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Abstract—In this paper we propose a computationally efficient correlated, variable selection arises in an ill-posed b

algorithm for on-line variable selection in multivariate regression  and special care is needed in order to deal with this diffjcult
problems involving high dimensional data streams. The algorithm As will be clear later, we take a dimensionality reduction

recursively extracts all the latent factors of a partial least sqares - . . .
solution and selects the most important variables for each factor. approach. Thirdly, the relationship between input and iitp

This is achieved by means of only one sparse singular value Streams is expected to change quite frequently over tinté, wi
decomposition which can be efficiently updated on-line and the frequency of change depending on the specific applitatio
in an adaptive fashion. Simulation results based on artificial domain and nature of the data. This aspect requires the
data streams demonstrate that the algorithm is able to select development of adaptive methods that are able to deal with

important variables in dynamic settings where the correlation . . . . .
structure among the observed streams is governed by a few possible non-stationarities and the notion axincept driff

hidden components and the importance of each variable changes that is the time-dependency of the underlying data gemeyati
over time. We also report on an application of our algorithm process. To the best of our knowledge, little work has been

to a multivariate version of the "enhanced index tracking” done towards the development of a methodology that resolves

problem using financial data streams. The application consists all these three issues in a unified framework
of performing on-line asset allocation with the objective of '
overperforming two benchmark indices simultaneously.
I. INTRODUCTION The Iifcer_ature con_cerning on-line variabl_e se_le_cti_on _mdsh
. L L . for predictive modeling with data streams is still in itsanty.
Streaming data arise in several application domains, iR- . . .
. : o search of the literature yielded two relatively recent keor
cluding web analytics, healthcare monitoring and asset—manh. L o i .
Which address this issue within a penalized regressioneram

agement, among others. In all such contexts, large qlﬁHent't\'/v(?rk. The earlier method by [11] proposes a modification to

of data are continuously collected, monitored and analyz : :
over time. Often the main objective is to make real—timﬁnIe least angle regression (LARS) algorithm of [6] by

predictions by using the incoming streams as covariates penalized regression, otherwise known as the Lasso, which

| . .
a regression model. In this work, we envisage a system tf‘%’;[l?tows it to be updated on-line. More recently, [3] develdpe

. ) . . —an alternativ roach n-linB;-penalized regression
imports p input andg output data streams at discrete tlma alternative approach to on-ling,-penalized regressio

! ! . n recursive | res. The L i Iv in
points. The input data vector is denoted dyye R'*? where based on recursive least squares. The Lasso is solved ly us

the subscript refers to the time stamp and the dimenpionthe shooting algorithm a pathwise co-ordinate optimization

algorithm [8]. The resulting procedure is related to adapti
may be very large. The outpul; € R'*? may also be goritt (8] 9p . .
L . . , .~ recursive least squares algorithms which have been rdytine
multivariate. A common task is to recursively estimate adin

regression function of formy, — f(x,) which can be used applied, for instance, in the domain of adaptive filtering.

to make future predictions, for instance at time- 1. Our Finally, we note how neither approach considers a multari

S . : response or the issue of multicollinearity among covasiat
fundamental assumption is that, at any given time, only a few " ° Ssue o ofihearity among co ©

selected components af contain enough predictive power,
and only those should be actively used to build the regrassio In this work we aim to unify these problems into a single
model. We embrace a penalized regression approach whigaenework by proposing an efficient incremental and sparse
the unimportant predictors are excluded from the model Ipartial least squares (PLS) algorithm for on-line variatgec-
forcing their coefficients to be exactly zero. tion and tracking of multivariate data streams. PLS regoess
There are a number of statistical problems arising in this an extension of the multiple linear regression model and
setting which we intend to tackle in this paper. Firstly, assumes the existence of a handful of latent factors exptain
decision has to be made on how to select the truly importahe variation observed in the data. It has the favorable -prop
predictive components on the input data streams that besdies in that it can be used to deal with situations where the
explain the multivariate response in a computationallyigffit data is multicollinear and in problems where the response is
manner. Secondly, since the components;omay be highly multivariate.



T .
[I. BRIDGE PARTIAL LEAST SQUARES REGRESSION andY (1) = Y — 5" The same procedure is then
A. Partial least squares regression repeated until all factors are extracted.

Partial least squares (PLS) regression is a method of dimen]N€ deflation steps above are necessary because |if

. . T
sionality reduction concerned with modeling the relathips ranky) < ra_m_k(X), then the covariance matrit/ " wil
between some input dat¥ € R™*? and the response orPe rank deficient and so the number of PLS components

outputY € R4 [10]. The assumption underlying PLS iswhich can be_ extracte(_j without deflatiop w_iII be limited to
that both X andY are generated by a small numbé?, of rankY’). For instance, n the case of univariate respp@e,
latent factors separate SVD computations must be performed. This is the
" " main Ilimitinﬁq far(:tor in developing an efficier:jt on-line spar
M (T M (T PLS algorithm that we intent to remove. In order to circumniven
X= z_; SOV B Y = Z; O™+ F (1) this problem, we propose an approach that avoids the deflatio
= = steps altogether, thus requiring only one SVD computation f
where s € R™*! are the latent factors ankl”) € RP*!  the extraction of all the latent factors.
and w(” € R?*! are the factor loadings of{ and Y,
respectively. E and F' are matrices of residuals with no
assumed distribution. PLS finds the latent factors suchttieat B- Bridge PLS

covariance between input and output is maximized. In orderBridge PLS (BPLS) [9] is a recent development which
to extract the full complement of latent factors, each onstmu
nsures that the full complement of PLS components may

be extracted sequentially. Once a factor has been extraa:tege extracted in one step by adding a ridge term to the

rank one deflation of th& andY matrices is performed by . . . o
. oo eigenvalue problem. This ensures that the covariancexmatri
subtracting the contribution of the current factor from taga, I .
full rank so we are no longer limited by the rank of Y in the

and a new iteration begins. The PLS literature is extenside a .

: : umber of components we are able to extract. This is a very
many methods exist for extracting the latent factors (see, { : i LT

. . . important step as it opens the possibility for efficient ol
example [14] for a recent review of PLS variants). The v:aenomf3 . .
. X ! . LS implementations.
algorithms usually differ beyond computation of the firsetat , i . ) , ,
factor by how the input and output data matrices are deflated.] S 90al is achieved by introducing a new covariance
In this work we focus on the commonly used PLS-51atrX
algorithm [14]. The algorithm iteratively finds? hidden H
factors of X such thatS = XU where S = [s(1),...s(7)].
U = [uD,...,u®]is a matrix of weights corresponding to the
direction of maximal covariance betweén andY. Because where0 < o < 1 is a ridge parameter which adds a small
it is assumed thafX and Y™ are related through the hiddenconstant to the diagonal of' Y™ which preventsH from
factors and the factors underlying are a good predictor of becomming rank deficient. It can be noticed thdtis a
Y, the response can be expressed in the form of a regressi®ighted sum between the covariance matrixXfand the
model covariance matrix ofX and Y. When a = 0, this yields
Y=XB+F (2) regular PLS and setting = 1 yields a principal components

here s — U1} are the estimated coefficients. For all values o« o
where§ = are the estimated coetlicients. -or all values , gp|.s weights are then obtained in one step by solving

of r, we define the following modified PLS optimization problem

XT(al+(1-a)YYT) X
a)((TX—&—(l—a)MZ\}T ®)

)T

MO = x@) y(r)

that is the covariance matrix between input and output stsea U =arg max (UTHU) st U] =1 (6)
The weight vector(") is found by solving:

&) = arg max (UTM(T)M(T)TU> st |lul=1 (38 sothatU = [a®, .. a™] are the firstR eigenvectors of

u H. The latent factors,S are then computed aXU. The

which is the normalized eigrenvector corresponding to th®rresponding’ -loadings arelV = (STS)ASTY. The final

largest eigenvalue af/ (") M (") ", Alternatively, this is the first PLS regression coefficients are given By= UT. In our
left singular vector of the singular value decompositiolD§ experiments we set = 10~° so thatH becomes full rank, yet
of M("). The loading vectors for botl” and X are found by all PLS directions may be extracted accurately after coingut

performing univariate regressions the SVD of H only once; see [9] for related discussions.
STy ST x ™ .The computational bengf_its gained by removipg thg neces-
w™ = o b = — (4) sity to perform R — 1 additional SVD computations in the
s\r) s\t s\r) st

off-line case is a saving in computation time Of Rnp?).
After the extraction of the first factor, in order to extracReducing the PLS problem to a single SVD computation
subsequent factorX” andY” must be deflated by subtractingprovides the key element for performing variable selection
the current latent factor to giv&"+) = X () — sp( T an efficient way in both off-line and on-line scenarios.



I1l. NEW METHODS FOR SPARSE (iSB-PLS). In this case, we no longer assume we have access
MODELLING to the full data matrixX € R"*P. Instead the data arrives
A. Sparse Bridge PLS sequentially at each time point, asz, € R'*?. Similarly,

A regularized SVD method has recently been introduced [t)heyrees [];golrlsqe arrives is observable only at discrete tinetspoi
t .

[16] as an efficient device to perform PCA with sparse loading . . . . i
vectors. The method relies on the best low rank approximatig The main challgnge W'th. applylng the_ sparse B.r'.dge PLS al
roperty of the SVD. Brieflv. this is achieved by reformutafi gorithm to streaming data is implementing an efficient metho
broperty N Y. y g to calculate and update the SVD &f. Our solution to this
the PCA optimization problem as a regression betwgén L . ; .
and its best low rank approximation, which is solved by a%roblem consists in using the Adaptive SIM algorithm [7], a
. . ' r%eneralization of the power method which is able to adapt
SVD application. The loading vectors are then made sparse . . .
X . . : t0 changes in the data. When a new data paintand its

by applying a component-wise thresholding operation. : . o

In this section we use the sparse SVD method of [16] %orrespondmg responsg arrives, we update the individual

. S . . ... covariance matrices as follows

order to achieve an efficient variable selection algorithithivw
the Bridge PLS framework. We first calculaké as in Eq. (5) Cy =\Cy_q + J;Imt M; = \M;_1 + xtTyt (10)
and define the SVD off = UDV. The bridge PLS criterion i . ) )
in Eq. 6 can be written as regression by whereby the criteri$fi€r® A is a forgetting factor which exponentially down-

to be minimized is the residual sum of squares betw&en weights the contribution of past data points to the current
and its low rank approximation, as follows: covariance matrix. The Bridge PLS covariance matfiix of

) Eq. (5) is constructed by summing the weighted PCA and PLS
min |H —av'|| (7)  covariance matrice€’; and M; M, which leads to

where@ and @ € RP*! are restricted to be vectors with unit H; = aCy + (1 — a) My M[ (11)

norm so that a unique solution may be obtained. It is knowlgt each time point, the estimate of the eigenvectors of the

that the product of the first left and right singular Vectors, . ariance matrixH are updated by performing one iteration
uMv) is the best rank one approximation &f. Therefore o oiu algorithm as follows:

Eq. 7 is solved by setting = «(!) and& = v(1). We obtain
sparse loadings by imposing a penalty @nand removing Q=HU_1 U =orthQ) (12)

its scale constraint. Although we could use one of a numbe

of penalty functions (see, for instance [8]), in this work W(\_v(vherle the function ortfty) ensures that the columns of thg
concentrate on the Lasso penalty, which places a restriotio matrix () are mutually orthogonal. We use the Gram-Schmidt

the L; norm of &. This amounts to the following optimizationOrth(_)gonal'Zat'ozn procedure which has a computational-com
) plexity of O(pR*).
problem: .

) Once the weight vector§/, have been updated, they are
min |[H — @' ||" +~[jal] st |7 =1 (8) made sparse using the a modified version of the iterative
o _ _ regularized SVD algorithm used for Sparse Bridge PLS in
where  is a parameter which controls the sparsity of thgection IIl-A. Since our algorithm is on-line and the sabutis
solution. If ~ is large enough, it will force some variablesupdated when a new data point arrives, we no longer iteigtive
to be exactly zero. The problem of Eq. (8) can be solved gpply the thresholding operation and instead apply it diyec
an iterative fashion by first setting = ") and o = v {0 the current estimate of the eigenvector. The simplified
as before. Since: and ¢ are rank one vectors, the LassGparsification process for thé" weight vector is
penalty can be applied as a component-wise soft threshpldin

operation on the elements af (see, for instance, [8]). The ut = Sg*”(“(r)) (lu®@]=~y0), (13)

sparsei are found by applying the threshold component-wise ut = H:ﬁ

as follows: . T T The final steps of the Bridge PLS algorithm proceed as in the
a = sgn(H'o) (|H™o| —~), (9) Off-line case. The latent vectoi$ are computed a§' = XU.
= Hu*/||Hu*|| However since the number of observations is effectively, one

We then seti = 4* and@ = * and iteratively apply Eq. (9) S will be ‘;:}n R—vTector and theY'-loadings can _be comp_u_ted
until [|@* — || <  wherer is an arbitrarily small constant. @8W =Y ".5/(5"5). The sparse PLS regression coefficients

The procedure above allows all the PLS weight vectors 8€0 = UW so that the regression estimate at time g; =
be extracted and made sparse at once without the need‘td "V Algorithm (1) details the resulting iSB-PLS procedure

. C e . . 1 R
recompute an SVD for each dimension. in full. In the initialization phase, we séf = [u§ )3 V) =
_ I« r t0 ensure that the initial estimates of the eigenvectors are
B. Incremental Sparse Bridge PLS mutually orthogonal. We also initializery = 0, v = 0, and

In this section we develop the Sparse Bridge PLS algorith@, = 0. The forgetting factor,\ is chosen to be between
to be used for variable selection in the streaming datangetti between zero and one. When= 1, no data forgetting takes
We call the resulting algorithm incremental Sparse Bridg8 P place, whereas = 0 has the effect of setting the sample size



to the present data point only. Therefore, as the values ofwhere F; ; indicates the value of factof at time ¢, starting
get close to zero, the algorithm becomes more adaptive amith an arbitrary initial value at timé = 1, and independently

the selected variables may change more often.

Initialize U =1, mg=0,v=0, Cy=0;
Data: Input z; and outputy,

at timet

Result Sparse regression coefficients
at timet

my —— Nmy—1 + ] Yy

Ct — )\thl + fEI(L’t,

Hy «— aCy + (1 — a)mym];

for r — 1to R do

a™ — Hau;

q(r)‘_ PXp T 2ik=1

7"« findRoot (u(™);

* u
U" — 757
llu=]l"

Algorithm 1: The iSB-PLS algorithm

r—1 u(%(kw} a®, ¢ — g

for j = 1,2,3. The parametery; is the autoregressive
coefficient for factorj, and we used; = 0.1, §o = 0.4,

03 = 0.2. The error terms in each one of the three factors
follow a normal distribution with variance set t2.25 and
means given by, respectivel§, —1.5 and 1.5. Each input is
generated as

Ty = Fy i+ ne ~ N(0,1) (15)

where z; ; indicates the values of data streamat time ¢,

fort =1,...,400 andi = 1,...,60. The indexj indicates
that each stream depends only on a given time-varying hidden
factor. Specifically, we create three groups of data strdams
settingj = 1 for 1 <i <20, 5 =2for21 <i <40 and
j=3for 41 <i <60.

In order to test the adaptive behavior of the iSB-PLS
algorithm, we generate an univariate output by introducing
time-dependent regression coefficients. Until titre 100, all
the variables associated with the first hidden factor styong
contribute to the output, and their regression coefficiemts
selected by sampling from a normal distribution centeretat
and with low variance. Analogously, the variables assediat
with the second hidden factors have regression coefficients
with mean5 and with low variance. The variables associated
with the third hidden factor are assigned zero coefficients.
In order to introduce a non-stationary behavior, all the-non

The parametery controls the degree of sparsity. In someero coefficients in the two groups of "active variables” are

situations, such as in financial applications (e.g. SedtieR),

swapped at = 101. At ¢ = 301 until the end of the period,

the user may wish to have direct control over the number tife first group of variables is assigned a zero coefficient and
variables to be selected. In such a case, it is necessarthe group associated with the third hidden factor is assigne
select a value ofy to induce the correct degree of sparsitgoefficient sampled from a normal distribution centred acbu

in the solution. Our method of choice is a simple rootfindingO. In this way, the important predictors change over timg an
algorithm:~ is assigned a value equal to the— )" largest we expect these changes to be picked up in almost real-time
component ofu| wherep is the number of elements imand by the algorithm. In this setting, we sBt= 2 and the sparsity

0 is the desired number of selected variables. Applying thmarametery is chosen automatically by the algorithm so that,
threshold operation with this value of will cause all butd at any given time, exacth20 variables are selected. The
of the elements in: to become0. The computational effort forgetting factor) is set to 0.98 to ensure a rapid adjustment
required for this sort operation 3(Rp logp) which makes it when the coefficients switch while also keeping the switghin

suitable for application in an on-line algorithm. In the lime  frequency low to gain stability in the selected variables.

case the complexity introduced by the penalization fumctio Figure 1 shows the results of a single run of this experiment.
decreases from the off-line case as we operate only on a&singlearly, the first PLS component is able to accurately select
data point at a time (i.e. = 1). This makes the complexity the most important group of variables. The second component
of the penalization function at each time po®m{Rp). always selects the second most important group of variables
whilst mostly ignoring the group of variables selected by th
first component. Neither component selects the inactive var

) ables suggesting the algorithm is correctly able to disfisiy

A. Simulated data important predictors from noise. As the coefficients switch

In this section we report on a simulation experiment déhe algorithm only requires few data points before it detect
signed to demonstrate the performance of the iSB-PLS #1e changes and adapts itself.
gorithm as an on-line variable selection method. The inputFigure 2 reports on the mean percentage of correctly se-
is simulated by first introducing three hidden factors whodected variables in both components by the iSB-PLS algo-

tempora| evolution is governed by an autoregressive (AN)hm in a Monte Carlo simulation Consisting of 500 runs of
process of first order in the following way: this experiment. The solid line shows the mean percentage

of correctly selected variables by the first and second PLS
fort=2...,400 (14) components. The shaded area shows the Monte Carlo error.

IV. EXPERIMENTAL RESULTS

Fij=0iF1;+é,



simulated pattern with three hidden factors

@
o

of assets and determine weights, which represent a proporti
of the total investment capital, so that the returns aclddwe
the portfolio track very closely those achieved by a benakma
index. Our application of a sparse algorithm to the portfoli
‘ ‘ ‘ ‘ ‘ selection and index tracking problem is supported by work in
e [5] who propose sparse portfolios based on Lasso penalized
Estimated pater wit 1 PLS Comporent regression. Furthermore the use of a latent factor model for
index tracking is supported by evidence which suggests that
the first principal component of index returns captures the
market factor(see, for example [1]). Our framework unifies
. these two approaches by combining dimensionality rednctio
s 10 150 ggg 20 a0 %0 40 by projection onto latent factors with variable selecti@mg a
Estimated pattern with 2" PLS Component regularized regression. For this application, we use phbt
e data from the S&P and Nikkei indices as described in [4].

We have tested the iSB-PLS algorithm in a more involved
setting where: (a) two indices (the S&P and the Nikkei) need
i to be simultaneously tracked, so the response is bivariate,

S0 100 150 200 250 300 3%0 400 and (b) both benchmark indices have besmancedsee, for

instance, [2]). "Enhanced” index tracking involves penfimg

Fig. 1. Results of test with simulated data. The top figure shbaw, at index tracking in the case where the target asset to be tlacke
any time, there are three blocks of data streams: active strhawisg larger are the index returns plus an additiondl% annual returns
(black) and smaller (gray) regression coefficients, andtivestreams (white) . :
which only contributes to noise. Each block is related to feertint hidden 1N€ total number of available stocks 323 and we set the
factor. The bottom figure shows the data streams selecteid@iy each PLS portfolio size t010. The forgetting factor is\ = 0.99 and we
component. constrain the selected stock to be associated to the maint |at

factor only, so thatk = 1, as in [1].
100 :
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In order to assess whether our procedure selects and tracks

] the important variables over time, we compare its perfoigean
] with the average returns obtained from a populatior @f0
0 350 35‘0 401

% of correctly
selected variables
3
3

portfolios of the same size, with each portfolio being made
of a randomly selected subset of assets. To make sure that

time ° the comparison is fair, the portfolio weights are also time-
S varying and are obtained by using a recursive least squares
jﬁ i zf | method with the same& parameter. This comparison is made
[ g © | in order to determine whether the ability to update the pticf
g § wl | composition in response to perceived changes in the market i
59 " ‘ ‘ ‘ ‘ ‘ ‘ ‘ really advantageous in an index tracking application.
50 100 150 200 250 300 350 400

time Figure 3 shows the results of this test. It can be seen that
iISB-PLS consistently overperforms both indices and sglact
Fig. 2. Results of 500 runs with simulated data for= 0.98. The solid line  small portfolio achieving exactly the target annual resuat
T anen e nonm B o ot s s oyt vy 139 In compatison, the random portolo underperformsthe
selected variables. S&P index by32.07% and the Nikkei by8.42%. Our results
suggest that the importance of certain stocks in the index is
not constant over time so the ability to detect and adapt to
It is clear that in the portions where the data is stationamhese changes is certainly advantageous. Using a model that
iSB-PLS will correctly select the important variables wittry assumes a time-varying latent factor driving the assetmstu
little error. In response to a change in the important fagtbre is also advantageous in this setting, since its existence in
percentage of correctly selected variables instantly ebsm@s real markets has been heavily documented in the financial
and quickly adapts to the new data. The algorithm eventuallterature. The bottom plot of Figure 3 is a heatmap illuitigy
selects the correct variables after some settling time.@dew how the make-up of the portfolio selected by iSB-PLS changes

during this time the variability of the result increases. during the entire period. Specifically, it shows the existen
o ) ) of a few important stocks that are held for the majority of
B. An application to index tracking the period whereas other assets are picked and dropped more

An example application of the iSB-PLS algorithm lies in thérequently throughout the period, further suggesting thé
financial domain and is related to tiredex trackingproblem. advantageous to be able to adapt the constituents of arnacki
The objective of index tracking is to select a small portioli portfolio.



1s ‘ — ‘ a mean squared error termﬁ,r) as a function of the number
of components, using a forgetting factor in the followingywa

ez(tr—i-)l = )\egr) + (ye — )? (16)

‘ ‘ ‘ ‘ ‘ whereg, is the estimated response at time|f at time ¢ + 1
’ ” B Ntlio ” = - adding a new PLS component causes a large enough reduction
‘ in error, the number of PLS components is increased. If addin
the new component does not decrease the error enough, the
number of PLS components is not changed.
The forgetting factor\ has also been pre-selected, however
- - - —— —— o a number of techniques exist for learning this parametanfro
o oo the data in a streaming fashion. These techniques have been
discussed in the literature concerning on-line learningeafral
networks, as in [15], and other time-varying processespas i
[13]. Furthermore, we are planning to apply these methods
to related financial applications such as further exterssian
index tracking for buildingmarket neutralportfolios and de-

cumulative returns

cumulative returns

selected input streams

50 100 150 200 250

input strearms ime tecting market inefficiencies for algorithmic trading, as[2]
B Bl e sees ] and [12], respectively. We are considering other apphbeesti
oo in the field of text mining involving news feeds.
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