An active set approach to the elastic-net and its applications in mass spectrometry

Abstract : This paper uses the framework of a Mass Spectrometry application to introduce a new method of peak picking as well as two active set methods for the minimization of the elastic-net-functional. The application of peak picking is essential in mass spectrometry and is often based on mean spectra. In contrast our procedure uses a set of spectra obtained from a basis learning method. Our procedure utilizes the well known l1-minimization and corresponding active set algorithms but comprises ill conditioned operators such that regularization is required. We show, that the elastic-net gives a natural justification for Tikhonov-Philipsregularization in the used algorithms. Therefore we introduce adaptions of known active set algorithms for l1-minimization to the elastic net. Furthermore, we emphasize the differences of the algorithms for `1 and the elastic-net in numerical examples.
Type de document :
Communication dans un congrès
SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369397
Contributeur : Ist Rennes <>
Soumis le : jeudi 19 mars 2009 - 16:09:41
Dernière modification le : lundi 20 juin 2016 - 14:10:32
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 13:50:42

Fichier

19.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369397, version 1

Collections

Citation

Theodore Alexandrov, Oliver Keszöcze, Dirk A. Lorenz, Stefan Schiffler, Klaus Steinhorst. An active set approach to the elastic-net and its applications in mass spectrometry. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369397〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

326