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Abstract—Due to their noise-like features, SAR images are dif cult to  signal in direction of a speci ¢ area, aceneand sampling the signal
acquire with compressed sensing techniques. However, some parts of thepgckscattered by the ground objects.

images, typically associated to man-made structures, are compressible \ypan the size of the scene is small compared to its distance to
and we investigate two technigues exploiting that information to allow a .
compressive acquisition of the whole image. These techniques result in the radar platform, the curvature of th‘? Wavefrorlt of.the radar S'gne}l
a signi cant enhancement of the image quality compared to classical over the scene can be neglected. This approximation, illustrated in
compressed sensing. Moreover, compared to classical sampling andFig. 1, results in a simple interpretation of SAR data in the Fourier
quantisation of the SAR raw data, they allow a signi cant reduction of 45 main (2D Fourier transform of the scene) and is the basis of a
bitrate with a limited increase of the distortion. However, their ef ciency SAR . hni f d “volar f 1gorithm”
depends strongly on the presence of compressible parts in the image. ; process!ng t_ec nique re erre t? as polar ormat _a gorit m :
In this approximation, each received signal only contains information
averaged over the scene in a direction orthogonal to the direction
|. INTRODUCTION of propagation of the emitted radar signal. In the Fourier domain,

. ) . . . each received signal thus contains information included in a radial
Synthetic aperture radar (SAR) is an active ground imaging Syst§il, orthogonal to the averaging direction, i.e. in the direction of

based on coherent. processing of .multiple radar gchoes acquired alBlQH)agation. Further analysis shows that the actual information is
the path of a moving platform (aircraft or satellite). Due to the IO\% fact included in a segment, whose radial position is related to
computational resources of the acquisition platforms and the steaqjl% ,and of the radar signal by a facrc, wherec is the speed
increasing resolution of SAR systems, the data cannot. generadlg/“ght_ Thus, the whole SAR data approximately correspond to a
be processed on_board and r_nust be sto_red or transmitted to ;Sla?ar grid in the Fourier domaincentred away from the origin at a
gro_und where the image fo_rmatlon process 1s performed. The amoypt, ;¢ corresponding to twice the mean wavelength of the emitted
of image data produce_d IS now constrained by on board storgggy, signal. A natural consequence of this bandpass property is that
capabilities and t_ransmlssmn links. ) SAR images are complex-valued. In order to form the SAR image,
To address this problem, many techniques have been propoged hojar grid data are interpolated to a rectangular grid from which
_to compress the raw SAR d_ata]|[2][3]. However, SAR systems the image is computed by means of an inverse DFT.
n practlc_e mostly use the S|mplgst methads becausg of _thelr_lovvln practice, the angular range of the polar grid (corresponding to
computational requwemgnts. In thls_context, an appealing |de§t Isef angle between the dashed gray lineig. 1 (b) is often very
?‘pp'y result.s of the rapldly devglopmg eld m‘ompressed sensmg small, in which case the polar grid can already be well approximated
introduced in #][5]. Unlike traditional compressmn/decompressmrby a rectangular grid. For this reason, we will simply assume in this

methods, compressed sensing allows very simple non-adaptive comsiminary work that the raw data correspond to the 2D Fourier
pression schemes at the expense of a signi cantly ln_creased C43hsform of the SAR image. The effect of the mapping from the
plexity for the decompression. The key idea is to exploit redundan%lar grid to the rectangular one is expected to be small and is under

in the data modelled asparsityin fan appropriate dictionary. current investigation as well the impact of more accurate SAR system
In the context of SAR, sparsity has been mostly used for dg;oqels.

noising ] and superresolutiors][ 7][ 8] with excellent performance.
Compressed sensing has also been proposed]jiC][11] with
encouraging simulation results. However the only known realist. Statistical properties
example provided in1] has shown the application of compressed Two properties of SAR images will be important to understand
sensing to SAR to be particularly challenging in practice. In thighe methods proposed in this paper and their results. The rst one is
contribution, we build on the results ofi]] and investigate two the noise-like characteristics of SAR images. The second one is their
simple methods aimed at improving the quality of the reconstructggten very high dynamic range caused by a few very bright objects.
Images. 1) Noise-like properties:As the output of a coherent imaging
The paper is organised as follows. In Sectibwe propose a brief system, SAR images are extremely noisy. This feature comprises
overview of SAR data processing and of the properties of the resultifgo aspects. First, the magnitude of the SAR image contains what
images. The compressed sensing based SAR acquisition and deco@ingferred to as speckle noise which can be ef ciently modelled
framework is presented in Sectidih together with the two proposed a5 multiplicative exponential white noise. Second, the phase of the
enhancements. The performance of the methods is then assessgghdge can also be modelled as uniform white noisgojr2 ].
SectionlV. These two features have the same origin which is that each pixel
of the image corresponds to an area whose dimensions are large
Il. SAR DATA AND IMAGE PROPERTIES compared to the wavelength of the radar signal (typically at least
30cm 30cm for an average radar wavelength m) containing
multiple objects. These objects generally have different re ectivities
In the “spotlight” mode, SAR data is acquired from a movingvhich can be modelled as complex-valued: the magnitude corre-
platform by emitting at close intervals a bandpass microwave radgronds to the intensity of the re ected radiation while the phase

A. SAR image formation - nature of SAR raw data



a) a)

b)

Fig. 2. Compressibility of a SAR image in the spatial and wavelet domains.
a) Image and its Haar wavelet transform. b) Compressed images obtained by
Fig. 1. Geometry of SAR data acquisition. a) In the spatial domain. b) limly keeping the 5% largest coef cients in both domains. All images are in
the Fourier domain. In a) the curved wavefront (red line) is approximated lyg scale with 70dB dynamics.

a straight line (dashed red line).

darker. Moreover, these bright pixels are usually highly localised: for
corresponds to a phase shift. More importantly, the re ectivitieg building, only a few edges and corners appear as very bright in
of these objects can typically be modelled as uncorrelated. Fpe SAR image. In practice, the brightest pixels of a SAR image can
this reason, the radiations re ected by them interfere incoherentiypically be 10® times larger than the background pixels.
when added up to obtain the re ectivity of a pixel of the SAR
image. The result is that the magnitude of a pixel can take any
value in the interval between zero (destructive interference) and
the sum of the magnitudes of the subpixel objects (constructiveDue to their noise-like properties, complex-valued SAR images are
interference). This is the usual explanation for the speckle nois&ry dif cult to compress ef ciently. Considering the previous model
Since the number of subpixel objects is typically very large, tHe = fSe' , the image without nois€ typically has the same good
distribution of the complex-valued re ectivity of a pixel is Gaussiarfompression properties as most natural images. However the mul-
with independent real and imaginary parts both following the santiglicative noisese¢  endows the whole image with a high entropy,
Gaussian distribution. As a consequence the magnitude of a pilfeis drastically reducing its compressibility in any dictionary. For this
is exponentially distributed and its phase is uniformly distributed iffason, typical sparsifying transforms used in image processing such
[0;2 ]. Moreover, the way subpixel objects interfere within a pixefis wavelet transforms do not result in good sparse approximations
is also independent from the way they interfere for a neighborirf§” SAR images.
pixel. Hence both the multiplicative speckle noise and the phase ofConsidering for example a Haar wavelet decomposition (see

Compressibility

the image can be modelled as stationary and white. Fig. 2), we observe that the wavelet coef cients are not concentrated
Thus, a SAR imagé 2 CN N can be ef ciently modelled at a in the coarser scales as for usual compressible natural images. The
pixel (k;1) as wavelet decomposition instead looks similar to the decomposition of

a white noise image where all wavelet scales are similarly popdlated
As a consequence, if only the 5% largest wavelet coef cients are kept,

wheref s and’ are real-valued images and stand respectively féRost of the details of the original image are lost. Comparatively,
the SAR image without noise, the speckle noise and the phase. SikeégpPing the 5% largest pixels of the image results in a greater loss of
both the speckle noise and the phase in this model can be modefiggpil but not as drastically as for usual natural images. In both cases
as stationary and white, the global multiplicative naisé is a zero- the remaining parts correspond mostly to the brightest objects of the
mean stationary white noise. As a consequence, the SAR iagémage, which are compressible because they are highly localised.
can be modelled as zero-mean nonstationary white noise

2) Dynamic range:In most cases, the radiation emitted by the |ll. COMPRESSED SENSING BASED CODING O8AR DATA
radar antenna is scattered when hitting the ground and only a V&Y Compressed sensing basics

small proportion of the energy is re ected in the direction of the According t q ina th ol
antenna. This typically happens in natural areas without any man- ccording to compressed sensing theory (see elg] for a

¢ i H H n
made objects. However, in some cases, a much larger proportLHFwor)'(al)’ﬂa (rjlscrr(]atttarsmt;nglvazk:ma;gz exp(;enssri% ars?vé;:nmlc ca:q red
of the energy is re ected towards the antenna. A well-known cau § exactly reconstructe areduced number of samples compare

for this phenomenon is the presence of corner shapes which are \}é’r{)“e Nyquist rate provided that it is sparse in some basis:  x

common in man-made buildings or vehicles. As a consequence, SARUsing more sophisticated wavelets may increase slightly the concentration

images containing man-made objects typically have very bright pixeJs the large coefcients in the coarser scales but the improvement in
located on those objects while the background of the image is musimpressibility is rather small.

fu = flusae “;



n

where 2 C" " is a matrix whose columns are the basis vector$f, F 2 C" " is the matrix representing the 2D DFT operator, we
andx 2 C" is a vector with a small number of non zero componentde ne the measurement matrix™ " as a random subset of lines

k n. of F.
In a compressed sensing framework, the signal/image is acquire®) Reconstruction algorithmGiven the measuremenys=  f,
through linear projectionsy = f, wherey 2 C™ is the mea- our aim is to recover the sparse signal such that
surements vector and 2 C™ " is referred to as the measurement _ Yo 4 -
matrix. Considering th&-sparse representatioq this results in the y * "
measurement equation In this equation, the second term of the right hand side is expected
y = X: to be smaller than the rst term and can be treated as noise as far as

the reconstruction of the sparse componentis concerned. It will

Sbe the purpose of the next sections to address the reconstruction of
) ) . ) ; ; Xn. Given the above measurement equation, the reconstruction of a
than the signalfimage dimensién< m n. While this cannot be sparse approximatio®s is obtained by means of a recent greedy

achieved with any combination of measurement matrix and basisai orithm referred to adstagewise weak approximate conjugate
has been shown that several classes of random measurement matbl ent pursuit’ [13[14][15]. This algorithm is well supported by

aIIovy it for any basis with high probability. . theoretical analysis and its performance is comparable to state of the
Given the measuremenys the reconstruction of the sparse v ectop algorithms such as CoSaMHBq]. A signi cant advantage however

x can be achieved by searchmg for the sparsest vefctnnppatlblle is that it can be much faster thanks to an approximate estimation of

W'.th t_he measurerTents. Th|s. is usually re_ferred to as bhept”" the least squares estimate. In the context of the application to SAR

misation Qroblem x = argmin  kxk, subject toy = x5 images investigated in this paper, this algorithm allows for a very

where theo pseudo-normk k, corresponds to the number of NONf cient computation of the sparse approximation, taking typically

Zero elements. As it is ngl "”0".“”' this 5a combinatorial problergne minute for a 1.5 million pixels image on a recent computer (using
which cannot be solved directly in practice. The two most commag

Y R (ﬂ’lly one CPU core and a non fully optimised Matlab code).
approaches are therefore to replace it with @goptimisation problem
with 0 < p 1 or to use a greedy algorithm such as Orthogon@_ Possible improvements for SAR data
Matching Pursuit.

In this simpli ed overview of the compressed sensing theory, we Inl Og’z;@ improve the comprs;seq selnstlnghb_ased rtecowrs]ry of
have only focused on the noiseless acquisition of an exact spa e IMages, We propose fwo simple techniques fo enhance

signal. To be applicable in practice, the theory has also been adad{ﬁ quality of the reconstructed image in the non compressible areas

to the noisy and non exactly sparse cases but the principles remy ch cannot_ be .weII de_scrlbed by a sparse _::Ipproxm.ap_on. The
essentially the same. rst one consists in classical compressed sensing acquisition with

an additional postprocessing. The second one is inspired by the so-
) called “hybrid compressed sensing” proposed i
B. Compressed sensing for SAR 1) Postprocessing — compressed sensing as an interpolation in
In order to de ne a compressed sensing based acquisition schetfe Fourier domain: The previously described compressed sensing
for SAR images, three elements must be speci ed: a basis where #Hguisition and reconstruction of a SAR image results in a sparse
data are assumed sparse (or close to sparse), a measurement opegteoximation of the image roughly corresponding to the brightest
and a re contruction algorithm. objects. Assuming that these objects have been perfectly recovered
1) Sparse representationAs shown previously, the statistics of (i.e. ®s = Xs), the residuaf, = y Xs = fn carries informa-
SAR images imply that there is no basis or dictionary where the daian corresponding to the non sparse areas of the image. Asa
can be assumed sparse. For this reason, it seems a priori impossibjsaitial Fourier matrix, this information corresponds to the knowledge
acquire with a decent quality a whole SAR image in a compresseflsome of the Fourier coef cients df, . Without better assumptions
sensing framework. However, the very bright objects often relateth f,, a trivial solution is to choose the estimafg = My,
to man-made structures or vehicles are typically sparse in the spadsich corresponds to setting the other Fourier coef cients to zero.
domain and slightly sparser in a wavelet domain. The infageC"  The result of this choice is that the nal estimate of the SAR image
can thus be decomposed into two componénts fs + f,, where f"is simply the orthogonal projection of the sparse approximation
fs corresponds to the sparse bright objects fndo the remaining fy = 25 on the subspace solution to the linear equation f.
non sparse areas. In this decomposition, the sparse compianent As a consequence, the distance between the true irhaged the
typically larger than the other component because the bright objeetstimatef” is necessarily reduced, which means that this projection
are often several orders of magnitude brighter than the backgrowiways reduces the mean square error of the reconstruction.
of the image, thus compensating for their limited spatial support. If From a global point of view, the whole process of computing a
the image is represented in an orthonormal wavelet basighis sparse approximation and then project on the solution subspace can
property is preserved, leading to a decomposifion xs+ Xn,  also be interpreted as an interpolation in the Fourier domain. Indeed,
wherexs is sparse and larger tham . Thus, when bright objects are the known Fourier samplgsare kept unchanged while the unknown
present, the whole SAR image can be assumed close to sparse Foarier samples are reconstructed using a sparsity hypothesis.
wavelet basis. In the following, we will consider more speci cally a 2) Hybrid compressed sensinghe underlying idea of the hybrid
Haar wavelet basibecause more sophisticated wavelet bases appeampressed sensing method proposed 1] [is that the sparse
to result in non signi cant improvement. wavelet approximations of natural images typically have full coarser
2) Measurement operatorAs previously mentioned, SAR raw scales while only the ner scales are effectively sparse. The method
data can be assimilated to samples of the Fourier transform of #ensists in rst separating the image= f. + f4 into an approxima-
SAR image. Among the classes of generic measurement matrities component , corresponding to the coarser wavelet scales and
used for compressed sensing, this naturally calls for pheial a detail componenty corresponding to the ner scales. Then, the
Fourier matrix [4] class where the measurementscorrespond to approximation is sampled exhaustively (in the wavelet domain) while
uniformly randomly selected Fourier coef cients of the SAR imagethe detail is sampled and reconstructed using compressed sensing.

In order to recover &-sparse vectox, the number of measurement
m must be at least greater th&nbut can be signi cantly smaller



In the case of SAR images, the assumption that the wavelet
coef cients corresponding to the coarser scales are typically larger
than the ner scales is not valid. However, exhaustively sampling an
approximation of the image can still be useful insofar as most parts of
the image are dif cult to recover using compressive sampling. Thus,
using a hybrid compressed sensing scheme guarantees at least a low
resolution everywhere while the brightest objects can be acquired
with a better resolution using compressed sensing on the detail part.
This might make sense for surveillance applications if one is e.qg.
interested in detecting vehicles while keeping a coarse monitoringmf. 3. Test SAR images. The image on the left contains very bright objects
the area. and is represented in log scale with 70dB dynamics. The image on the right

In order to reduce the computational load on the sensing platforﬁﬁ),es not con_tain any very bright objects and is represented in log scale with
the hybrid compressed sensing method can be further adapted to aggitP dynamics.
the computation of a partial wavelet transform. Indeed, the above
approximationf 5 is a speci ¢ low-pass ltered version of the image
f but other low-pass Iters may be as good for our purpose. Since t
SAR raw data are assimilated to Fourier samples, the simplest Io%-e blocks are not too small.
pass lIter to implement is the perfect low-pass Iter corresponding
to a rectangular subset of the 2D Fourier transform of the image. IV. SIMULATIONS
Thus we de ne the approximation as a speci ¢ rectangular subset of
the 2D Fourier samples while the detail corresponds to the remaining" order to assess the performance of the proposed modi cations
Eourier coef cients. of the usual compressed sensing framework, we consider two SAR

The corresponding measurement matrix for the approximationifgages with and without very bright objects (sEgy. 3). Typical
referred to as , and results in the measuremegts= 4. Since results of the proposed methods are showfim 4
the approximation is exhaustively sampled it can be reconstructed a§1 case of moderate subsampling (like 50% missing samples), we
faz Hya. observe that standard compressed sensing (second rdvigof)

The measurement matrix 4 for the detail component is not aallows the recovery of the main structures of the images, whether
random partial Fourier matrix anymore: it contains all the Fouridhey contain very bright objects or not. However the at areas where
coef cients Corresponding to the approximation (WhOSG values aﬂée statistics of the images are similar to stationary white noise are
zero for the detail) and random coef cients among the remainif@pdly recovered and are only sparsely lled with small blocks. This
Fourier coef cients. It results in measurememwhich are used to behaviour is consistent with the fact that Sparse approximations in the
reconstruct a sparse approximatidnof the detail component using Wavelet domain badly describe such at areas. The addition of the
the compressed sensing procedure de ned above withinstead Proposed postprocessing (third rowfify. 4) allows the suppression

RE the block normalised data, which are almost Gaussian provided

of . of the blocky artifacts and thus enhances the visual quality of the
Givenf, andf'\d’ the estimate of the SAR imag’éis de ned as image. Moreover, this also signi cantly reduces the mean square
error.
- H . . . -
=1 §oa fo+fa For strong subsampling (like 90% missing samples), standard

This de nit haf® i | tof® for the Fouri compressed sensing only allows the reconstruction of the very bright
IS de nition means thaf s equal tofu except for the Fourier objects when such objects are present. In this case the postprocessing

coef cients corresponding to the approximation which are replaceaq)es not yield any noticeable visual improvement even though the

by their y@lue fromf a. ) i i mean square error is still reduced. When no bright objects are present,
In addition, the postprocessing proposed in the previous paragrqHE compressed sensing reconstructed image looks like a random
can also be applied @ before it is combined with the approximation

. : collection of wavelet blocks with no apparent correlation with the
to form the nal estimate. The performance of both cases, with arb(i

. ) . : . ) ) iginal image.
without postprocessing, will be assessed in the simulation section. In the hybrid case, the approximation image is combined with the

o sparse reconstruction of the detail image. For moderate subsampling,

D. Quantisation this results in an image with a high resolution on the main struc-

In order to provide a complete coding scheme, the next stépres which benet from the sparse reconstruction, and a reduced
is to quantise the compressive measurements. The traditional wegolution otherwise. Compared to standard compressed sensing with
of coding SAR raw data is to quantise the samples with a Bloglostprocessing, the image looks much closer to the original image
Adaptive Quantiser (BAQ)1]. Better quantisers have been proposeénd is especially signi cantly better contrasted. However, the hybrid
in the literature 2][3] but the BAQ remains popular because of itgnethod is slightly worse in terms of mean square error. This can be
simplicity. The latter consists of two steps. First, the raw data apempensated by applying the proposed postprocessing in the hybrid
divided into small blocks, which are normalised by their standa@hse too but the contrast of the image is then reduced without any
deviation. The real and imaginary parts of the data within each bloskgni cant improvement of the visual image quality.
are then quantised independently with scalar normalised GaussiaQuantitatively, the performance of the proposed methods can be
quantisers. represented as rate distortion curves showing the normalised mean

In our simulations, we use a slightly modi ed BAQ that seensquare error between the complex-valued original and reconstructed
to perform slightly better in our case. The rst modi cation is toimages as a function of the number of bits per pixel Sige5). For a
normalise the data by the maximum modulus value of each blogkzen number of bits per pixel, multiple combinations of subsampling
instead of the standard deviation. The second one is to use a vecatios and numbers of bits per sample are generally possible. The
BAQ [2] instead of a standard BAQ. The difference is that the scaldisplayed rate distortion curves correspond to the ones leading to the
quantisers are replaced by a vector quantiser trained with the statistiest performance.



Fig. 4. Examples of reconstructed images using the proposed methods. The four columns correspond to the two test images with different subsampling ratios.
The top three rows correspond to subsampling using random Fourier coef cients. The rst row shows the result of a linear (or minimum energy) reconstruction
where the unknown Fourier samples are assumed equal to zero. The second row shows the sparse approximation obtained using standard compressed sensit
The third row shows the result after postprocessing. The bottom three rows correspond to hybrid subsampling where half of the samples are taken from a
square area in the Fourier domain while the other samples are drawn randomly from the remaining Fourier coef cients. Similarly to the rst three rows, the
fourth row shows the linear reconstruction; the fth row shows the combination of the approximation and of the sparse reconstruction of the detail; the sixth
row shows the result after postprocessing. All images are based on quantised samples using the block adaptive vector quantiser describedlirparagraph
with 6 bits per sample. All sparse reconstructions contain arbitrari:1m nonzero wavelet coef cients, whera is the number of samples.



The results show that compressed sensing based methods can
outperform classical Nyquist rate sampling for low bitrates when ¢
the image contains very bright objects. Moreover, both the proposeq&g_’
postprocessing and the hybrid compressed sensing investigated i
this paper lead to signi cant performance improvement over standarde

. (@)}
compressed sensing. However, the mean square error appears to e

slightly misleading here because the combination of the two proposeds
methods results in signi cant error reduction, whereas the visual's
quality of the image may appear reduced because of the loss ofy
contrast. g

When no bright objects are present in the image, the performancer
of standard compressed sensing is always worse than Nyquist ratgg
sampling. The cause of this bad performance is simply that the image
is far from being sparse, and therefore the sparsity hypothesis i
not useful. In this case, the proposed modi cations still result in
signi cant improvement over standard compressed sensing but none
of them achieves better results than Nyquist rate sampling.

V. CONCLUSION

objects

In the case of SAR, standard compressed sensing performs ratheg
poorly. While this was expected because of the also poor sparse&c:n
approximation of the images, better performance can be achieve
by modifying the standard compressed sensing framework. The two2
proposed ideas investigated in this paper both improve the quality of'g
the image by adding details corresponding to the non compressible%
white noise-like, parts of the image. When the compressive sample
are furthermore quanti ed, this results in coding strategies potentially <
more ef cient than classical Nyquist rate sampling at very low bi- W
trates. However, Nyquist rate sampling still performs better when theg
sparse approximation of the image does not represent a suf cientlyZ
large fraction of the total energy.
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