Sparse filter models for solving permutation indeterminacy in convolutive blind source separation

Prasad Sudhakar 1 Rémi Gribonval 1
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Frequency-domain methods for estimating mixing filters in convolutive blind source separation (BSS) suffer from permutation and scaling indeterminacies in sub-bands. Solving these indeterminacies are critical to such BSS systems. In this paper, we propose to use sparse filter models to tackle the permutation problem. It will be shown that the ℓ1-norm of the filter matrix increases with permutations and with this motivation, an algorithm is then presented which aims to solve the permutations in the absence of any scaling. Experimental evidence to show the behaviour of ℓ1-norm of the filter matrix to sub-band permutations is presented. Then, the performance of our proposed algorithm is presented, both in noiseless and noisy cases.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369554
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 11:57:50
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:38:27

Fichier

59.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369554, version 1

Citation

Prasad Sudhakar, Rémi Gribonval. Sparse filter models for solving permutation indeterminacy in convolutive blind source separation. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369554〉

Partager

Métriques

Consultations de la notice

303

Téléchargements de fichiers

190