Sparsity hypotheses for robust estimation of the noise standard deviation in various signal processing applications.

Dominique Pastor 1, 2 Franc¸ois-Xavier Socheleau 1, 2 Abdeldjalil Aïssa-El-Bey 1, 2
1 Lab-STICC_TB_CACS_COM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (UMR 3192)
Abstract : This paper concerns the problem of estimating the noise standard deviation in different signal processing applications. The presented estimator derives from recent results in robust statistics based on sparsity hypotheses. More specifically, these theoretical results make the link between a standard problem in robust statistics (the estimation of the noise standard deviation in presence of outliers) and sparsity hypotheses. The estimator derived from these theoretical results can be applied to different signal processing applications where estimation of the noise standard deviation is crucial. In the present paper, we address speech denoising and Orthogonal Frequency Division Multiple Access (OFDMA). A relevant application should also be Communication Electronic Support (CES). For such applications, the algorithm proposed is a relevant alternative to the median absolute deviation (MAD) estimator.
Type de document :
Communication dans un congrès
Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00369626
Contributeur : Ist Rennes <>
Soumis le : vendredi 20 mars 2009 - 15:07:42
Dernière modification le : jeudi 19 avril 2018 - 14:34:02
Document(s) archivé(s) le : jeudi 10 juin 2010 - 17:49:33

Fichier

47.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00369626, version 1

Citation

Dominique Pastor, Franc¸ois-Xavier Socheleau, Abdeldjalil Aïssa-El-Bey. Sparsity hypotheses for robust estimation of the noise standard deviation in various signal processing applications.. Rémi Gribonval. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations, Apr 2009, Saint Malo, France. 2009. 〈inria-00369626〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

99