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Abstract—We address the problem of learning a joint sparse
approximation of several signals over a dictionary. We posethe
problem as a matrix approximation problem with a row-sparsity
inducing penalization on the coefficient matrix. We proposea
simple algorithm based on iterative shrinking for solving the
problem. At the present time, such a problem is solved eitherby
using a Second-Order Cone programming or by means of a M-
Focuss algorithm. While the former algorithm is computationally
expensive, the latter is efficient but present some pitfallslike
presences of fixed points which are undesiderable when solving
a convex problem. By analyzing the optimality conditions ofthe
problem, we derive a simple algorithm.

The algorithm we propose is efficient and is guaranteed
to converge to the optimal solution, up to a given tolerance.
Furthermore, by means of a reweighted scheme, we are able to
improve the sparsity of the solution.

I. I NTRODUCTION

In this paper, we consider the problem of simultaneous
sparse approximation which can be stated as follows. Suppose
that we have measuredL signals{si}

L
i=1 where each signal

is of the form
si = Φci + ǫ

where si ∈ R
N , Φ ∈ R

N×M is a matrix of unit-norm
elementary functions,ci ∈ R

M a weighting vector andǫ
is a noise vector.Φ will be denoted in the sequel as the
dictionary matrix. Since we have several signals, the overall
measurements can be written as

S = ΦC + E (1)

with S = [s1 s2 · · · sL] a signal matrix,C = [c1 c2 · · · cL]
andE a noise matrix. Note that in the sequel, we have adopted
the following notations.ci,· andc·,j respectively denote theith
row andjth column of matrixC. ci,j is theith element in the
jth column ofC.

For the sparse simultaneous approximation problem, the
goal is then to recover the matrixC given the signal matrix
S and the dictionaryΦ under the hypothesis that all signals
si share the same sparsity profile. Such a problem can be
formulated as the following optimization problem

min
C

1

2
‖S− ΦC‖2

F + λJp,q(C) (2)

whereλ is a user-defined parameter that balances the approx-
imation error and the sparsity-inducing penaltyJp,q(C) is

Jp,q(C) =
∑

i

‖ci,·‖
p
q

with typically p ≤ 1 and q ≥ 1. Jp,q(C can be interpreted
as a relaxed version of aℓ0 quasi-norm on the row-sparsity
measure ofC.

Several authors have proposed methods for solving problem
(2). For instance, Cotter el al. [5] developed an algorithm
for solving problem (2) whenp ≤ 1 and q = 2, known as
M-FOCUSS. Such an algorithm based on factored gradient
descent have been proven to converge towards a local or
avglobal (whenp = 1) minimum of problem (2) if it does not
get stuck in a fixed-point. The casep = 1, q = 2, named as
M-BP for Multiple Basis Pursuit in the following, is the most
natural extension of the so-called Lasso problem [10] or Basis
Pursuit Denoising [4], since forL = 1, problem (2) reduced to
the Lasso problem. The key point of this case is that it yields
to a convex optimization problem and thus it can benefit from
all properties resulting from convexitye.g global minimum.
Malioutov et al. [8] have proposed an algorithm based on
a second-order cone programming formulation, which at the
contrary to M-FOCUSS, always converges to the problem
global solution.

In this paper, we develop a simple and efficient algorithm for
solving the M-Basis Pursuit problem. We show that by using
results from non-smooth optimization theory, we are able to
propose an efficient iterative method which only needs some
matrix multiplications.

Afterwards, instead of directly deriving a proper algorithm
for solving the non-convex optimization problem whenp <

1 and q = 2, we introduce an iterative reweighted M-Basis
pursuit (IrM-BP) algorithm. We then show that depending on
the chosen weights, such an iterative scheme can actually solve
problem (2). Our main contribution at this point is then to have
translated the non-convex problem (2) into a series of convex
problems which are easy to solve with our iterative method
for M-BP.

II. A LGORITHMS

This section describes two algorithms for solving the M-BP
problem with convex and non-convex penaltiesJp,q.

A. Iterative shrinking

The M-BP optimization problem is the following

min
C

W (C) =
1

2
‖S− ΦC‖2

F + λ
∑

i

‖ci,·‖2 (3)

where the objective functionW (C) is a non-smooth but con-
vex function. Since the problem is unconstrained a necessary
and sufficient condition for a matrixC⋆ to be a minimizer
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Algorithm 1 Solving M-BP through iterative shrinking
C = 0, Loop = 1
while Loop do

for i = 1, 2, · · · , M do
if ci,· KKT condition is not satisfiedthen

ci,· =
(

1 − λ
‖Ti‖

)

+
Ti

end if
end for
if all KKT Conditions are satisfiedthen

Loop = 0
end if

end while

of (3) is that 0 ∈ ∂W (C⋆) where ∂W (C) denotes the
subdifferential of our objective valueW (C) [1]. By computing
the subdifferential ofW (C) with respect to each rowci,· of
C, the optimality condition of problem (3) is then

−ri + λgi,· = 0 ∀i

whereri = φt
i(S − ΦC) andgi,· is the i-th row of a subdif-

ferential matrixG of J1,2(C) =
∑

i ‖ci,·‖2. According to this
definition ofJ1,2’s subdifferential, the optimality condition can
be rewritten as

− ri + λ
ci,·

‖ci,·‖2
= 0 ∀i, ci,· 6= 0 (4)

‖ri‖2 ≤ λ ∀i, ci,· = 0

A matrix C satisfying these equations can be obtained after
the following algebra. Let us expand eachri so that

ri = φt
i(S − ΦC−i) − φt

iφici,·

= Ti − ci,· (5)

whereC−i is the matrixC with the i-th row being set to0
andTi = φt

i(S−ΦC−i). The second equality is obtained by
remembering thatφt

iφi=1. Then, equation (4) tells us that if
ci,· is non-zero,Ti and ci,· have to be collinear. Plugging all
these points into equation (4) yields to an optimal solutionthat
can be obtained as :

ci,· =

(

1 −
λ

‖Ti‖

)

+

Ti ∀i (6)

From this update equation, we can derive a simple algorithm
which consists in iteratively applying the update (6) to each
row of C. Such an iterative scheme actually performs a block-
coordinate optimization. Although, block-coordinate optimiza-
tion does not converge in general for non-smooth optimization
problem, Tseng [12] has shown that for an optimization
problem which objective value is the sum of a smooth and
convex function and a non-smooth but block-separable convex
function, block-coordinate optimization converges towards the
global minimum of the problem. Since for M-BP we are
considering a quadratic function and a row-separable penalty
function, Tseng’s results can be directly applied in order to
prove convergence of our algorithm.

Our approach, detailed in Algorithm (1), is a simple and
efficient algorithm for solving M-BP especially when the

dictionary size is large. A similar approach has also been
proposed for solving the lasso [6], the group lasso [14] and the
elastic net [15]. Intuitively, we can understand this algorithm
as an algorithm which tends to shrink to zero rows of the
coefficient matrix that contribute poorly to the approximation.
Indeed,Ti can be interpreted as the correlation between the
residual when rowi has been removed andφi. Hence the
smaller the norm ofTi is, the lessφi is relevant in the
approximation. And according to equation (6), the smaller the
resultingci,· is. Insight into this iterative shrinking algorithm
can be further obtained by supposing thatM ≤ N and thatΦ
is composed of orthonormal elements ofR

N , henceΦt
Φ = I.

In such situation, we have

Ti = φt
iS and ‖Ti‖

2
2 =

L
∑

k=1

(φt
isk)2

and thus

ci,· =



1 −
λ

√

∑L

k (φt
isk)2





+

φt
iS

This last equation highlights the relation between the single
Basis Pursuit (whenL = 1) and the Multiple-Basis Pursuit
algorithm presented here. Both algorithms lead to a shrinkage
of the coefficient projection. With the inclusion of multiple
signals, the shrinking factor becomes more robust to noise
since it depends on the correlation of the atomφi to all signals.

B. Reweighted iterative shrinking algorithm

This subsection introduces an iterative reweighted M-Basis
Pursuit (IrM-BP) algorithm which solves problem (2) when
p < 1 andq = 2.

Recently, several works have advocated that sparse approx-
imations can be recovered through iterative algorithms based
on a reweightedℓ1 minimization [16], [2], [3]. Typically, for
a single signal case, the idea consists in iteratively solving the
following problem

min
c

1

2
‖s− Φc‖2

2 + λ
∑

i

zi|ci|

wherezi are some positive weights, and then to update the
positive weightszi according to the solutionc⋆. Besides,
providing empirical evidences that reweightedℓ1 minimization
yields to sparser solutions than a simpleℓ1 minimization, the
above cited works theoretically support such claims. These
results for the single signal approximation case suggest that in
the simultaneous sparse approximation problem, reweighted
M-Basis Pursuit would lead to sparser solutions than the
classical M-Basis Pursuit.

Our iterative reweighted M-Basis Pursuit is defined as fol-
lows. We iteratively solve until convergence the optimization
problem

min
C

1

2
‖S− ΦC‖2

F + λ
∑

i

zi‖ci,·‖2 (7)
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where the positive weight vectorz depends on the previous
iterate C

(n−1). In our case, we will consider the following
weighting scheme

zi =
1

(‖c
(n−1)
i,· ‖2 + ε)r

∀i (8)

where{c
(n−1)
i,· } is the i-th row ofC(n−1), r a user-defined

positive constant andε a small regularization term that avoids
numerical instabilities and prevents from having an infinite
regularization term forci,·as soon asc(n−1)

i,· vanishes. This is
a classical trick that has been used for instance by Candès et
al. [2] . Note that for any positive weight vectorz, problem
(7) is a convex problem that does not present local minima.
Furthermore, it can be solved using our iterative shrinking
algorithm by simply replacingλ with λi = λ · zi. Such a
scheme is similar to theadaptive lassoalgorithm of Zou et al.
[16] but uses several iterations and addresses the simultaneous
approximation problem.

The IrM-BP algorithm we proposed above can also be
interpreted as an algorithm for solving problem (2) when
0 < p < 1. Indeed, similarly to the reweightedℓ1 scheme
of Candès et al. [2] or the one-step reweighted lasso of
Zou et al. [17], our algorithm falls in the class of majorize-
minimize (MM) algorithms [7]. MM algorithms consists in
replacing a difficult optimization problem with a more easier
one, for instance by linearizing the objective function, by
solving the resulting optimization problem and by iterating
such a procedure.

The connection between MM algorithms and our reweighted
scheme can be made through linearization. In effect, in our
case, sinceJp,2 is concave inci,· for 0 < p < 1, a
linear approximation ofJp,2(C) aroundC(n−1) yields to the
following majorizing inequality

Jp,2(C) ≤ Jp,2(C
(n−1))+

∑

i

p

‖c
(n−1)
i,· ‖1−p

2

(‖ci,·‖−‖c
(n−1)
i,· ‖)

then for the minimization step, replacing in problem (2)Jp,2

with the above inequality and dropping constant terms lead
to our optimization problem (7) with appropriately chosen
zi and r. Note that for the weights given in equation (8),
r = 1 corresponds to the linearization of a log penalty
∑

i log(‖ci,·‖) whereas settingr = 1 − p corresponds to
a ℓp penalty (0 < p < 1). According to the convergence
properties for MM algorithms towards a local minimum of
their objective function [7], we can state that our IrM-BP
algorithm converges towards a local minimum of problem (2)
with p andr being appropriately related.

III. R ESULTS

In order to quantify the performance of our algorithms and
compare them to other approaches, we have used simulated
datasets with different redundanciesM

N
, numberk of active

elements and numberL of signals to approximate. The dictio-
nary is based onM vectors sampled from the unit hypersphere
of R

N . The true coefficient matrixC has been obtained as
follows. The positions of thek non-zero rows in the matrix

are randomly drawn. The non-zero coefficients ofC are then
drawn from a zero-mean unit variance Gaussian distribution.
The signal matrixS is obtained as in equation (1) with the
noise matrix being drawn i.i.d from a zero-mean Gaussian
distribution and variance so that the signal-to-noise ratio of
each single signal is10 dB.

We compare performances of M-BP, IrM-BP (withr = 0.5
and r = 1), M-SBL [13] and M-OMP [11] for different
experimental situations. The baseline context isM = 50,
N = 25, k = 10 and L = 3. Note that for the M-OMP,
we stop the algorithm after exactlyk iterations. For this
experiment, we did not performed model selection but instead
tried several values ofλ and σ and chosen the ones that
maximize performances.

Figure 1 shows, from left to right, the performance averaged
over 50 trials, on sparsity recovery whenk increases from2
to 20, whenM goes from25 to 150 and whenL = 2, · · · , 8.
We can note that, M-BP performs worse that IrM-BP. This is
a result that we could expected in views of the literature [16],
[2] which compare Lasso and reweighted Lasso, the single
signal approximation counterpart of M-BP and IrM-BP.

For all experimental situations, we remark that IrM-BP
and M-SBL perform equally well. Again, this similar
performances can easily be understood because of the strong
relation between reweighted M-BP and M-SBL [9]. When
considering M-OMP, although we suppose thatk is known,
we can see that the M-OMP performance is not as good as
those of M-SBL and IrM-BP.

We have also empirically assessed the computational com-
plexity of our algorithms (we usedr = 1 for IrM-BP). We
varied one of the different parameters (dictionary sizeM , sig-
nal dimensionalityN , number of signalsL ) while keeping the
others fixed. All matricesΦ, C andS are created as described
above. Experiments have been run on a Pentium D-3 GHz
with 4 GB of RAM using Matlab code. The results, averaged
over50 trials, in Figure 2 show the computational complexity
of the different algorithms for different experimental settings.
Note that we have also experimented on the M-SBL and M-
FOCUSS computational performances owing to the code of
Wipf et al. [13]. All algorithms need one hyperparameter to
be set, for M-SBL and M-FOCUSS, we were able to choose
the optimal one since the hyperparameter is dependent on a
known noise level. For our algorithms, the choice ofλ is more
critical and has been manually set so as to achieve optimal
performances. Note that our aim here is not give an exact
comparison of computational complexity of the algorithms
but just to give an order of magnitude of these complexities.
Indeed, careful comparisons are difficult since the different
algorithms do not solve the same problem and do not use the
same stopping criterion.

We can remark in Figure 2 that with respects to the
dictionary size, all algorithms present an empirical exponent
between 1.4 and 2.4. Interestingly, we have theoretically
evaluate the complexity of M-BP as quadratic whereas we
measure a sub-quadratic complexity [9]. We suppose that this
happens because at each iteration, only the non-optimalci,·’s
are updated and thus the number of updates drastically reduces
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Fig. 1. Results comparing performances of different simultaneous sparse algorithms. from left to right, we have variedthe number of generating functions
k, the dictionary sizeM and the number of signal to approximateL. The default setting isM = 50, N = 25, k = 10 andL = 3.

along iterations. We can note that among all approaches, M-
BP is the less demanding algorithm while IrM-BP is the less
efficient one. This is clearly the cost to be paid for trading
the resolution of a non-convex problem against several convex
ones. Note however, that this complexity can be controlled
by reducing the number of iterations while preserving good
sparsity recovery. This is the case of many weighted Lasso
algorithms which use only two iterations [17], [16].

The difference between the two top plots in Figure 2 shows
that algorithm complexities not only depend on the dictionary
size but also on the redundancy of the dictionary. Indeed, on
the right plot, signal dimensionality is related to the dictionary
size (redundancy is kept fixed) while on the left plot, the signal
size is fixed. This results in a non-uniform variation of the
complexities which is difficult to understand. It is not clear if it
is related to the problem difficulty or is intrinsic to algorithms.
Further researches are still needed to clarify this point.

Bottom left plot of Figure 2 depicts the complexity de-
pendency of all algorithms with respects to the number of
signal to approximate. The results we obtain is in agreement
with theoretical exponents since for M-BP and IrM-BP we
have exponents of approximately1 while the other algorithm
complexities do not depend onL. On the bottom right, we have
evaluated these exponents with respects to signal dimension.
Here again, we have results in accordance to theoretical
expectations : M-BP and IrM-BP have lower complexities than
M-SBL and M-FOCUSS. Furthermore, we note that IrM-BP
has unexpectedly a very low exponent complexity. We assume
that this is due to the fact that as dimension increases, the
approximation problem becomes easier and thus needs less
M-BP iterations.

IV. CONCLUSIONS

This paper aimed at contributing to simultaneous sparse
signal approximation problems on several points. Firstly,we
have proposed an algorithm for solving the multiple signal
counterpart of Basis Pursuit Denoising named M-BP. The
algorithm we introduced is rather efficient and simple and
it is based on a soft-threshold operator which only needs
matrix multiplications. Then, we have considered the more
general non-convex M-FOCUSS problem for which M-BP is
a special case. We have shown that M-FOCUSS can also been
understood as an ARD approach. Indeed, we have transformed

the M-FOCUSS penalty in order to exhibit some weights
that automatically influence the importance of each dictionary
elements in the approximation. Finally, we have introducedan
iterative reweighted M-BP algorithm for solving M-FOCUSS.
We also made clear the relationship between M-SBL and such
a reweighted algorithm. We also provided some experimental
results that show how our algorithms behave and how they
compare to other methods dedicated to simultaneous sparse
approximation. In terms of performances for sparsity profile
recovery, our algorithms does not necessarily perform better
than others approaches but they are provided with interesting
features such as convexity and convergence guarantees.

Owing to this clear formulation of the problem and its
numerically reproducible solution (due to convexity), our
perspective on this work is now to theoretically investigate
the properties of the M-BP and IrM-BP solutions. We believe
that the recent works on the Lasso and related methods can
be extended in order to make clear in which situations M-
BP and Ir-MBP achieve consistency. Further improvements of
algorithm speed can also be interesting so that tackling very
large-scale approximation becomes tractable.
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