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Algorithms for Multiple Basis Pursuit Denoising

A. Rakotomamonjy
LITIS EA 4108, UniversitAl de Rouen Avenue de I'université

76800 Saint Etienne du Rouvray France
alain.rakotomamonjy@insa-rouen.fr

Abstract—We address the problem of learning a joint sparse with typically p < 1 andg > 1. J, ,(C can be interpreted
approximation of several signals over a dictionary. We pos¢he as a relaxed version of & quasi-norm on the row-sparsity
problem as a matrix approximation problem with a row-sparsity measure ofC.

inducing penalization on the coefficient matrix. We proposea S | auth h d thods f Vi bl
simple algorithm based on iterative shrinking for solving the everal authors have proposed methods for solving probiem

problem. At the present time, such a problem is solved eitheby ~(@). For instance, Cotter el alll[5] developed an algorithm
using a Second-Order Cone programming or by means of a M- for solving problem[{R) whemp < 1 andq¢ = 2, known as
Focuss algorithm. While the former algorithm is computationally  M-FOCUSS. Such an algorithm based on factored gradient
expensive, the latter is efficient but present some pitfalldike  4ogcent have been proven to converge towards a local or
presences of fixed points which are undesiderable when sahg lobal (wh — 1) mini f bl if it d t
a convex problem. By analyzing the optimality conditions ofthe ~2V9'00a (W ey = ) minimum or pro em[(p) if it does no
problem, we derive a simple algorithm. get stuck in a fixed-point. The cage= 1,q = 2, named as
The algorithm we propose is efficient and is guaranteed M-BP for Multiple Basis Pursuit in the following, is the most
to converge to the optimal solution, up to a given tolerance. natural extension of the so-called Lasso problem [10] oisBas
Furthermore, by means of a reweighted scheme, we are able to p|;git Denoising 4], since fat = 1, problem [) reduced to
improve the sparsity of the solution. the Lasso problem. The key point of this case is that it yields
to a convex optimization problem and thus it can benefit from
|. INTRODUCTION all properties resulting from convexity.g globa_l minimum.
) ] . Malioutov et al. [8] have proposed an algorithm based on
In this paper, we consider the problem of simultaneoyssecond-order cone programming formulation, which at the

sparse approximation which can be stated as follows. Sﬂpp%ntrary to M-FOCUSS, always converges to the problem
that we have measurel signals{s;}~ , where each signal global solution.

is of the form In this paper, we develop a simple and efficient algorithm for

s; = Pc; + € solving the M-Basis Pursuit problem. We show that by using
. . . results from non-smooth optimization theory, we are able to
wheres;, € RY, & ¢ RV*M js a matrix of unit-norm o op cory
. M A propose an efficient iterative method which only needs some
elementary functionse; € R* a weighting vector and ; L
matrix multiplications.

is a noise vector® will be denoted in the sequel as the . . - .
e . . : Afterwards, instead of directly deriving a proper algamith
dictionary matrix. Since we have several signals, the dk/er? : s
. or solving the non-convex optimization problem when<
measurements can be written as . } . . .

1 and ¢ = 2, we introduce an iterative reweighted M-Basis
pursuit (IrM-BP) algorithm. We then show that depending on
the chosen weights, such an iterative scheme can actually so
With S = [s1 so -~ sz] a signal matrixC = [c; ¢ -+ cr] problem [2). Our main contribution at this point is then toda
and& a noise matrix. Note that in the sequel, we have adoptE@nslated the non-convex problelh (2) into a series of conve
the following notationsc; . andc. ; respectively denote thigh problems which are easy to solve with our iterative method
row and;jth column of matrixC. ¢;.; is theith element in the 07 M-BP.
jth column ofC.

For the sparse simultaneous approximation problem, the Il. ALGORITHMS
goal is then to recover the matri® given the signal matrix  This section describes two algorithms for solving the M-BP
S and the dictionary® under the hypothesis that all signalgproblem with convex and non-convex penaltigs,.
s; share the same sparsity profile. Such a problem can be
formulated as the following optimization problem A. Iterative shrinking

S=®C+¢& 1)

1 9 The M-BP optimization problem is the following
min IS — C|} + A, (C) @ :
. . minW(C) = 5|S = @C|z + A _lei o (3)
where )\ is a user-defined parameter that balances the approx- C 2 -

imation error and the sparsity-inducing penalty, (C) s where the objective functiol/(C) is a non-smooth but con-

Jpq(C) = Z i |2 vex function. Since the problem is unconstrained a necgssar
" — and sufficient condition for a matriC* to be a minimizer



Algorithm 1 Solving M-BP through iterative shrinking dictionary size is large. A similar approach has also been

C=0, Loop=1 proposed for solving the lassd [6], the group lagso [14] &ed t
while Loop do elastic net[[15]. Intuitively, we can understand this aithon
fori=1,2,---,M do as an algorithm which tends to shrink to zero rows of the
if ¢;. KKT condition is not satisfiedhen coefficient matrix that contribute poorly to the approxiioat
ci. = (1 — ﬁ) T; Indeed,T; can be interpreted as the correlation between the
end if B residual when row; has been removed ang,. Hence the
end for smaller the norm ofT; is, the lessg; is relevant in the
if all KKT Conditions are satisfiethen approximation. And according to equatidm (6), the smaher t

Loop = 0 resultingc;,. is. Insight into this iterative shrinking algorithm
end if can be further obtained by supposing that< N and that®
is composed of orthonormal elementsiY, hence®!® = 1.

end while o= -
In such situation, we have
L
i : T,=¢iS and |T;|3="> (¢isk)

of @) is that0 € OW(C*) where W (C) denotes the i = P ill2 Sk
subdifferential of our objective valué (C) []. By computing k=1
the subdifferential ofiv’(C) with respect to each row,; . of and thus
C, the optimality condition of problenil3) is then

c 1 A LS

—r;+Ag;. =0 Vi i T I i
AT

wherer; = ¢t(S — ®C) andg; . is thei-th row of a subdif- _ o _ _
ferential matrixG of J; »(C) = 3, |lci..||2. According to this Th|s_ last equation highlights the relat|on_ betwee_n the Ie|r_19
definition of J; »’s subdifferential, the optimality condition canBasis Pursuit (wher. = 1) and the Multiple-Basis Pursuit

be rewritten as algorithm presented here. Both algorithms lead to a shgeka
¢ of the coefficient projection. With the inclusion of multpl
-r; +)\W = 0 Vi, ¢.#0 (4) signals, the shrinking factor becomes more robust to noise

el < A Vi, c 0 since it depends on the correlation of the atonto all signals.
2 = ; i, —

A matrix C satisfying these equations can be obtained after

the following algebra. Let us expand eachso that B. Reweighted iterative shrinking algorithm
r, = ¢S —®C_;)—dlgici. This subsection introduces an iterative reweighted M-8asi
- T_e ' ) Pursuit (IrM-BP) algorithm which solves probledd (2) when

p<1andqg=2.
where C_; is the matrixC with the i-th row being set td Recently, several works have advocated that sparse approx-
andT; = ¢!(S — ®C_;). The second equality is obtained byimations can be recovered through iterative algorithmstas
remembering that!®;=1. Then, equatior14) tells us that ifon a reweighted; minimization [16], [2], [3]. Typically, for
ci,. IS non-zero,I; andc; . have to be collinear. Plugging all a single signal case, the idea consists in iteratively aglthe
these points into equatioll (4) yields to an optimal solutiat following problem
can be obtained as :

1
A . mcln§||s—‘1>c|\§+/\g zi| el
ci.= |1 T; Vi (6) ;
+

e re—— (2

IZ where z; are some positive weights, and then to update the
From this update equation, we can derive a simple algorithgasitive weightsz; according to the solutiore*. Besides,
which consists in iteratively applying the updal@ (6) toleagroviding empirical evidences that reweightgdminimization
row of C. Such an iterative scheme actually performs a bloclields to sparser solutions than a simgleminimization, the
coordinate optimization. Although, block-coordinateiopta- above cited works theoretically support such claims. These
tion does not converge in general for non-smooth optimozati results for the single signal approximation case suggestith
problem, Tseng[[12] has shown that for an optimizatioghe simultaneous sparse approximation problem, reweighte
problem which objective value is the sum of a smooth ang-Basis Pursuit would lead to sparser solutions than the
convex function and a non-smooth but block-separable conu§lassical M-Basis Pursuit.
function, block-coordinate optimization converges tadgathe

global minimum of the problem. Since for M-BP we are OQur iterative reweighted M-Basis Pursuit is defined as fol-

considering a quadratic function and a row-separable pengbws. We iteratively solve until convergence the optimiaat
function, Tseng's results can be directly applied in order problem

prove convergence of our algorithm.
Our approach, detailed in Algorithnill (1), is a simple and Inin1||S _ @CHQF—"_AZZ’L'”CZ"HQ @)
efficient algorithm for solving M-BP especially when the c 2 Z '



where the positive weight vectar depends on the previousare randomly drawn. The non-zero coefficientd(bfire then
iterate C("~1. In our case, we will consider the followingdrawn from a zero-mean unit variance Gaussian distribution

weighting scheme The signal matrixS is obtained as in equatiofll (1) with the
1 noise matrix being drawn i.i.d from a zero-mean Gaussian
I oo s T Vi (8) distribution and variance so that the signal-to-noiseorat
(llei. iz +¢) each single signal i$0 dB.

where {6(7—1)} is the i-th row of C"— 1. r a user-defined We compare performances of M-BP, IrM'-BP (wvth: 0.5
Y N - andr = 1), M-SBL [13] and M-OMP [11] for different
positive constant and a small regularization term that avoids

numerical instabilities and prevents from having an iminitexperlmental situations. The baseline contextMs = 50,

o (n—1) . .. N =25,k = 10 and L = 3. Note that for the M-OMP,
regularization term for; .as soon as; . vanishes. This is

a classical trick that has been used for instance by Canded'&t stop the algorithm after exactly iterations. For this

al. [7] . Note that for any positive weight vectar problem experiment, we did not performed model selection but irtstea

. .. tried several values of and o and chosen the ones that
@) is a convex problem that does not present local minima. . ~.
Furthermore, it can be solved using our iterative shrinkinngpf"j‘).(Irnlze performances. .

' Figurell shows, from left to right, the performance averaged

z(l:%%r::;n?sbgmsigﬁg tLi%IZCLR/geX I;\fsltsr:al)\iothh;.o?.ZoSuuZ? a? over 50 trials, on sparsity recovery whenincreases fron2
P 9 ' to 20, whenM goes from25 to 150 and whenL = 2, --- | 8.

[18] but uses several iterations and addresses the sireoltan We can note that, M-BP performs worse that IrM-BP. This is

approximation problem. a result that we could expected in views of the literatlred,[16

The IrM-BP algorithm we proposed above can also hsg hich q ahted he sinal
interpreted as an algorithm for solving problef (2) whe ?J which compare Lasso and reweighted Lasso, the single
signal approximation counterpart of M-BP and IrM-BP.

0 < p < 1. Indeed, similarly to the reweightei scheme For all experimental situations, we remark that IrM-BP

of Candeés et al.[]2] or the one-step reweighted lasso of _ : . o
Zou et al. [17], our algorithm falls in the class of majorize?lnd M-SBL perform equally well. Again, this similar

minimize (MM) algorithms [7]. MM algorithms consists in performances can easily be understood because of the strong

. i Lo . . relation between reweighted M-BP and M-SBL [9]. When
replacing a difficult optimization problem with a more easie o

. . . S . considering M-OMP, although we suppose ttkats known,
one, for instance by linearizing the objective function, b

solving the resulting optimization problem and by iter tin%llve can see that the M-OMP performance is not as good as
9 g op P Y 118N those of M-SBL and IrM-BP.
such a procedure.

The connection between MM algorithms and our reweighted
scheme can be made through linearization. In effect, in o
case, sinceJ,» is concave inc;. for 0 < p < 1, a
linear approximation of/, »(C) aroundC(™~1) yields to the
following majorizing inequality

u We have also empirically assessed the computational com-
plrexity of our algorithms (we used = 1 for IrM-BP). We
varied one of the different parameters (dictionary siZzesig-
nal dimensionalityV, number of signald. ) while keeping the
others fixed. All matrice®, C andS are created as described
Jp2(C) < Jp.’Q(C(n_l))_i_Z (nfl’) — (||Ci,-|\—||0§7_1)||) apove. Experiments have been run on a Pentium D-3 GHz
= lle with 4 GB of RAM using Matlab code. The results, averaged
over50 trials, in Figurd® show the computational complexity

then for the minimization step, replacing in probleth (). . : ; . .
with the above inequality and dropping constant terms Ie%;l the different algorithms for different experimentaltgegs.

L . : ote that we have also experimented on the M-SBL and M-
to our optimization problemC]7) with appropriately ChoseEOCUSS computational performances owing to the code of
z; and r. Note that for the weights given in equatiod (8)

. o Wipf et al. [13]. All algorithms need one hyperparameter to
r = 1 corresponds to the linearization of a log penal%e set. for M-SBL and M-EOCUSS. we were able to choose

>, 1og(||ci,.||) whereas setting- = 1 — p corresponds to . . :
al, penalty 0 < p < 1). According to the convergencethe optimal one since the hyperparameter is dependent on a

. : o nown noise level. For our algorithms, the choice\daé more
properties for MM algorithms towards a local minimum 04( 9 e

! . . ritical and has been manually set so as to achieve optimal
their objective function[ll7], we can state that our IrM-BF y P

. - erformances. Note that our aim here is not give an exact
algorithm converges towards a local minimum of probl&in ( . . : .
. . . omparison of computational complexity of the algorithms
with p andr being appropriately related.

but just to give an order of magnitude of these complexities.

Indeed, careful comparisons are difficult since the difiere

algorithms do not solve the same problem and do not use the
. RESULTS same stopping criterion.

In order to quantify the performance of our algorithms and We can remark in Figurél2 that with respects to the
compare them to other approaches, we have used simuladeadionary size, all algorithms present an empirical exgrin
datasets with different redundancié%, numberk of active betweenl1.4 and 2.4. Interestingly, we have theoretically
elements and numbér of signals to approximate. The dictio-evaluate the complexity of M-BP as quadratic whereas we
nary is based o/ vectors sampled from the unit hypersphermeasure a sub-quadratic complex(ty [9]. We suppose thsit thi
of RY. The true coefficient matriXxC has been obtained ashappens because at each iteration, only the non-optimal
follows. The positions of thé non-zero rows in the matrix are updated and thus the number of updates drasticallyesduc
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Fig. 1. Results comparing performances of different siemdbus sparse algorithms. from left to right, we have vafiednumber of generating functions
k, the dictionary sizeM and the number of signal to approximalte The default setting is\/ = 50, N = 25, k = 10 and L = 3.

along iterations. We can note that among all approaches, Me M-FOCUSS penalty in order to exhibit some weights
BP is the less demanding algorithm while IrM-BP is the legbat automatically influence the importance of each digtign
efficient one. This is clearly the cost to be paid for tradinglements in the approximation. Finally, we have introduaed
the resolution of a non-convex problem against several@oniterative reweighted M-BP algorithm for solving M-FOCUSS.
ones. Note however, that this complexity can be controlléle also made clear the relationship between M-SBL and such
by reducing the number of iterations while preserving goaa reweighted algorithm. We also provided some experimental
sparsity recovery. This is the case of many weighted Lasssults that show how our algorithms behave and how they
algorithms which use only two iterations 17|, [16]. compare to other methods dedicated to simultaneous sparse
The difference between the two top plots in Figllre 2 shovepproximation. In terms of performances for sparsity peofil
that algorithm complexities not only depend on the dictignarecovery, our algorithms does not necessarily performebett
size but also on the redundancy of the dictionary. Indeed, tiran others approaches but they are provided with intewgsti
the right plot, signal dimensionality is related to the minary features such as convexity and convergence guarantees.
size (redundancy is kept fixed) while on the left plot, thenaly  Owing to this clear formulation of the problem and its
size is fixed. This results in a non-uniform variation of theaumerically reproducible solution (due to convexity), our
complexities which is difficult to understand. It is not aléat  perspective on this work is now to theoretically investigat
is related to the problem difficulty or is intrinsic to algthmins. the properties of the M-BP and IrM-BP solutions. We believe
Further researches are still needed to clarify this point.  that the recent works on the Lasso and related methods car
Bottom left plot of Figure[R depicts the complexity debe extended in order to make clear in which situations M-
pendency of all algorithms with respects to the number &P and Ir-MBP achieve consistency. Further improvements of
signal to approximate. The results we obtain is in agreemezigjorithm speed can also be interesting so that tackling ver
with theoretical exponents since for M-BP and IrM-BP wéarge-scale approximation becomes tractable.
have exponents of approximatelywhile the other algorithm
complexities do not depend dn_ On the bottom ri_ght, we have_ REFERENCES
evaluated these exponents with respects to signal dimensio _ _ _
Here again, we have results in accordance to theoreticBi D: Bertsekas, A. Nedic, and A. OzdaglaTonvex Analysis and Opti-
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Fig. 2. Estimation of the empirical exponent of the compatetl complexity of different algorithms (M-BP, IrM-BP, BL and M-FOCUSS). For the two
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size. The bottom plots respectively depict the computatieomplexity with respects to the number of signals to axiprate and the dimensionality of these
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