A quantitative criterion for selecting the optimal sparse representation of dynamic cardiac data in compresses MRI

Abstract : One of the important performance factors in compressed sensing (CS) reconstructions is the level of sparsity in sparse representation of the signal. The goal in CS is to find the sparsest representation of the underlying signal or image. However, for compressible or nearly sparse signals such as dynamic cardiac MR data, the quantification of sparsity is quite subjective due to issues such as dropped SNR or low contrast to noise ratio (CNR) in sparse domains such as x-f space or temporal difference domains. Hence, we need a criterion to compare different sparse representations of compressible signals. In this paper, we define a model that can fit the decay of practical compressible signals and as an application; we verify that this model can be used as a basis for selecting the optimal sparse representation of dynamic cardiac MR data.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00369561
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 12:15:54
Dernière modification le : jeudi 19 avril 2018 - 14:24:03
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:39:47

Fichier

57.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369561, version 1

Collections

Citation

Muhammad Usman, Philipp G. Batchelor. A quantitative criterion for selecting the optimal sparse representation of dynamic cardiac data in compresses MRI. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369561〉

Partager

Métriques

Consultations de la notice

91

Téléchargements de fichiers

485