Dictionary learning with spatio-spectral sparsity constraints

Abstract : Devising efficient sparse decomposition algorithms in large redundant dictionaries has attracted much attention recently. However, choosing the right dictionary for a given data set remains an issue. An interesting approach is to learn the best dictionary from the data itself. The purpose of this contribution is to describe a new dictionary learning algorithm for multichannel data analysis purposes under specific assumptions. We assume a large number of contiguous channels as in so-called hyperspectral data. In this case it makes sense to consider a priori that the collected data exhibits sparse spectral signatures and sparse spatial morphologies in specified dictionaries of spectral and spatial waveforms. Building on GMCA, the proposed algorithm gives a practical way to enforce the additional a priori spectral sparsity constraint on the dictionary space. Numerical experiments with synthetic and real hyperspectral data illustrate the efficiency of the proposed algorithm.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369488
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 09:36:46
Dernière modification le : jeudi 12 avril 2018 - 10:51:19
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:25:25

Fichier

24.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369488, version 1

Citation

Yassir Moudden, Jérome Bobin, Jean-Luc Starck, Jalal M. Fadili. Dictionary learning with spatio-spectral sparsity constraints. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369488〉

Partager

Métriques

Consultations de la notice

406

Téléchargements de fichiers

226