Nonnegativity and Bound Constrains for Compressed Sensing

Abstract : Let A be an n by N real valued random matrix, and HN denote the N-dimensional hypercube. For numerous random matrix ensembles, the expected number of k-dimensional faces of the random n-dimensional zonotope AHN obeys the formula Efk(AHN)/fk(HN) = 1 − PN−n,N−k, where PN−n,N−k is a fair-coin-tossing probability: PN−n,N−k [\equiv] Prob{N−k−1 or fewer successes in N−n−1 tosses }.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00369486
Contributeur : Ist Rennes <>
Soumis le : mardi 31 mars 2009 - 11:03:53
Dernière modification le : jeudi 26 octobre 2017 - 16:34:02

Identifiants

  • HAL Id : inria-00369486, version 1

Collections

Citation

David L. Donoho, Jared Tanner. Nonnegativity and Bound Constrains for Compressed Sensing. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369486〉

Partager

Métriques

Consultations de la notice

38