⊢∗ u for any term
or handle u. We deduce that S satisfies properties Sec*, Enc and Enc0
implies S′ satisfies properties Sec*, Enc and Enc0.� Or S 6⊢∗ Xkθ. Thus it must be the case that S0 ⊆ H (otherwise S ⊢∗

hα
a (Xn, Xk, i0, S0)θ implies S ⊢∗ Xkθ). Moreover, applying Lemma 1, we

get that S′ ⊢∗ u iff S ⊢∗ u for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle (*).

Property Sec*: Assume S′ ⊢∗ hα
a (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, E1 ⊆

H . Then (*) implies S ⊢∗ hα
a (n1, k1, l1, E1). Thus Property Sec* implies

S 6⊢∗ k1 and k1 ∈ Nonce ∪ Key. Thus applying (*) again, we get S′ 6⊢∗ k1.
We conclude that S′ satisfies Property Sec*.

Property Enc: Assume S′ ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and S′ ⊢∗ hα

a (n, k, i, S)
with S, Sj ⊆ H and ij ≥ 1. If S ⊢∗ {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k, we conclude

using Lemma 1 and the fact that S satisfies Property Enc. Otherwise, by
Lemma 1, we must have {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k = {m′

1, . . . , m
′
p}Xk

θ.
Thus Sj = S′

j and mjθ = hα
a (nj , uj , ij, Sj) ∈ S. Thus S′ ⊢∗ hα

a (nj , uj , ij, Sj)
thus S′ satisfies Property Enc.

Property Enc0: Assume S′ ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0. If

S ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies

Property Enc0. If S′ ⊢∗ k then we of course have S′ ⊢∗ uj. Otherwise, by
Lemma 1, we must have {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k = ({m′

1, . . . , m
′
p}Xk

)θ.
Thus Sj = S′

j and mjθ = uj ∈ S. Thus S′ ⊢∗ uj and S′ satisfies Prop-
erty Enc0.

Decryption rule.

Ka(hα
a (Xn, Xk, i0, S0)), Ka({m1, . . . , mp}Xk

),
⋃

j∈J

Ka(m′
j)

N1,...,Nk⇒
⋃

j /∈J

Ka(m′
j)

We have {m1, . . . , mk}Xk
θ ∈ S, hα

a (Xn, Xk, i0, S0)θ ∈ S, m′
jθ ∈ S for any j ∈ J

and S′ = S∪{m′
jθ | j /∈ J} where the mi and m′

i are defined as in rule Encrypt.
For any j such that ij = 0, Property Enc0 ensures that S ⊢∗ m′

j . For any j
such that ij ≥ 1, then m′

j is a fresh handle. Thus we can deduce from Lemma 1
that for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle, we have S ′ ⊢∗ u iff S ⊢∗ u or
u = m′

j for some j such that ij ≥ 1 (**).

Property Sec*: Assume S′ ⊢∗ hα′

b (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, E1 ⊆ H .

Then (**) implies S ⊢∗ hα′

b (n1, k1, l1, E1) or hα′

b (n1, k1, l1, E1) = m′
j for some

j such that ij ≥ 1. In the first case (S ⊢∗ hα′

b (n1, k1, l1, E1)), Property Sec*
ensures S 6⊢∗ k1 and k1 ∈ Nonce ∪ Key thus (**) implies S′ 6⊢∗ k1. In the
second case (hα′

b (n1, k1, l1, E1) = m′
j) then mj = k1 and property Enc ensures

that there exists n′ ∈ Nonce, c ∈ Agent such that S ⊢∗ hα′′

c (n′, k1, l1, E1).

INRIA

Synthesising Secure APIs 21

Property Sec* on S ensures that S 6⊢∗ k1 and k1 ∈ Nonce ∪ Key thus (**)
implies S′ 6⊢∗ k1. In both cases we conclude that S′ satisfies Property Sec*.

Property Enc: Assume S′ ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and S′ ⊢∗ hα′

b (n, k, i, S)
with S, S′

j ⊆ H and ij ≥ 1. Property Sec* on S′ ensures that S′ 6⊢∗ k.
Thus by Lemma 1, we must have S ⊢∗ {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k Moreover,

(**) implies that either S ⊢∗ hα′

b (n, k, i, S) or hα′

b (n, k, i, S) = m′
j for some

l /∈ L. In the first case, we conclude using the fact that S satisfies Prop-
erty Enc thus uj ∈ Nonce ∪ Key and there exists nj ∈ Nonce and c ∈ Agent

such that S ⊢∗ hα′′

c (nj , uj, i
′
j, S

′
j), which implies S′ ⊢∗ hα′′

c (nj , uj , i
′
j, S

′
j) thus

S′ satisfies Property Enc. In the second case, we have {m1, . . . , mk}Xk
θ ∈ S

and hα
a (Xn, Xk, i0, S0)θ ∈ S. Since S enjoys Property Enc, we deduce that

there exists nl ∈ Nonce and c ∈ Agent such that S ⊢∗ hα′′

c (nl, k, il, Sl), that is
S ⊢∗ hα′′

c (nl, k, i, S). Since S ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k, Property Enc on S

ensures that uj ∈ Nonce ∪ Key and that there exists n′
j ∈ Nonce and d ∈ Agent

such that S ⊢∗ hα′′′

d (n′
j , uj , i

′
j, S

′
j). We can deduce that S ⊢∗ hα′′′

d (n′
j , uj , i

′
j, S

′
j)

thus S′ satisfies Property Enc.
Property Enc0: Assume S′ ⊢∗ {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0. If

S ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies Prop-

erty Enc0. Otherwise, by Lemma 1, we must have S′ ⊢∗ k thus S′ ⊢∗ uj.

B Proof of Theorem 2

Let S be a state satisfying SecFresh*, Enc’ and Enc0’ and consider a state S′

such that S →API∪INTRUDER∪CONTROL S′. Let us show that S′ satisfies SecFresh*,
Enc’ and Enc0’

Let us first notice that properties SecFresh*, Enc’ and Enc0’ are clearly
invariant under application of the rules of INTRUDER ∪ CONTROL. Indeed, if
S →INTRUDER∪CONTROL S′ then for any term u, we have S′ ⊢∗ u if and only if
S ⊢∗ u. For the last rule of CONTROL, this is due to the fact that it is easy
to notice that whenever an accessible state S is such that S ⊢ hα

a (n, k, i, S)
then a ∈ S. Thus whenever hα

b (n, k, i, S) ∈ S with b /∈ H then S 6⊆ H thus
S ⊢∗ hα

b (n, k, i, S).
Thus we now assume S →APIr S′ and we consider three cases depending on

the rule that has been applied.
Generation rules. a ∈ S ⊆ Agent

N,K
⇒ Ka(h

g
a(N, K, i, S)) and i ∈ {1, 2}

N,K
⇒ Ka(K), Ka(hg

a(N, K, 0, ∅))

S′ = S ∪ {hg
a(n, k, i, S)} and i ∈ {1, 2} or S ′ = S ∪ {k, hg

a(n, k, 0, ∅)}. where
n is a fresh nonce and k is a fresh key. Using Lemma 1, we easily check that
S satisfies properties SecFresh*, Enc’ and Enc0’ implies S′ satisfies proper-
ties SecFresh*, Enc’ and Enc0’.

Encryption rule.

Ka(hα
a (Xn, Xk, i0, S0)), Ka(m1), . . . , Ka(mp)

⇒ Ka({m′
1, . . . , m

′
p}Xk

)

RR n° 6882

22 Cortier & Steel

We have miθ ∈ S, hα
a (Xn, Xk, i0, S0)θ ∈ S and S′ = S ∪ {({m′

1, . . . , m
′
p}Xk

)θ}
where the mi and m′

i are defined as in rule Encrypt. We distinguish between
two cases.� Either S ⊢∗ Xkθ. In that case, since S ⊢∗ hα

a (Xn, Xk, i0, S0)θ, prop-
erty SecFresh* ensures that S0 6⊆ H . We deduce that for any 1 ≤ ij ≤ 3,
we have Sj 6⊆ H thus mjθ = hα

a (nj , kj , ij , Sj) and S ⊢∗ kj . For any ij = 0,
we have mjθ ∈ S. Thus in both cases, we deduce that S ⊢∗ m′

jθ for any
1 ≤ i ≤ p. This ensures that S′ ⊢∗ u if and only if S ⊢∗ u for any term
or handle u. We deduce that S satisfies properties SecFresh*, Enc’ and
Enc0’ implies S′ satisfies properties SecFresh*, Enc’ and Enc0’.� Or S 6⊢∗ Xkθ. Thus it must be the case that S0 ⊆ H (otherwise S ⊢∗

hα
a (Xn, Xk, i0, S0)θ implies S ⊢∗ Xkθ). Moreover, applying Lemma 1, we

get that S′ ⊢∗ u iff S ⊢∗ u for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle (*).

Property SecFresh*: Assume S′ ⊢∗ hα
a (n1, k1, l1, E1) with l1 ∈ {1, 2, 3},

E1 ⊆ H . Then (*) implies S ⊢∗ hα
a (n1, k1, l1, E1). Thus Property Sec*

implies S 6⊢∗ k1 and k1 ∈ Nonce ∪ Key and moreover k1 ∈ Fresh in case
l3 6= 3. Thus applying (*) again, we get S′ 6⊢∗ k1. We conclude that S′

satisfies Property SecFresh*.

Property Enc’: Assume S′ ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and S′ ⊢∗ hα

a (n, k, i, S)
with S, Sj ⊆ H and ij ≥ 1. If S ⊢∗ {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k, we conclude

using Lemma 1 and the fact that S satisfies Property Enc’. Otherwise, by
Lemma 1, we must have {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k = {m′

1, . . . , m
′
p}Xk

θ.
Thus Sj = S′

j and mjθ = hα
a (nj , uj , ij, Sj) ∈ S. Thus S′ ⊢∗ hα

a (nj , uj , ij, Sj)
thus S′ satisfies Property Enc’.

Property Enc0’: Assume S′ ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0. If

S ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies

Property Enc0’. If S′ ⊢∗ k then we of course have S′ ⊢∗ uj. Otherwise, by
Lemma 1, we must have {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k = ({m′

1, . . . , m
′
p}Xk

)θ.
Thus Sj = S′

j and mjθ = uj ∈ S. Thus S′ ⊢∗ uj and S′ satisfies Prop-
erty Enc0’.

Decryption rule.

Ka(hα
a (Xn, Xk, i0, S0)), Ka({m1, . . . , mp}Xk

),
⋃

j∈J

Ka(m′
j)

N1,...,Nk⇒
⋃

j /∈J

Ka(m′
j)

We have {m1, . . . , mp}Xk
θ ∈ S, hα

a (Xn, Xk, i0, S0)θ ∈ S, m′
jθ ∈ S for any j ∈ J

and S′ = S∪{m′
jθ | j /∈ J} where the mi and m′

i are defined as in rule Encrypt.
Since the decryption rule belongs to APIr, we must have that if i0 = 3 then J
is not empty.

Assume first that S0 ⊆ H . If i0 6= 3 then Property SecFresh* ensures that
k ∈ Fresh, which ensures that {m1, . . . , mp}Xk

θ /∈ S0. If i0 = 3, then J is not
empty. Let j0 ∈ J , we have mj0 = ij0 , Sj0 , wj0 . There exists nj0 such that
hg

a(nj0 , wj0 , ij0 , Sj0) ∈ S. Then Property SecFresh* ensures that wj0 ∈ Fresh,
which ensures that {m1, . . . , mp}Xk

θ /∈ S0. In both cases, if S0 ⊆ H we can
conclude that {m1, . . . , mp}Xk

θ /∈ S0.

INRIA

Synthesising Secure APIs 23

Moreover, for any j such that ij = 0, Property Enc0’ ensures that S ⊢∗ m′
j .

For any j such that ij ≥ 1, then m′
j is a fresh handle. Thus we can deduce from

Lemma 1 that for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle, we have S ′ ⊢∗ u iff
S ⊢∗ u or u = m′

j for some j such that ij ≥ 1 (**).
Assume now that S0 6⊆ H . Then S ⊢∗ Xkθ thus for any 1 ≤ i ≤ p, S ⊢∗ mi.

In particular, for any j such that ij = 0, S ⊢∗ m′
j . Thus we deduce that property

(**) also holds.
Property SecFresh*: Assume S′ ⊢∗ hα′

b (n1, k1, l1, E1) with l1 ∈ {1, 2, 3},

E1 ⊆ H . Then (**) implies S ⊢∗ hα′

b (n1, k1, l1, E1) or hα′

b (n1, k1, l1, E1) = m′
j

for some j such that ij ≥ 1. In the first case (S ⊢∗ hα′

b (n1, k1, l1, E1)), Prop-
erty SecFresh* ensures S 6⊢∗ k1 and k1 ∈ Nonce∪Key and k1 ∈ Fresh is l1 6= 3.
Thus (**) implies S′ 6⊢∗ k1. In the second case (hα′

b (n1, k1, l1, E1) = m′
j) then

mj = k1 and S0 ⊆ E1 ⊆ H thus {m1, . . . , mp}Xk
θ /∈ S0. Property Enc’ then en-

sures that there exists n′ ∈ Nonce, c ∈ Agent such that S ⊢∗ hα′′

c (n′, k1, l1, E1).
Property SecFresh* on S ensures that S 6⊢∗ k1 and k1 ∈ Nonce ∪ Key and
k1 ∈ Fresh is l1 6= 3. Thus (**) implies S′ 6⊢∗ k1. In both cases we conclude that
S′ satisfies Property SecFresh*.

Property Enc’: Assume S′ ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and S′ ⊢∗ hα′

b (n, k, i, S)
with S, S′

j ⊆ H and ij ≥ 1. Property SecFresh* on S′ ensures that S′ 6⊢∗ k.
Thus by Lemma 1, we must have S ⊢∗ {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k Moreover,

(**) implies that either S ⊢∗ hα′

b (n, k, i, S) or hα′

b (n, k, i, S) = m′
j for some

l /∈ L. In the first case, we conclude using the fact that S satisfies Prop-
erty Enc’ thus {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k ∈ S0 or uj ∈ Nonce ∪ Key and there

exists nj ∈ Nonce and c ∈ Agent such that S ⊢∗ hα′′

c (nj , uj, i
′
j , S

′
j), which im-

plies S′ ⊢∗ hα′′

c (nj , uj, i
′
j , S

′
j) thus S′ satisfies Property Enc’. In the second

case, we must have i 6= 3 and S0 ⊆ S ⊆ H thus {m1, . . . , mp}Xk
θ /∈ S0.

we have {m1, . . . , mk}Xk
θ ∈ S and hα

a (Xn, Xk, i0, S0)θ ∈ S. Since S en-
joys Property Enc’, we deduce that there exists nl ∈ Nonce and c ∈ Agent

such that S ⊢∗ hα′′

c (nl, k, il, Sl), that is S ⊢∗ hα′′

c (nl, k, i, S). Since S ⊢∗

{i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k and i 6= 3, Property SecFresh* ensures that f ∈

Fresh thus {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k /∈ S0. Property Enc’ on S thus ensures

that uj ∈ Nonce ∪ Key and that there exists n′
j ∈ Nonce and d ∈ Agent such

that S ⊢∗ hα′′′

d (n′
j , uj, i

′
j , S

′
j). We can deduce that S ⊢∗ hα′′′

d (n′
j , uj, i

′
j , S

′
j) thus

S′ satisfies Property Enc’.
Property Enc0’: Assume S′ ⊢∗ {i′1, S

′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0. If

S ⊢∗ {i′1, S
′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies Prop-

erty Enc0’. Otherwise, by Lemma 1, we must have S′ ⊢∗ k thus S′ ⊢∗ uj .

Contents

1 Introduction 3

2 Model 4
2.1 Syntax . 4
2.2 Model . 4

3 Presentation of the Generic API 5
3.1 API rules . 5

RR n° 6882

24 Cortier & Steel

4 Using the Generic API to Implement a Protocol 8
4.1 Algorithm . 9
4.2 Example . 11

5 Security of the API 12

6 Security of the API under compromised handles 14

7 Results 16

8 Conclusions 17

A Proof of Theorem 1 19

B Proof of Theorem 2 21

INRIA

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Model
	Syntax
	Model

	Presentation of the Generic API
	API rules

	Using the Generic API to Implement a Protocol
	Algorithm
	Example

	Security of the API
	Security of the API under compromised handles
	Results
	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2

