Compressive Sensing Recovery of Spike Trains Using A Structured Sparsity Model

Abstract : The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression - sparsity - to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) random linear projections of x are sufficient to robustly recover x in polynomial time. However, richer models are often applicable in real-world settings that impose additional structure on the sparse nonzero coefficients of x.Many such models can be succinctly described as a union of K-dimensional subspaces. In recent work, we have developed a general approach for the design and analysis of robust, efficient CS recovery algorithms that exploit such signal models with structured sparsity. We apply our framework to a new signal model which is motivated by neuronal spike trains. We model the firing process of a single Poisson neuron with absolute refractoriness using a union of subspaces. We then derive a bound on the number of random projections M needed for stable embedding of this signal model, and develop a algorithm that provably recovers any neuronal spike train from M measurements. Numerical experimental results demonstrate the benefits of our model-based approach compared to conventional CS recovery techniques.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369584
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 14:00:57
Dernière modification le : lundi 20 juin 2016 - 14:10:32
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:45:19

Fichier

54.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369584, version 1

Collections

Citation

Chinmay Hegde, Marco F. Duarte, Volkan Cevher. Compressive Sensing Recovery of Spike Trains Using A Structured Sparsity Model. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369584〉

Partager

Métriques

Consultations de la notice

369

Téléchargements de fichiers

283