Distributed Compressed Sensing for Sensor Networks, Using p-thresholding

Abstract : Distributed compressed sensing is the extension of compressed sampling (CS) to sensor networks. The idea is to design a CS joint decoding scheme at the base station which exploits the inter-sensor correlations, in order to recover the whole observations from very few number of random measurements per node. Here, the questions are about modeling the correlations, design of the joint recovery algorithms, analysis of those algorithms, the comparison between the performance of the joint and separate decoder and finally determining how optimal they are.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369552
Contributeur : Ist Rennes <>
Soumis le : mardi 24 mars 2009 - 11:28:53
Dernière modification le : lundi 2 octobre 2017 - 16:06:02
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 14:00:51

Fichier

61.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369552, version 1

Collections

Citation

Mohammad Golbabaee, Pierre Vandergheynst. Distributed Compressed Sensing for Sensor Networks, Using p-thresholding. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369552〉

Partager

Métriques

Consultations de la notice

118

Téléchargements de fichiers

85