
HAL Id: inria-00369564
https://inria.hal.science/inria-00369564

Submitted on 20 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive modeling with high-dimensional data
streams: an on-line variable selection approach

Brian Mcwilliams, Giovanni Montana

To cite this version:
Brian Mcwilliams, Giovanni Montana. Predictive modeling with high-dimensional data streams: an
on-line variable selection approach. SPARS’09 - Signal Processing with Adaptive Sparse Structured
Representations, Inria Rennes - Bretagne Atlantique, Apr 2009, Saint Malo, France. �inria-00369564�

https://inria.hal.science/inria-00369564
https://hal.archives-ouvertes.fr

Predictive modeling with high-dimensional data
streams: an on-line variable selection approach

Brian McWilliams
Department of Mathematics

Imperial College
London

Email: brian.mcwilliams07@imperial.ac.uk

Giovanni Montana
Department of Mathematics

Imperial College
London

Email: g.montana@imperial.com

Abstract—In this paper we propose a computationally efficient
algorithm for on-line variable selection in multivariate regression
problems involving high dimensional data streams. The algorithm
recursively extracts all the latent factors of a partial least squares
solution and selects the most important variables for each factor.
This is achieved by means of only one sparse singular value
decomposition which can be efficiently updated on-line and
in an adaptive fashion. Simulation results based on artificial
data streams demonstrate that the algorithm is able to select
important variables in dynamic settings where the correlation
structure among the observed streams is governed by a few
hidden components and the importance of each variable changes
over time. We also report on an application of our algorithm
to a multivariate version of the ”enhanced index tracking”
problem using financial data streams. The application consists
of performing on-line asset allocation with the objective of
overperforming two benchmark indices simultaneously.

I. I NTRODUCTION

Streaming data arise in several application domains, in-
cluding web analytics, healthcare monitoring and asset man-
agement, among others. In all such contexts, large quantities
of data are continuously collected, monitored and analyzed
over time. Often the main objective is to make real-time
predictions by using the incoming streams as covariates in
a regression model. In this work, we envisage a system that
imports p input and q output data streams at discrete time
points. The input data vector is denoted byxt ∈ R

1×p where
the subscript refers to the time stamp and the dimensionp
may be very large. The outputyt ∈ R

1×q may also be
multivariate. A common task is to recursively estimate a linear
regression function of formyt = f(xt) which can be used
to make future predictions, for instance at timet + 1. Our
fundamental assumption is that, at any given time, only a few
selected components ofxt contain enough predictive power,
and only those should be actively used to build the regression
model. We embrace a penalized regression approach where
the unimportant predictors are excluded from the model by
forcing their coefficients to be exactly zero.

There are a number of statistical problems arising in this
setting which we intend to tackle in this paper. Firstly, a
decision has to be made on how to select the truly important
predictive components on the input data streams that best
explain the multivariate response in a computationally efficient
manner. Secondly, since the components ofxt may be highly

correlated, variable selection arises in an ill-posed problem
and special care is needed in order to deal with this difficulty.
As will be clear later, we take a dimensionality reduction
approach. Thirdly, the relationship between input and output
streams is expected to change quite frequently over time, with
the frequency of change depending on the specific application
domain and nature of the data. This aspect requires the
development of adaptive methods that are able to deal with
possible non-stationarities and the notion ofconcept drift,
that is the time-dependency of the underlying data generating
process. To the best of our knowledge, little work has been
done towards the development of a methodology that resolves
all these three issues in a unified framework.

The literature concerning on-line variable selection methods
for predictive modeling with data streams is still in its infancy.
A search of the literature yielded two relatively recent works
which address this issue within a penalized regression frame-
work. The earlier method by [11] proposes a modification to
the least angle regression (LARS) algorithm of [6] forL1-
penalized regression, otherwise known as the Lasso, which
allows it to be updated on-line. More recently, [3] developed
an alternative approach to on-lineL1-penalized regression
based on recursive least squares. The Lasso is solved by using
the shooting algorithm, a pathwise co-ordinate optimization
algorithm [8]. The resulting procedure is related to adaptive
recursive least squares algorithms which have been routinely
applied, for instance, in the domain of adaptive filtering.
Finally, we note how neither approach considers a multivariate
response or the issue of multicollinearity among covariates.

In this work we aim to unify these problems into a single
framework by proposing an efficient incremental and sparse
partial least squares (PLS) algorithm for on-line variableselec-
tion and tracking of multivariate data streams. PLS regression
is an extension of the multiple linear regression model and
assumes the existence of a handful of latent factors explaining
the variation observed in the data. It has the favorable prop-
erties in that it can be used to deal with situations where the
data is multicollinear and in problems where the response is
multivariate.

II. B RIDGE PARTIAL LEAST SQUARES REGRESSION

A. Partial least squares regression

Partial least squares (PLS) regression is a method of dimen-
sionality reduction concerned with modeling the relationship
between some input dataX ∈ R

n×p and the response or
output Y ∈ R

n×q [10]. The assumption underlying PLS is
that bothX and Y are generated by a small number,R, of
latent factors

X =
R

∑

r=1

s(r)b(r)T
+ E, Y =

R
∑

r=1

s(r)w(r)T
+ F (1)

where s(r) ∈ R
n×1 are the latent factors andb(r) ∈ R

p×1

and w(r) ∈ R
q×1 are the factor loadings ofX and Y ,

respectively.E and F are matrices of residuals with no
assumed distribution. PLS finds the latent factors such thatthe
covariance between input and output is maximized. In order
to extract the full complement of latent factors, each one must
be extracted sequentially. Once a factor has been extracted, a
rank one deflation of theX andY matrices is performed by
subtracting the contribution of the current factor from thedata,
and a new iteration begins. The PLS literature is extensive and
many methods exist for extracting the latent factors (see, for
example [14] for a recent review of PLS variants). The various
algorithms usually differ beyond computation of the first latent
factor by how the input and output data matrices are deflated.

In this work we focus on the commonly used PLS-2
algorithm [14]. The algorithm iteratively findsR hidden
factors of X such thatS = XU where S = [s(1), ...s(R)].
U = [u(1), ..., u(R)] is a matrix of weights corresponding to the
direction of maximal covariance betweenX andY . Because
it is assumed thatX and Y are related through the hidden
factors and the factors underlyingX are a good predictor of
Y , the response can be expressed in the form of a regression
model

Ŷ = Xβ̂ + F (2)

whereβ̂ = ŨŴ are the estimated coefficients. For all values
of r, we define

M (r) = X(r)T
Y (r)

that is the covariance matrix between input and output streams.
The weight vectoru(r) is found by solving:

ũ(r) = arg max
u

(

uTM (r)M (r)T
u
)

s.t. ‖u‖ = 1 (3)

which is the normalized eigenvector corresponding to the
largest eigenvalue ofM (r)M (r)T

. Alternatively, this is the first
left singular vector of the singular value decomposition (SVD)
of M (r). The loading vectors for bothY andX are found by
performing univariate regressions

w(r) =
s(r)T

Y (r)

s(r)T
s(r)

b(r) =
s(r)T

X(r)

s(r)T
s(r)

(4)

After the extraction of the first factor, in order to extract
subsequent factorsX and Y must be deflated by subtracting
the current latent factor to giveX(r+1) = X(r) − s(r)b(r)T

andY (r+1) = Y (r) − s(r)w(r)T
. The same procedure is then

repeated until all factors are extracted.
The deflation steps above are necessary because if

rank(Y) < rank(X), then the covariance matrixMMT will
be rank deficient and so the number of PLS components
which can be extracted without deflation will be limited to
rank(Y). For instance, in the case of univariate response,R
separate SVD computations must be performed. This is the
main limiting factor in developing an efficient on-line sparse
PLS algorithm that we intent to remove. In order to circumvent
this problem, we propose an approach that avoids the deflation
steps altogether, thus requiring only one SVD computation for
the extraction of all the latent factors.

B. Bridge PLS

Bridge PLS (BPLS) [9] is a recent development which
ensures that the full complement of PLS components may
be extracted in one step by adding a ridge term to the
eigenvalue problem. This ensures that the covariance matrix is
full rank so we are no longer limited by the rank of Y in the
number of components we are able to extract. This is a very
important step as it opens the possibility for efficient on-line
PLS implementations.

This goal is achieved by introducing a new covariance
matrix

H = XT
(

αI + (1− α)Y Y T
)

X
= αXTX + (1− α)MMT (5)

where0 ≤ α ≤ 1 is a ridge parameter which adds a small
constant to the diagonal ofY Y T which preventsH from
becomming rank deficient. It can be noticed thatH is a
weighted sum between the covariance matrix ofX and the
covariance matrix ofX and Y . When α = 0, this yields
regular PLS and settingα = 1 yields a principal components
regression.

All BPLS weights are then obtained in one step by solving
the following modified PLS optimization problem

Ũ = arg max
U

(

UTHU
)

s.t. ‖U‖ = 1 (6)

so that Ũ = [ũ(1), ..., ũ(R)] are the firstR eigenvectors of
H. The latent factors,S are then computed asXŨ . The
correspondingY -loadings areŴ =

(

STS
)−1

STY . The final
PLS regression coefficients are given byβ̂ = ŨŴ . In our
experiments we setα = 10−5 so thatH becomes full rank, yet
all PLS directions may be extracted accurately after computing
the SVD ofH only once; see [9] for related discussions.

The computational benefits gained by removing the neces-
sity to performR − 1 additional SVD computations in the
off-line case is a saving in computation time ofO(Rnp2).
Reducing the PLS problem to a single SVD computation
provides the key element for performing variable selectionin
an efficient way in both off-line and on-line scenarios.

III. N EW METHODS FOR SPARSE

MODELLING

A. Sparse Bridge PLS

A regularized SVD method has recently been introduced by
[16] as an efficient device to perform PCA with sparse loading
vectors. The method relies on the best low rank approximation
property of the SVD. Briefly, this is achieved by reformulating
the PCA optimization problem as a regression betweenX
and its best low rank approximation, which is solved by an
SVD application. The loading vectors are then made sparse
by applying a component-wise thresholding operation.

In this section we use the sparse SVD method of [16] in
order to achieve an efficient variable selection algorithm within
the Bridge PLS framework. We first calculateH as in Eq. (5)
and define the SVD ofH = UDV T. The bridge PLS criterion
in Eq. 6 can be written as regression by whereby the criterion
to be minimized is the residual sum of squares betweenH
and its low rank approximation, as follows:

min
ũ,ṽ

∥

∥H − ũṽT
∥

∥

2
(7)

where ũ and ṽ ∈ R
p×1 are restricted to be vectors with unit

norm so that a unique solution may be obtained. It is known
that the product of the first left and right singular vectors,
u(1)v(1) is the best rank one approximation ofH. Therefore
Eq. 7 is solved by setting̃u = u(1) and ṽ = v(1). We obtain
sparse loadings by imposing a penalty onũ and removing
its scale constraint. Although we could use one of a number
of penalty functions (see, for instance [8]), in this work we
concentrate on the Lasso penalty, which places a restriction on
theL1 norm of ũ. This amounts to the following optimization
problem:

min
ũ,ṽ

∥

∥H − ũṽT
∥

∥

2
+ γ ‖ũ‖ s.t. ‖ṽ‖ = 1 (8)

where γ is a parameter which controls the sparsity of the
solution. If γ is large enough, it will force some variables
to be exactly zero. The problem of Eq. (8) can be solved in
an iterative fashion by first setting̃u = u(1) and ṽ = v(1)

as before. Sincẽu and ṽ are rank one vectors, the Lasso
penalty can be applied as a component-wise soft thresholding
operation on the elements of̃u (see, for instance, [8]). The
sparsẽu are found by applying the threshold component-wise
as follows:

ũ∗ = sgn
(

HTṽ
) (

∣

∣HTṽ
∣

∣− γ
)

+

ṽ∗ = Hũ∗/ ‖Hũ∗‖
(9)

We then set̃u = ũ∗ and ṽ = ṽ∗ and iteratively apply Eq. (9)
until ‖ũ∗ − ũ‖ < τ whereτ is an arbitrarily small constant.
The procedure above allows all the PLS weight vectors to
be extracted and made sparse at once without the need to
recompute an SVD for each dimension.

B. Incremental Sparse Bridge PLS

In this section we develop the Sparse Bridge PLS algorithm
to be used for variable selection in the streaming data setting.
We call the resulting algorithm incremental Sparse Bridge PLS

(iSB-PLS). In this case, we no longer assume we have access
to the full data matrixX ∈ R

n×p. Instead the data arrives
sequentially at each time point,t, as xt ∈ R

1×p. Similarly,
the response arrives is observable only at discrete time points
asyt ∈ R

1×q.
The main challenge with applying the sparse Bridge PLS al-

gorithm to streaming data is implementing an efficient method
to calculate and update the SVD ofH. Our solution to this
problem consists in using the Adaptive SIM algorithm [7], a
generalization of the power method which is able to adapt
to changes in the data. When a new data pointxt and its
corresponding responseyt arrives, we update the individual
covariance matrices as follows

Ct = λCt−1 + xT
t xt Mt = λMt−1 + xT

t yt (10)

where λ is a forgetting factor which exponentially down-
weights the contribution of past data points to the current
covariance matrix. The Bridge PLS covariance matrixHt of
Eq. (5) is constructed by summing the weighted PCA and PLS
covariance matricesCt andMtM

T
t , which leads to

Ht = αCt + (1− α)MtM
T
t (11)

At each time point, the estimate of the eigenvectors of the
covariance matrix,H are updated by performing one iteration
of the SIM algorithm as follows:

Q = HtUt−1 Ut = orth(Q) (12)

where the function orth(Q) ensures that the columns of the
matrix Q are mutually orthogonal. We use the Gram-Schmidt
orthogonalization procedure which has a computational com-
plexity of O(pR2).

Once the weight vectorsUt have been updated, they are
made sparse using the a modified version of the iterative
regularized SVD algorithm used for Sparse Bridge PLS in
Section III-A. Since our algorithm is on-line and the solution is
updated when a new data point arrives, we no longer iteratively
apply the thresholding operation and instead apply it directly
to the current estimate of the eigenvector. The simplified
sparsification process for therth weight vector is

u∗ = sgn
(

u(r)
) (

|u(r)| − γ(r)
)

+

u∗ = u∗

‖u∗‖

(13)

The final steps of the Bridge PLS algorithm proceed as in the
off-line case. The latent vectorsS are computed asS = XU .
However since the number of observations is effectively one,
S will be an R-vector and theY -loadings can be computed
asW = Y TS/(STS). The sparse PLS regression coefficients
are β̂ = UW so that the regression estimate at timet is ŷt =
xtUW . Algorithm (1) details the resulting iSB-PLS procedure
in full. In the initialization phase, we setU0 = [u

(1)
0 , ...u

(R)
0] =

Ip×R to ensure that the initial estimates of the eigenvectors are
mutually orthogonal. We also initializem0 = 0, γ = 0, and
C0 = 0. The forgetting factor,λ is chosen to be between
between zero and one. Whenλ = 1, no data forgetting takes
place, whereasλ = 0 has the effect of setting the sample size

to the present data point only. Therefore, as the values ofλ
get close to zero, the algorithm becomes more adaptive and
the selected variables may change more often.

Initialize U = I, m0 = 0, γ = 0, C0 = 0;
Data: Input xt and outputyt

at time t
Result: Sparse regression coefficientsβt

at time t
mt ←− λmt−1 + xT

t yt;
Ct ←− λCt−1 + xT

t xt;
Ht ←− αCt + (1− α)mtm

T
t ;

for r ← 1 to R do
a(r) ← Htu

(r);
q(r) ←

[

Ip×p −
∑r−1

k=1 u(k)u(k)T
]

a(r), q(1) ← a(1);

u(r) ← q(r)/
∥

∥q(r)
∥

∥;
γ(r) ← findRoot(u(r));
u∗ ← sgn

(

u(r)
) (

|u(r)| − γ(r)
)

+
;

u∗ ← u∗

‖u∗‖ ;

u
(r)
t ← u∗;

end
s← xUt;
w ← ys

sTs
;

βt ← Uts
T;

Algorithm 1 : The iSB-PLS algorithm

The parameterγ controls the degree of sparsity. In some
situations, such as in financial applications (e.g. SectionIV-B),
the user may wish to have direct control over the number of
variables to be selected. In such a case, it is necessary to
select a value ofγ to induce the correct degree of sparsity
in the solution. Our method of choice is a simple rootfinding
algorithm:γ is assigned a value equal to the(p− θ)th largest
component of|u| wherep is the number of elements inu and
θ is the desired number of selected variables. Applying the
threshold operation with this value ofγ will cause all butθ
of the elements inu to become0. The computational effort
required for this sort operation isO(Rp log p) which makes it
suitable for application in an on-line algorithm. In the on-line
case the complexity introduced by the penalization function
decreases from the off-line case as we operate only on a single
data point at a time (i.e.n = 1). This makes the complexity
of the penalization function at each time pointO(Rp).

IV. EXPERIMENTAL RESULTS

A. Simulated data

In this section we report on a simulation experiment de-
signed to demonstrate the performance of the iSB-PLS al-
gorithm as an on-line variable selection method. The input
is simulated by first introducing three hidden factors whose
temporal evolution is governed by an autoregressive (AR)
process of first order in the following way:

Ft,j = δjFt−1,j + ǫt,j for t = 2 . . . , 400 (14)

whereFt,j indicates the value of factorj at time t, starting
with an arbitrary initial value at timet = 1, and independently
for j = 1, 2, 3. The parameterδj is the autoregressive
coefficient for factorj, and we useδ1 = 0.1, δ2 = 0.4,
δ3 = 0.2. The error terms in each one of the three factors
follow a normal distribution with variance set to12.25 and
means given by, respectively,0,−1.5 and 1.5. Each input is
generated as

xt,i = Ft,j + ηt ηt ∼ N(0, 1) (15)

where xt,i indicates the values of data streami at time t,
for t = 1, . . . , 400 and i = 1, . . . , 60. The indexj indicates
that each stream depends only on a given time-varying hidden
factor. Specifically, we create three groups of data streamsby
setting j = 1 for 1 ≤ i ≤ 20, j = 2 for 21 ≤ i ≤ 40 and
j = 3 for 41 ≤ i ≤ 60.

In order to test the adaptive behavior of the iSB-PLS
algorithm, we generate an univariate output by introducing
time-dependent regression coefficients. Until timet = 100, all
the variables associated with the first hidden factor strongly
contribute to the output, and their regression coefficientsare
selected by sampling from a normal distribution centered at10
and with low variance. Analogously, the variables associated
with the second hidden factors have regression coefficients
with mean5 and with low variance. The variables associated
with the third hidden factor are assigned zero coefficients.
In order to introduce a non-stationary behavior, all the non-
zero coefficients in the two groups of ”active variables” are
swapped att = 101. At t = 301 until the end of the period,
the first group of variables is assigned a zero coefficient and
the group associated with the third hidden factor is assigned a
coefficient sampled from a normal distribution centred around
10. In this way, the important predictors change over time and
we expect these changes to be picked up in almost real-time
by the algorithm. In this setting, we setR = 2 and the sparsity
parameterγ is chosen automatically by the algorithm so that,
at any given time, exactly20 variables are selected. The
forgetting factorλ is set to 0.98 to ensure a rapid adjustment
when the coefficients switch while also keeping the switching
frequency low to gain stability in the selected variables.

Figure 1 shows the results of a single run of this experiment.
Clearly, the first PLS component is able to accurately select
the most important group of variables. The second component
always selects the second most important group of variables
whilst mostly ignoring the group of variables selected by the
first component. Neither component selects the inactive vari-
ables suggesting the algorithm is correctly able to distinguish
important predictors from noise. As the coefficients switch,
the algorithm only requires few data points before it detects
the changes and adapts itself.

Figure 2 reports on the mean percentage of correctly se-
lected variables in both components by the iSB-PLS algo-
rithm in a Monte Carlo simulation consisting of 500 runs of
this experiment. The solid line shows the mean percentage
of correctly selected variables by the first and second PLS
components. The shaded area shows the Monte Carlo error.

simulated pattern with three hidden factors

time

re
gr

es
si

on
 c

oe
ffi

ci
en

ts

50 100 150 200 250 300 350 400

20

40

60

Estimated pattern with 1st PLS Component

time

se
le

ct
ed

 s
tr

ea
m

s

50 100 150 200 250 300 350 400

10

20

30

40

50

60

Estimated pattern with 2nd PLS Component

time

se
le

ct
ed

 s
tr

ea
m

s

50 100 150 200 250 300 350 400

10

20

30

40

50

60

Fig. 1. Results of test with simulated data. The top figure shows how, at
any time, there are three blocks of data streams: active streamshaving larger
(black) and smaller (gray) regression coefficients, and inactive streams (white)
which only contributes to noise. Each block is related to a different hidden
factor. The bottom figure shows the data streams selected on-line by each PLS
component.

PLS Component 1

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

0 50 100 150 200 250 300 350 400
20

40

60

80

100

PLS Component 2

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

0 50 100 150 200 250 300 350 400
20

40

60

80

100

Fig. 2. Results of 500 runs with simulated data forλ = 0.98. The solid line
shows the mean percentage of correctly selected variables ineach component.
The shaded area shows the Monte Carlo error (standard deviation) of correctly
selected variables.

It is clear that in the portions where the data is stationary,
iSB-PLS will correctly select the important variables withvery
little error. In response to a change in the important factors, the
percentage of correctly selected variables instantly decreases
and quickly adapts to the new data. The algorithm eventually
selects the correct variables after some settling time. However,
during this time the variability of the result increases.

B. An application to index tracking

An example application of the iSB-PLS algorithm lies in the
financial domain and is related to theindex trackingproblem.
The objective of index tracking is to select a small portfolio

of assets and determine weights, which represent a proportion
of the total investment capital, so that the returns achieved by
the portfolio track very closely those achieved by a benchmark
index. Our application of a sparse algorithm to the portfolio
selection and index tracking problem is supported by work in
[5] who propose sparse portfolios based on Lasso penalized
regression. Furthermore the use of a latent factor model for
index tracking is supported by evidence which suggests that
the first principal component of index returns captures the
market factor(see, for example [1]). Our framework unifies
these two approaches by combining dimensionality reduction
by projection onto latent factors with variable selection using a
regularized regression. For this application, we use published
data from the S&P and Nikkei indices as described in [4].

We have tested the iSB-PLS algorithm in a more involved
setting where: (a) two indices (the S&P and the Nikkei) need
to be simultaneously tracked, so the response is bivariate,
and (b) both benchmark indices have beenenhanced(see, for
instance, [2]). ”Enhanced” index tracking involves performing
index tracking in the case where the target asset to be tracked
are the index returns plus an additional15% annual returns.
The total number of available stocks is323 and we set the
portfolio size to10. The forgetting factor isλ = 0.99 and we
constrain the selected stock to be associated to the main latent
factor only, so thatR = 1, as in [1].

In order to assess whether our procedure selects and tracks
the important variables over time, we compare its performance
with the average returns obtained from a population of1000
portfolios of the same size, with each portfolio being made
of a randomly selected subset of assets. To make sure that
the comparison is fair, the portfolio weights are also time-
varying and are obtained by using a recursive least squares
method with the sameλ parameter. This comparison is made
in order to determine whether the ability to update the portfolio
composition in response to perceived changes in the market is
really advantageous in an index tracking application.

Figure 3 shows the results of this test. It can be seen that
iSB-PLS consistently overperforms both indices and selects a
small portfolio achieving exactly the target annual returns of
+15%. In comparison, the random portfolio underperforms the
S&P index by32.07% and the Nikkei by8.42%. Our results
suggest that the importance of certain stocks in the index is
not constant over time so the ability to detect and adapt to
these changes is certainly advantageous. Using a model that
assumes a time-varying latent factor driving the asset returns
is also advantageous in this setting, since its existence in
real markets has been heavily documented in the financial
literature. The bottom plot of Figure 3 is a heatmap illustrating
how the make-up of the portfolio selected by iSB-PLS changes
during the entire period. Specifically, it shows the existence
of a few important stocks that are held for the majority of
the period whereas other assets are picked and dropped more
frequently throughout the period, further suggesting thatit is
advantageous to be able to adapt the constituents of a tracking
portfolio.

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

cu
m

ul
at

iv
e

re
tu

rn
s

S&P 100

time

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

time

cu
m

ul
at

iv
e

re
tu

rn
s

Nikkei

time

se
le

ct
ed

 in
pu

t s
tr

ea
m

s

on−line portfolio

50 100 150 200 250

2

4

6

8

10

input streams

100 200 300

index iSB−PLS random

Fig. 3. Bivariate enhanced tracking (+15% annual returns) of the S&P and
Nikkei indices using a dynamic portfolio of10 stocks.

V. CONCLUSIONS

In this work we have presented an on-line algorithm for
variable selection in a multivariate regression context based
on streaming data. As far as we are aware, this is the first
such algorithm which combines dimensionality reduction and
variable selection for data streams in a unified framework.
From the simulation results we have shown that the algorithm
is able to accurately select variables associated with the
important factors underlying the data. In the case of non-
stationary data where the important factors are changing, iSB-
PLS is able to accurately track the changes.

iSB-PLS requires the specification of a number of parame-
ters which are currently pre-specified by the user. The question
of how to select, in an on-line and adaptive manner, the
number of PLS components and the number of variables per
component is an important one and we are currently working
towards the development of self-tuning procedures.

There are several methods in the literature for automatically
updating the individual model parameters. A mechanism for
adapting the sparsity parameter,γt at each time point was
proposed by [3]. They achieve this by evaluating the Akaike
information criterion (AIC) of the model with a value ofγt−1,
γt−1 + c andγt−1 − c, wherec is some small constant. The
value ofγt which is used at that time point is the one which
minimizes the AIC. This method could be incorporated into
iSB-PLS as a simple adaptive solution to the variable selection
portion of the model selection problem.

A method to select the number of PLS projections on-
line was proposed by [17] who use an approximation of
leave-one-out cross validation. The algorithm initially sets the
number of projections,R = 2 and recursively keeps track of

a mean squared error term,e
(r)
t as a function of the number

of components, using a forgetting factor in the following way

e
(r)
t+1 = λe

(r)
t + (yt − ŷt)

2 (16)

whereŷt is the estimated response at time,t. If at time t + 1
adding a new PLS component causes a large enough reduction
in error, the number of PLS components is increased. If adding
the new component does not decrease the error enough, the
number of PLS components is not changed.

The forgetting factorλ has also been pre-selected, however
a number of techniques exist for learning this parameter from
the data in a streaming fashion. These techniques have been
discussed in the literature concerning on-line learning ofneural
networks, as in [15], and other time-varying processes, as in
[13]. Furthermore, we are planning to apply these methods
to related financial applications such as further extensions of
index tracking for buildingmarket neutralportfolios and de-
tecting market inefficiencies for algorithmic trading, as in [2]
and [12], respectively. We are considering other applications
in the field of text mining involving news feeds.

REFERENCES

[1] C. Alexander and A. Dimitriu. Sources of over-performancein equity
markets: mean reversion, common trends and herding. Technical report,
ISMA Center, University of Reading, UK, 2005.

[2] C. Alexander and A. Dimitriu. Equity indexing: Optimize your passive
investments.Quantitative Finance, 4(3), 2008.

[3] C. Anagnostopoulos, D. Tasoulis, D. J. Hand, and N. M. Adams. Online
optimisation for variable selection on data streams. InProc. of the 18th
European Conf. on Artificial Intelligence, 2008.

[4] J. Beasley, N. Meade, and T. J. Chang. An evolutionary heuristic for
the index tracking problem.European Journal of Operational Research,
148:621643, 2003.

[5] J. Brodie, I. Daubechies, C. D. Mol, C. Giannone, and I. Loris. Sparse
and stable markowitz portfolios.European Central Bank Working Paper
Series, 936, 2008.

[6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression.Annals of Statistics, 32:407–499, 2004.

[7] S. Erlich and K. Yao. Convergences of adaptive block simultaneous
iteration method for eigenstructure decomposition.Signal Processing,
37, 1994.

[8] J. Friedman, E. Hastie, H. Ḧofling, and R. Tibshirani. Pathwise
coordinate optimization.The Annals of Applied Statistics, 1(2):302–332,
2007.

[9] L. Gidskehaug, H. Stdkilde-Jrgensen, M. Martens, and H.Martens.
Bridge-PLS regression: two-block bilinear regression without deflation.
Journal of Chemometrics, 18, 2004.

[10] A. Hoskuldsson. Pls regression methods.Journal of Chemmometrics,
2, 1988.

[11] S.-P. Kim, Y. N. Rao, D. Edogmus, and J. C. Principe. Tracking of
multivariate time-variant systems based on on-line variable selection.
2004 IEEE Workshop on Machine Learning for Signal Processing, 2004.

[12] G. Montana, K. Triantafyllopoulos, and T. Tsagaris. Data stream mining
for market-neutral algorithmic trading. InProceedings of the ACM
Symposium on Applied Computing, pages 966–970, 2008.

[13] M. Niedźwiecki. Identification of time-varying processes. Wiley, 2000.
[14] R. Rosipal and N. Kr̈amer. Overview and recent advances in partial

least squares. pages 34–51. 2006.
[15] D. Saad, editor.On-Line Learning in Neural Networks. Number 17 in

Publications of the Newton Institute. Cambridge, 1999.
[16] H. Shen and J. Huang. Sparse principal component analysis via

regularized low rank matrix approximation.Journal of Multivariate
Analysis, 2008.

[17] S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental online learning
in high dimensions.Neural Computation, 17:2602–2634, 2005.

